The Nature of Astronomy

- The scientific study of objects beyond earth (here with emphasis on stars and physics)
- A progress report. Our views of the cosmos change daily (but the new theories often include the old ones as subsets)
- The universe and all its constituents are evolving
- A novel aspect of astronomy is its ability to carry out direct studies of the past

See also Fraknoi, Morrison and Wolff Prologue

The scientific mind does not so much provide the right answers as ask the right questions

Claude Levi-Strauss French philosopher 1908-2009

One thing I have learned in a long life is that all our science, measured against reality, is childlike - and yet it is the most precious thing we have.

Albert Einstein
Physicist
1879-1955

"Astrophysics"

The universe obeys physical laws and those laws do not vary with space or time

It is best understood on the basis of physical "models" and mathematics

Scientific notation

$$
\begin{array}{ll}
1=1.0 \times 10^{0} & 0.10=1.0 \times 10^{-1} \\
10=1.0 \times 10^{1} & 0.00000010=1.0 \times 10^{-7} \\
1,000,000=1.0 \times 10^{6} & 0.00346=3.46 \times 10^{-3} \\
3,450,000=3.45 \times 10^{6} & 0.002356347 \approx 2.36 \times 10^{-3} \\
& \\
\left(1.0 \times 10^{-2}\right)\left(2.0 \times 10^{4}\right)=2.0 \times 10^{2}=200 \\
\left(1.0 \times 10^{-2}\right) /\left(2.0 \times 10^{4}\right)=\frac{1}{2} \times 10^{-6}=5.0 \times 10^{-7}
\end{array}
$$

In Ay12 (e.g. homework), use only the precision justified by the statement of the problem. The default is 3 figures of accuracy.

Angular Measure

(used, e.g., for distance determination)

1 full circle $=360$ degrees
1 degree $=60$ arc minutes
1 arc minute $=60$ arc seconds
http://mintaka.sdsu.edu/GF/explain/atmos_refr/angles.html
2π radians $=360$ degrees
A radian is the angle subtended by a length of arc
equal to the radius of the citcle
1 radian $=360 / 2 \pi=57.29 \ldots$ degrees $=206,265$ arc seconds

$$
\begin{aligned}
& \text { Length of arc, } \mathrm{s} \text {, subtended by angle } \theta \\
& \qquad s=r \theta
\end{aligned}
$$

if θ is measured in radians

Logarithms

$$
\begin{aligned}
& \log (1)=0 \\
& \log (0.1)=-1 . \\
& \log (52.3)=1.72 \ldots \\
& \log (10)(b)=1 \\
& \text { e.g. } \\
& \log \left(10^{2}\right)=2 \log \left(10^{-6}\right)=-6 \\
& \log (10)=2 \\
& \log \left(10^{x}\right)=\mathrm{x} \log (10)=\mathrm{x} \\
& \log (100)=\log (10)(10)=\log (10)+\log (10)=2
\end{aligned}
$$

logarithms are used extensively in the stellar magnitude system because of the need to describe brightnesses than span many orders of magnitude.

Thumb at arm's length ~ 2 degrees
Little finger at arm's length ~ 1 degree
hand spread ~ 20 degrees
Smallest angle with naked eye ~ 1 arc min
Sun or moon $\sim 1 / 2$ degree

Units

The basic units in Ay 12 are cm, gm, and sec.
How many cm in a light year? $1 \mathrm{ly}=\mathrm{c} * 1 \mathrm{yr}$

$$
\left.\begin{array}{ll}
c=2.99 \times 10^{5} \mathrm{~km} \mathrm{~s}^{-1} & \begin{array}{l}
\text { Julian year }=365.25 \text { days } \\
\text { day }=24 \text { hours }
\end{array} \\
\mathrm{km} & =10^{3} \mathrm{~m} \\
\mathrm{~m} & =10^{2} \mathrm{~cm} \\
\text { hour }=60 \text { minutes }
\end{array}\right\} \begin{aligned}
1 \mathrm{ly} & =\mathrm{c} \times 1 \text { year } \\
& =\left(\frac{2.99 \times 10^{5} \mathrm{~km}}{\mathrm{~s}}\right)(1 \mathrm{yr})\left(\frac{10^{3} \mathrm{~m}}{\mathrm{~km}}\right)\left(\frac{10^{2} \mathrm{~cm}}{\mathrm{~m}}\right)\left(\frac{365 \text { day }}{1 \mathrm{yr}}\right)\left(\frac{24 \mathrm{hr}}{1 \text { day }}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right) \\
& =9.44 \times 10^{17} \mathrm{~cm}
\end{aligned}
$$

