The Nature of Astronomy

• The scientific study of objects beyond earth (here with emphasis on stars and physics)
• A progress report. Our views of the cosmos change daily (but the new theories often include the old ones as subsets)
• The universe and all its constituents are evolving
• A novel aspect of astronomy is its ability to carry out direct studies of the past

See also Fraknoi, Morrison and Wolff
Prologue

The scientific mind does not so much provide the right answers as ask the right questions
Claude Levi-Strauss
French philosopher
1908 - 2009

“One Astrophysics”
The universe obeys physical laws and those laws do not vary with space or time

It is best understood on the basis of physical “models” and mathematics

Astronomy 12
Stars, Stellar Evolution, and High Energy Astrophysics

http://apod.nasa.gov/apod/astropix.html

- Stan Woosley

One thing I have learned in a long life is that all our science, measured against reality, is childlike - and yet it is the most precious thing we have.

Albert Einstein
Physicist
1879 - 1955
Scientific notation

\[
1 = 1.0 \times 10^0 \\
10 = 1.0 \times 10^1 \\
1,000,000 = 1.0 \times 10^6 \\
3,450,000 = 3.45 \times 10^6
\]

\[
0.10 = 1.0 \times 10^{-1} \\
0.0000010 = 1.0 \times 10^{-7} \\
0.00346 = 3.46 \times 10^{-3} \\
0.002356347 \approx 2.36 \times 10^{-3}
\]

\[
\left(1.0 \times 10^{-2}\right)\left(2.0 \times 10^4\right) = 2.0 \times 10^2 = 200
\]

\[
\left(1.0 \times 10^{-2}\right)/\left(2.0 \times 10^1\right) = \frac{1}{2} \times 10^{-6} = 5.0 \times 10^{-7}
\]

In Ay12 (e.g. homework), use only the precision justified by the statement of the problem. The default is 3 figures of accuracy.

Logarithms

\[
\log (1) = 0 \\
\log (0.1) = -1. \\
\log (10^6) = 6
\]

\[
\log (52.3) = 1.72...
\]

\[
\log (a)(b) = \log (a) + \log (b) \\
\log (a^b) = b \log (a)
\]

e.g. \[
\log (10^7) = 2 \log (10) = 2
\]

\[
\log(10^4) = x \log(10) = x
\]

\[
\log (100) = \log(10)(10) = \log(10) + \log(10) = 2
\]

Logarithms are used extensively in the stellar magnitude system because of the need to describe brightnesses than span many orders of magnitude.

Angular Measure

(used, e.g., for distance determination)

\[
1 \text{ full circle} = 360 \text{ degrees} \\
1 \text{ degree} = 60 \text{ arc minutes} \\
1 \text{ arc minute} = 60 \text{ arc seconds}
\]

\[
2 \pi \text{ radians} = 360 \text{ degrees}
\]

A radian is the angle subtended by a length of arc equal to the radius of the circle.

\[
1 \text{ radian} = \frac{360}{2\pi} = 57.29... \text{ degrees} = 206,265 \text{ arc seconds}
\]

Length of arc, \(s \), subtended by angle \(\theta \)

\[
s = r \theta
\]

if \(\theta \) is measured in radians

Thumb at arm’s length ~ 2 degrees

Little finger at arm’s length ~ 1 degree

hand spread ~ 20 degrees

Smallest angle with naked eye ~ 1 arc min

Sun or moon ~ ½ degree
Units

The basic units in Ay12 are cm, gm, and sec.

How many cm in a light year? 1 ly = c * 1 yr

\[c = 2.99 \times 10^5 \text{ km s}^{-1} \]

Julian year = 365.25 days

day = 24 hours

\[\text{km} = 10^3 \text{ m} \]

hour = 60 minutes

\[\text{m} = 10^2 \text{ cm} \]

1 ly = c \times 1 year

\[= \left(\frac{2.99 \times 10^5 \text{ km s}^{-1}}{s} \right) (1 \text{ yr}) \left(\frac{10^3 \text{ m}}{\text{km}} \right) \left(\frac{10^2 \text{ cm}}{\text{m}} \right) \left(\frac{365 \text{ day}}{1 \text{ yr}} \right) \left(\frac{24 \text{ hr}}{1 \text{ day}} \right) \left(\frac{60 \text{ min}}{1 \text{ hr}} \right) \left(\frac{60 \text{ s}}{1 \text{ min}} \right) \]

\[= 9.44 \times 10^{17} \text{ cm} \]