Spherical Geometry

Circumference of a circle $=2 \pi \mathrm{r}$

Surface area of a sphere $=4 \pi r^{2}$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

Mass of a sphere with constant density ρ

$$
\mathrm{M}=\left(\frac{4}{3} \pi \mathrm{r}^{3}\right) \rho
$$

To a good approximation stars are spheres

Calculus

$$
\begin{array}{ll}
\frac{d}{d x} x^{n}=n x^{n-1} & \int x^{n} d x=\left(\frac{x^{n+1}}{n+1}\right) \\
\frac{d}{d \theta}(\operatorname{Cos} \theta)=-\operatorname{Sin} \theta & \frac{d}{d \theta}(\operatorname{Sin} \theta)=\operatorname{Cos} \theta
\end{array}
$$

Binomial expansion theorem

$$
\begin{aligned}
(1+\varepsilon)^{n} & \approx(1+n \varepsilon) \\
\text { e.g. }(1+0.01)^{\frac{1}{2}} & \approx 1.005
\end{aligned} \quad \text { if }|\varepsilon| \ll 1
$$

$$
\begin{aligned}
\mathrm{M} & =\frac{4}{3}(3.14)\left(5 \times 10^{5} \mathrm{~cm}\right)^{3}\left(5 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}}\right) \\
& =(4.19)\left(125 \times 10^{15}\right)(5) \mathrm{gm} \\
& =2.62 \times 10^{18} \mathrm{gm}
\end{aligned}
$$

Eg. Volume of a sphere

Area of a shell $=4 \pi r_{0}^{2}$
Thickness $=\Delta r_{o} \approx \mathrm{dr}_{0}$
Add up a whole bunch of shells

$$
\int 4 \pi \mathrm{r}_{0}^{2} d r_{0}=\frac{4}{3} \pi r_{0}^{3}
$$

$$
\begin{aligned}
& \pi \quad 3.14159 . . . \\
& 2 \pi \text { madians } 366 \\
& \text { 1 raktial in":296 }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { matiun } \\
& \text { imber of equare deyrece on sky } 11.252 .961
\end{aligned}
$$

PHYSICAL CONSTANTS

Speed of light	c	$2.97992 \times 10^{10} \mathrm{~cm}^{-1}$
Consiant of graviation	G	6.6) $712 \times 10^{-\infty}$ dyme $\mathrm{cm}^{2} \mathrm{~g}^{-2}$
Plancks conctan	1	6.626×10^{-27} (9y ${ }^{(9)}$
Bolizmamis constand	k	$1.381 \times 10^{-16} \mathrm{mgg}\left(\mathrm{dlgg} \mathrm{K}^{-1}\right.$
Sases hydrugchatom	${ }^{19}$!	$1.073 \times 10^{-24} 9$
Averatro's mumber	${ }_{1}$	(i.0.02 $\times 10^{233} \mathrm{~g}^{-1}$
Mats eflectron	m.	$9.1093 \times 10^{-2 \times} \mathrm{g}$
Charge on the dectron	${ }^{\circ}$	$1.80: 3 \times 10^{-10}$ deatrostantic inits
Stefan-Podzmam radiation contan	σ	$5.670 \times 10^{-5} \mathrm{mg} \mathrm{ml}^{-2} \mathrm{~s}^{-1}(\mathrm{degg} \mathrm{K})^{-4}$
Realiation engy density ronstant	a $1 \sigma / \mathrm{c}$	
Constant in Wicmis Law	$\lambda_{\text {max }} \mathrm{T}$	$0.28979 \mathrm{~cm}(\operatorname{deg} \mathrm{~K})^{-1}$
Plectrom wolt	c	$1.6022 \times 10^{-12} \mathrm{erg}$
Xillime detrom wolls	Nov	$10^{16} \mathrm{cl}$
Augstrom	A	10^{-8} (111
1 Megatom of TXT	3%	1.2×10^{22} (rg

ASTRONOMICAL CONSTANTS

Astronomical Unit Parsec	AU pe	$\begin{gathered} 1.495975707 \times 10^{13} \mathrm{~cm} \\ 206265 \mathrm{AU} \end{gathered}$
		3.262 ly
		$3056 \times 10^{19} \mathrm{~cm}$
Light year	ly	$9.4605 \times 10^{17} \mathrm{~cm}$
		$6.324 \times 10^{4} \mathrm{AU}$
(siderial) yoar	yr	$3.155515 \times 10^{7} \mathrm{~s}$
Masa of Earth	$\mathrm{M}_{\text {E }}$	$5.977 \times 10^{27} \quad 5$
(Equatorial) radius of Eatth	R_{6}	$6.378 \times 10^{4} \mathrm{~cm}$
Mase of wan	M_{5}	1.989×10^{12}
Radius of sum	R	$6.960 \times 10^{\text {b0 }} \mathrm{cm}$
Luminopity of sum	I.v.	$388 \times 10^{23} \mathrm{erg} \mathrm{s}^{-1}$
Solar constant at Earth	5	$1.37 \times 10^{6} \mathrm{egg} \mathrm{cm}^{-2} \mathrm{n}^{-1}$

MISCELLANEOUS

Our location in the Universe

"Spaceship Earth"

From Apollo 11
1969

The Earth as a planet

- $\mathrm{M}_{\text {earth }}=5.997 \times 10^{27} \mathrm{gm}$
- $\mathrm{R}_{\text {earth }}=6.378 \times 10^{8} \mathrm{~cm}$
- Age ~ 4.54 billion years (U,Th dating - close to age of sun)
- Orbit sun $=1.496 \times 10^{13} \mathrm{~cm}$ (\sim average distance $)=\mathbf{A U}$
(93 million miles) [prior to 1976 was semi-major axis; now radius of circular orbit with the equivalent period]
- Period around the sun $=365.256363 \ldots$ days (Julian year $=365.25$ days)
- Average density $=5.52 \mathrm{gm} / \mathrm{cm}^{3}$

$$
\rho \approx\left(\frac{M}{4 / 3 \pi r^{3}}\right)
$$

densest planet in the solar system, barely beats Mercury
or a big,rusty,sandy rock....

34.6%	Fe
29.5%	O
$\mathbf{1 5 . 2 \%}$	Si
$\mathbf{1 2 . 7 \%}$	Mg
2.4%	Ni
$\mathbf{1 . 9 \%}$	S

Relative Abundance by Weight

This rusty sandy rock orbits the nearest star, the sun....

Where did these elements come from?

The Sun

The only star we can study in great detail
Mass $=1.989 \times 10^{33} \mathrm{gm}$; about 300,000 Earth masses
Radius $=6.96 \times 10^{5} \mathrm{~km}$; almost 100 Earth radii
Average density $1.41 \mathrm{gm} / \mathrm{cm}^{3}$
Age $=4.567 \times 10^{9}$ years
Luminosity $=3.90 \times 10^{33} \mathrm{erg} / \mathrm{s}$
(world' s armament in 10^{-5} seconds)

Central temperature $=15.7$ million K
Photospheric temperature about 5700 K
$1.37 \mathrm{x} 10^{6} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at earth
$\mathrm{K}=\mathrm{C}+273$

Rotation period 24.47 days at the equator slower near poles

Surface composition (by mass) $70.6 \% \mathrm{H}$ $27.5 \% \mathrm{He}, 1.9 \% \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Fe}, \mathrm{Si}$, etc
(like "universe")

A typical star. A little on the heavy side.

The figure at the left shows the effect of zooming out in distance from our solar system by a total factor of $100,000\left(10^{5}\right)$.

At this scale the next star system over, alpha-centauri, becomes visible.