Spherical Geometry

Circumference of a circle = \(2\pi r \)

Surface area of a sphere = \(4\pi r^2 \)

Volume of a sphere = \(\frac{4}{3}\pi r^3 \)

Mass of a sphere with constant density \(\rho \)

\[M = \left(\frac{4}{3}\pi r^3 \right) \rho \]

To a good approximation stars are spheres

Calculus

\[\frac{d}{dx} x^n = nx^{n-1} \]

\[\int x^n \, dx = \frac{x^{n+1}}{n+1} \]

\[\frac{d}{d\theta} (\cos \theta) = -\sin \theta \]

\[\frac{d}{d\theta} (\sin \theta) = \cos \theta \]

Binomial expansion theorem

\[(1 + \varepsilon)^n = (1 + n\varepsilon) \quad \text{if } |\varepsilon| \ll 1 \]

E.g., \((1 + 0.01)^2 \approx 1.005 \quad \text{(actually 1.0049876..)}\)
Eg. Volume of a sphere

Area of a shell = $4 \pi r_0^2$

Thickness = $\Delta r_0 \approx dr_0$

Add up a whole bunch of shells

$$\int 4 \pi r_0^2 dr_0 = \frac{4}{3} \pi r_0^3$$

Our location in the Universe
The Earth as a planet

- $M_{\text{earth}} = 5.997 \times 10^{27}$ gm
- $R_{\text{earth}} = 6.378 \times 10^8$ cm
- Age ~ 4.54 billion years (U,Th dating - close to age of sun)
- Orbit sun = 1.496×10^{13} cm (~average distance) = AU (93 million miles) [prior to 1976 was semi-major axis; now radius of circular orbit with the equivalent period]
- Period around the sun = 365.256363… days (Julian year = 365.25 days)
- Average density = 5.52 gm/cm3

\[\rho = \frac{M}{\frac{4}{3} \pi r^3} \]

densest planet in the solar system, barely beats Mercury

or a big, rusty, sandy rock….

- 34.6% Fe
- 29.5% O
- 15.2% Si
- 12.7% Mg
- 2.4% Ni
- 1.9% S

Boiling point sulfur = 445 C
So Hell is in the rocky crust
In contrast to ……

Where did these elements come from?

The Sun

The only star we can study in great detail

- Mass = 1.989 x 10³³ gm; about 300,000 Earth masses
- Radius = 6.96 x 10⁵ Km; almost 100 Earth radii
- Average density 1.41 gm/cm³
- Age = 4.567 x 10⁹ years
- Luminosity = 3.90 x 10³³erg/s
 (world’s armament in 10⁻⁵ seconds)
- Central temperature = 15.7 million K
- Photospheric temperature about 5700 K
- Rotation period 24.47 days at the equator
- Slower near poles
- Surface composition (by mass) 70.6% H
 27.5% He, 1.9% C, N, O, Fe, Si, etc
 (like “universe”)

A typical star. A little on the heavy side.

This rusty sandy rock orbits the nearest star, the sun….
12.5 ly

www.atlasoftheuniverse.com

The nearest (24) stars within 12.5 light years of the earth. The closest star system – Alpha Centauri – is about 7000 times the radius of Pluto’s orbit. 270,000 times the radius of the Earth’s orbit.

Some specific nearby stars:

- **The sun** – a typical yellow dwarf star. Type G2 with 8 planets

- **Proxima Centauri** – closest of the triplet of stars loosely known as ”alpha-Centauri”
 Proxima Centauri is a faint red star that orbits Alpha-Centauri A and B with a period of about one million years. Proxima Centauri is 4.22 light years from the Earth (now) and about 0.24 light years from Alpha-Centauri A and B.

- **Alpha-Centauri A and B** – a double star system with a period of about 80 years. Component A is a near twin of the sun (Type G2). Component B is a little fainter and orange. Alpha-Centauri A and B are 4.39 light years from the Earth.

- **Barnards star** – highest proper motion of all stars. 5.9 light years away. It moves 0.29 degrees per century. In another 8000 years Barnard’s star will be the closest star to us (3.8 ly in 11700 AD). M star, faint, red, about 11 Gyr old. No big planets.

- **Lalande 21185** – One of the brightest red dwarfs in the sky but still requires binoculars to see it. In 1996 a couple of Jupiter sized planets were discovered here

- **Epsilon Eridani** – 10.5 light years away. Searched for life by radio searches in the 1960’s. May have a Jupiter sized planet orbiting at a distance of 3.2 AU. Young star (1Gyr?). K2

- **Procyon A,B** – 11.41 light years away. Another multiple star system. 8th brightest star in the sky has a white dwarf companion

- **Sirius A,B** – At a distance of 8.60 light years Sirius A is the brightest star in the sky. Sirius B is a white dwarf

Brightest stars

<table>
<thead>
<tr>
<th>Star name</th>
<th>Apparent magnitude</th>
<th>Star name</th>
<th>distance (ly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>-26.8</td>
<td>Sun</td>
<td>-</td>
</tr>
<tr>
<td>Sirius</td>
<td>-1.46</td>
<td>Proxima Centauri</td>
<td>4.2</td>
</tr>
<tr>
<td>Canopus</td>
<td>-0.72</td>
<td>Alpha Centauri AB</td>
<td>4.3</td>
</tr>
<tr>
<td>Arcturus</td>
<td>-0.04</td>
<td>Barnards stars</td>
<td>6.0</td>
</tr>
<tr>
<td>Alpha Centauri</td>
<td>-0.01</td>
<td>Wolf 359</td>
<td>7.7</td>
</tr>
<tr>
<td>Vega</td>
<td>0.00</td>
<td>BD 36+2147</td>
<td>8.2</td>
</tr>
<tr>
<td>Capella</td>
<td>0.08</td>
<td>Luyten 726-8AB</td>
<td>8.4</td>
</tr>
<tr>
<td>Rigel</td>
<td>0.12</td>
<td>Sirius A B</td>
<td>8.6</td>
</tr>
<tr>
<td>Procyon</td>
<td>0.38</td>
<td>Ross 154</td>
<td>9.4</td>
</tr>
<tr>
<td>Betelgeuse</td>
<td>0.41</td>
<td>Ross 248</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Most nearby stars are too faint to see without a telescope

In a volume limited sample – counting all stars...

Most stars are less luminous than the sun, only a few are brighter.
In binary star systems we can determine the mass of the star. For stars that are spectroscopically "main sequence" the star's luminosity is correlated with its mass.

\[L \propto M^3 \]

e.g., 10 solar masses is between 10^3 and 10^4 times more luminous than the sun. 0.1 solar masses is down by 10^3.

To summarize:

- There are many more faint stars than bright ones
- Faint stars also have low mass
- Low mass stars live a long time

The converse is also true:

- Bright (high luminosity) stars are rare
- Bright stars are more massive (exception red giants)
- Massive stars have short lives

20 light years – 78 systems – 109 stars

250 light years

Number for isotropic distribution and constant density \(n = d^3 \)

About 250,000 stars lie within 250 light years of the Earth. Beyond this distance it becomes difficult to see all the stars in the plane of the Milky Way Galaxy because of the presence of dust.

Only the 1500 most luminous of these stars are plotted. Most of these are visible to the unaided eye.

Note the presence of the Hyades cluster.

< 1500 stars are visible to the unaided eye. More often it's a few hundred.

isotropic distribution

Starting to see some preference for Galactic plane for distances beyond this.
The Hyades Open cluster of stars (151 light years)

This cluster of stars is only about 625 million years old and is in the process of coming apart. Stars like this are born together from a giant cloud of molecular gas, most of which is blown away by the young stars. About 200 stars are catalogued at http://en.wikipedia.org/wiki/List_of_stars_in_Hyades

The bright red star Aldebaran is not in the Hyades

5000 light year view – Galactic spiral arm structure is becoming apparent. The sun is on the “Orion Arm” a lesser arm of the Milky Way compared e.g., to the Sagitarius Arm. There is also a lot of gas and dust.

Betelgeuse 650 ly; Orion 1350 ly

The entire visible galaxy is about 80,000 light years across. Note orbiting galaxy and globular clusters

[Globular Clusters](http://www.atlasoftheuniverse.com/galaxy.html)

Second brightest globular cluster (behind Omega Cen). There are about 200 globular clusters altogether. This one is near the direction of the SMC in the sky and about 20,000 ly distant. Lots of red giants visible here.

This globular cluster in Hercules is 22,000 ly distant and contains 10^5 – 10^6 stars. Age ~ 12 to 14 billion years. It is about 150 light years across.
The clearest experimental evidence for spiral structure in our own galaxy comes from radio observations. The galaxy is transparent in the 21 cm line of atomic H.