Most of the universe, even within galaxies, is empty.
12.5 ly
www.atlasoftheuniverse.com

The nearest (24) stars within 12.5 light years of the earth. The closest star system - Alpha Centauri is about 7000 times the radius of Pluto's orbit. 270,000 times the radius of the Earth's orbit,

Some specific nearby stars:

- The sun - a typical yellow dwarf star. Type G2 with 8 planets
- Proxima Centauri - closest of the triplet of stars loosely known as "alpha-Centauri" Proxima Centauri is a faint red star that orbits Alpha-Centauri A and B with a period of about one million years. Proxima Centauri is 4.22 light years from the Earth (now) and about 0.24 light years from Alpha-Centauri A and B.
- Alpha-Centauri A and B - a double star system with a period of about 80 years. Component A is a near twin of the sun (Type G2). Component B is a little fainter and orange. Alpha-Centauri A and B are 4.39 light years from the Earth.
- Barnards star - highest proper motion of all stars. 5.9 light years away. It moves 0.29 degrees per century. In another 8000 years Barnard' s star will be the closest star to us (3.8 ly in 11700 AD). M star, faint, red, about 11 Gyr old. No big planets.
- Lalande 21185 - One of the brightest red dwarfs in the sky but still requires binoculars to see it. In 1996 a couple of Jupiter sized planets were discovered here
- Epsilon Eridani - 10.5 light years away. Searched for life by radio searches in the 1960 s . May have a Jupiter sized planet orbiting at a distance of 3.2 AU. Young star (1Gyr?). K2
- Procyon $A, B-11.41$ light years away. Another multiple star system. $8^{\text {th }}$ brightest star in the sky has a white dwarf companion
- Sirius A, B - At a distance of 8.60 light years Sirius A is the brightest star in the sky Sirius B is a white dwarf

In a volume limited sample - counting all stars...

[^0]most nearby stars are too faint to see without a telescope

Masses and luminosities

In binary star systems we can determine the mass of the star. For stars thar are spectroscopically "main sequence" the star's luminosity is correlated with its mass.

e.g., 10 solar masses is between 10^{3} and 10^{4} times more
luminous than the sun. 0.1 solar masses is down by 10^{3}

To summarize:

- There are many more faint stars than bright ones
- Faint stars also have low mass
- Low mass stars live a long time

The converse is also true:

- Bright (high luminosity) stars are rare
- Bright stars are more massive (exception red giants)
- Massive stars have short lives

20 light years -78 systems - 109 stars

isotropic distribution

250 light years

Starting to see some preference for Galactic plane for distances beyond this.

Number for isotropic
distribution and constant density

$$
\mathrm{n} \propto \mathrm{~d}^{3}
$$

About 250,000 stars lie within 250 light years of the Earth. Beyond this distance it becomes difficult to see all the stars in the plane of the Milky Way
Galaxy because of the presence of dust.

Only the 1500 most luminous of these stars are plotted. Most of these are visible to the unaided eye.

Note the presence of the Hyades cluster.
<1500 stars are visible to the unaided eye. More often it's a few hundred.

The Hyades Open cluster of stars (151 light years)

The bright red star Aldebaran
is not in the Hyades
This cluster of stars is only about 625 million years old and is in the process of coming apart. Stars like this are born together from a giant cloud of molecular gas, most of which is blown away by the young stars. About 200 stars are catalogued at http://en.wikipedia.org/wiki/List of stars in Hyades

The entire visible galaxy is about 80,000 light years across. Note orbiting galaxy and

http://www.atlasoftheuniverse.com/galaxy.html

5000 light year view - Galactic spiral arm structure is becoming apparent. The sun is on the "Orion Arm" a lesser arm of the Milky Way compared e.g., to the Sagitarius Arm. There is also a lot of gas and dust.

Betelgeuse 650 ly; Orion 1350 ly

Globular Clusters

47 Tuc
Second brightest globular cluster (behind Omega Cen). There are about 200 globular clusters altogether. This one is near the direction of the SMC in the sky and about 20,000 ly distant. Lots of red giants visible here.

M13

This globular cluster in Hercules is 22,000 ly distant and contains $10^{5}-10^{6}$ stars. Age ~ 12 to 14 billion years. It is about 150 light years across.

The clearest experimental evidence for spiral structure in our own galaxy comes from radio observations. The galaxy is transparent in the 21 cm line of atomic H .

the sun

Radio View of the Milky Way

Interstellar dust does not absorb radio waves
We can observe any direction throughout the Milky Way at radio waves

Radio map at a wavelength of 21 cm , tracing neutral hydrogen
http://www.geekosystem.com/wise-all-sky-atlas/

Released 2012. Wide Field Infra-Red Survey Explorer (WISE) composite photograph of the entire sky. Over 500 million individual stars catalogued

Other spiral galaxies are thought to look very similar to our own Milky Way.

The center of our galaxy is towards the constellation Sagitarius

Infrared observation (2MASS) towards center of the Milky Way - dust glows in IR

Optical - M 6,7,18,21,23,24,24 = open clusters; M 16,17,20 $=$ nebulae; M 9, $22,28,54,69,70=$ globular clusters

History of the Milky Way

The traditional theory:
Quasi-spherical gas cloud fragments into smaller pieces, forming the first, metal-poor stars (pop. II);
Rotating cloud collapses into
a disk-like structure
Later populations of stars (pop. I) are restricted to the disk of the Galaxy

Changes to the Traditional Theory

Ages of stellar "populations" may pose a problem to the traditional theory of the history of the Milky Way

Possible solution: Later accumulation of gas, possibly due to mergers with smaller galaxies

Recently discovered ring of stars around the Milky Way may be the remnant of such a merger

About 3 billion years in the future, our galaxy and Andromeda will merge.

Calculation by John Dubinsky at CITA.

Besides spiral galaxies like Andromeda ... (2.2 Mly)

Similar to but somewhat larger and brighter than the Milky Way (has about 250 globular clusters and many orbiting dwarf ellipticals)

There are also Elliptical galaxies

For example, the massive elliptical galaxy M87 at the center of the Virgo cluster of galaxies.

Such galaxies are oval in shape, have no discernible spiral structure, and little gas or dust.

Reddish in color. Very few new stars being born.

Elliptical galaxies come in all sizes from just a little larger than globular clusters to 10 times the mass of the Milky Way.

The most common kind of galaxy nowadays are the dwarf ellipticals.

Gas used up long ago making stars or stripped by galactic collisions and encounters.

Irregular and other galaxies

The SMC contains The SMC contain
several hundred several hundre
million stars

NGC 1313 starburst galixy Largo Magellanic Clou
AAO tuf AAT $64 \quad$ AAO ref UKS 14

The LMC (157,000 ly) is the fourth largest galaxy in the local group and contains about 10 billion solar masses

1) Andromeda
2) Milky Way
3) Triangulum Galaxy (M33)
4) LMC

The nearest members of the Local Group of Galaxies orbit our Milky Way

(500,000 ly)

Fornax dwarf galaxy
460,000 ly distant, discovered in 1938

Like most dwarf galaxies it doesn' t look very impressive. Contains only a few million stars. Orbited by six globular clusters

Clusters of

 GalaxiesRich clusters of galaxies

- thousands of galaxies
- concentrated toward the center
- more ellipticals
- hot gas
- lots of mergers

Poor clusters of galaxies

- just a few galaxies
- ragged shapes
- more spirals,
- fewer ellipticals

The Local
Supercluster

10 million ly

Survey obtained spectra for 232,155 galaxies over 272 nights of observation. 1500 square degrees. Did not sample the whole sky. On the whole the universe is homogeneous and isotropic. Note cellular structure.
http://www.mso.anu.edu.au/2dFGRS/

The Hubble eXtreme
Deep Field photo made from a composite of 2000 images taken over a decade. Like a 23 day time exposure

Shows a piece of the universe when it was "only" 400
million years old.
5500 galaxies

The current age is 13.7 billion years

Approximately 15 Billion Light Years
(a sketch)

$\sim 300,000$ superclusters
$\sim 10^{10}$ large galaxies
~ 2000 billion billion stars

The end of the road (for now) ..

[^0]: Most stars are less luminous than the sun, only a few are brighter.