Radio View of the Milky Way

Interstellar dust does not absorb radio waves

We can observe any direction throughout the Milky Way at radio waves

Radio map at a wavelength of 21 cm, tracing neutral hydrogen

http://www.geekosystem.com/wise-all-sky-atlas/

Other spiral galaxies are thought to look very similar to our own Milky Way.

Released 2012. Wide Field Infra-Red Survey Explorer (WISE) composite photograph of the entire sky. Over 500 million individual stars catalogued
The center of our galaxy is towards the constellation Sagitarius

Infrared observation (2MASS) towards center of the Milky Way - dust glows in IR

Optical - M 6,7,18,21,23,24,24 = open clusters; M 16,17,20 = nebulae; M 9, 22,28,54,69,70 = globular clusters

History of the Milky Way

The traditional theory:

Quasi-spherical gas cloud fragments into smaller pieces, forming the first, metal-poor stars (pop. II);

Rotating cloud collapses into a disk-like structure

Later populations of stars (pop. I) are restricted to the disk of the Galaxy
Changes to the Traditional Theory

Ages of stellar “populations” may pose a problem to the traditional theory of the history of the Milky Way.

Possible solution: Later accumulation of gas, possibly due to mergers with smaller galaxies.

Recently discovered ring of stars around the Milky Way may be the remnant of such a merger.

Sloan Digital Sky Survey

About 3 billion years in the future, our galaxy and Andromeda will merge.

Calculation by John Dubinsky at CITA.

Galaxies collide …

The Antenna Galaxy is not one but two galaxies in the process of merging.

New generations of stars are being born, even new globular clusters, in the blue regions. Note also the presence of a lot of dust.

Besides spiral galaxies like Andromeda … (2.2 Mly)

Similar to but somewhat larger and brighter than the Milky Way (has about 250 globular clusters and many orbiting dwarf ellipticals).
There are also **Elliptical galaxies**

For example, the massive elliptical galaxy M87 at the center of the Virgo cluster of galaxies.

Such galaxies are oval in shape, have no discernible spiral structure, and little gas or dust.

Reddish in color. Very few new stars being born.

Elliptical galaxies come in all sizes from just a little larger than globular clusters to 10 times the mass of the Milky Way.

The most common kind of galaxy nowadays are the dwarf ellipticals.

Gas used up long ago making stars or stripped by galactic collisions and encounters.
Fornax dwarf galaxy
460,000 ly distant, discovered in 1938

Like most dwarf galaxies it doesn’t look very impressive. Contains only a few million stars. Orbed by six globular clusters.

Clusters of Galaxies

Rich clusters of galaxies
- thousands of galaxies
- concentrated toward the center
- more ellipticals
- hot gas
- lots of mergers

Poor clusters of galaxies
- just a few galaxies
- ragged shapes
- more spirals,
- fewer ellipticals

The Local Group
Contains three large Galaxies and several dozen dwarf galaxies. Probably not all the dwarf galaxies have been discovered yet.

The Local Supercluster
Scale: about 60 million ly - 30 times the radius of the Local Group

nb. not isotropic
One Billion Light Years

7% of the radius of the visible universe

80 superclusters
160,000 galaxy groups
3 million large galaxies
30 million dwarf galaxies
500 million billion stars

The nearest really large supercluster is in Centaurus. Virgo is small by comparison.

Structure starting to be filamentary with walls and voids.

2dF Galaxy Redshift Survey - AAT (2003) closest 3 billion light years

Survey obtained spectra for 232,155 galaxies over 272 nights of observation. 1500 square degrees. Did not sample the whole sky. On the whole the universe is homogeneous and isotropic. Note cellular structure.

http://www.mso.anu.edu.au/2dFGRS/

The Hubble eXtreme Deep Field photo made from a composite of 2000 images taken over a decade. Like a 23 day time exposure

Shows a piece of the universe when it was “only” 400 million years old. 5500 galaxies

The current age is 13.7 billion years
Numerical simulation of cosmic structure
“The millenium simulation project”
http://www.mpa-garching.mpg.de/galform/virgo/millennium/

Approximately 15 Billion Light Years
(a sketch)

~300,000 superclusters
~10^{10} large galaxies
~ 2000 billion billion stars

The end of the road (for now) ...