${ }^{\bullet}$ How do we locate stars in the heavens?
-What stars are visible from a given location?

2. Descriptive Astronomy

 ("Astronomy Without a Telescope")- Where is the sun in the sky at any given time?
- Where are you on the Earth?

An "asterism" is two stars that appear To be close in the sky but actually aren' t

In 1930 the International Astronomical Union (IAU) ruled the heavens off into 88 legal, precise constellations.

Every star, galaxy, etc. is a member of one of these constellations.

Many stars are named according to their constellation and relative brightness (Bayer 1603).
α-Centauri, α-Canis
see http://calgary.rasc.ca/constellation.htm\#list
Majoris, α-Orionis

Brief History

Some of the current constellations can be traced back to the inhabitants of the Euphrates valley, from whom they were handed down through the Greeks and Arabs. Few pictorial records of the ancient constellation figures have survived, but in the Almagest AD 150, Ptolemy catalogued the positions of 1,022 of the brightest stars both in terms of celestial latitude and longitude, and of their places in 48 constellations.

The Ptolemaic constellations left a blank area centered not on the present south pole but on a point which, because of precession, would have been the south pole c. 2800 BC , a fact that is consistent with the belief that the constellation system had its origin about 5,000 years ago.

E.g., ORION

Betelgeuse and Rigel are $\alpha-$ and β-Orionis

M42 $=$ Orion nebula M43 = DeMairan's nebula

Sirius - brightest star in the sky - star of about twice the mass of the sun. Blue. Very luminous, very hot. A main sequence star (like the sun) but of Type A1

Procyon $-8^{\text {th }}$ brighest star. About 1.4 solar masses. Another main sequence star. Hotter and more luminous than the sun but not as luminous as Sirius. Type F5. May be close to finishing hydrogen burning as its luminosity is a bit high for its mass.

Betelgeuse $-9^{\text {th }}$ brightest star. $2^{\text {nd }}$ brightest in Orion.
Betelgeuse is a red supergiant. It is not fusing hydrogen in its center. It has left the main sequence. May vary in brightness over periods of years by as much as a factor of two. About 18 solar masses and around 10 million years old.

Betelgeuse - red supergiant, about 20 solar masses. May have shrunk 15% in radius since 1993. This probably does not indicate evolution at its center. 570 ly away. Variable star.
1000 times as luminous as the sun
Rigel - brightest star in Orion by (a bit more than α-Orionis $=$ Betelgeuse - a variable) 7th brightest star in the sky. 770 ly. Most luminous star in our region of galaxy. A blue supergiant star, 17 solar masses. Brightness varies by 3 to 30%
Triple star system. A is bright. B is a binary.
Trapezium - an open cluster of young stars which illuminate the Orion nebula. The 5 brightest are all over 15 solar masses. Three were discovered by Galileo in 1617.

Orion Nebula: M-42

1600 light years away in the sword of Orion, easily visible to the naked eye. $85^{\prime} \times 60^{\prime}$ across and part of a larger cloud spanning 20 degrees*. Diameter ~ 30 ly, Mass $\sim 200,000$ solar masses.

- Your fist at arm's length is about 10 degrees

Star Nursery

North

South

Polaris is 6 times the distance between the pointers away - i.e., $\sim 30^{\circ}$.

Can tell time this way, but
a) 24 hr clock
b) sidereal time

The apparent location of the sun in the sky as the earth goes round it defines a great circle in the heavens called the "ecliptic".

The projection of the earth's equator in the sky gives another called the "celestial equator". Because the Earth's rotational axis is not perpendicular to the plane containing the earth's orbit around the sun, the two are not the same but are inclined to each other by 23.5°.

The path of the sun in the sky

Signs of the Zodiac

Pisces	The Fishes	March	12	to	April	18
Aries	The Ram	April	19	to	May	13
Taurus	The Bull	May	14	to	June	19
Gemini	The Twins	June	20	to	July	20
Cancer	The Crab	July	21	to	August	9
Leo	The Lion	August	10	to	September	15
Virgo	The Maiden	September	16	to	October	30
Libra	The Balance	October	31	to	November	22
Scorpius	The Scorpion	November	23	to	November	29
Ophiuchus**	Serpent-holder	November	30	to	December	17
Sagittarius	The Archer	December	18	to	January	18
Capricornus	The Goat	January	19	to	February	15
Aquarius	The Water-bearer	February	16	to	March	11

Think of the earth as being at the center of this imaginary celestial sphere

How about the apparent motion of the stars in the sky?

If you stood at the earth's north pole, your zenith would be the projection of the earth's rotational axis into the sky.

Your horizon would be the celestial equator.

The celestial equator is the projection of the Earth's equator into the heavens.

8 hr time lapse photo
copied from Nick Strobel's
"Astronomy notes". See his
website.
website.

At the equator, stars would all rise perpendicular to the horizon and set perpendicular to the horizon.

Stars motion at the Equator. Stars rotate parallel to the Celestial Equator, so they move perpendicular to the horizon here All stars are visible for 12 hours. Both celestial poles are visible on the honzont.

The Daily Motion

Copyright © Addison Westey

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- The sky appears to rotate around the N (or S) celestial poles.
- If you are standing at the poles, nothing rises or sets.
- If you are standing at the equator, everything rises \& sets 90° to the horizon.

Panoramic view of the African night from equatorial Kenya. The three hour long exposure was made on a clear, dark, mid November evening facing due west and covers just over 180 degrees along the horizon. So, the South Celestial Pole is at the center of the concentric arcs on the left and the North Celestial Pole is at the far right. The stars setting along the Celestial Equator leave the straight trails near the middle of the picture.

At a lower latitude than the north pole

Cerstilequabr
Stars motion at Seatle Stars rotate parallel to the Celestial Equator, so they move at an angle with respect to the horizon here. Altitudes of $1 / 4$, $1 / 2$, and $3 / 4$ the way up to the zenith are marked.

Your view from Seattle. Stors rise in the East half of the sky, reach maximum altitude when crossing the mendian (due South) and setin the whrough due East and due Wect

Stars within a certain angle of the north pole would go in circles around the pole and never set. Others have more complicated paths. Some near the south pole remain invisible. Only stars on the celestial equator would rise due east and set due west.

What can be seen from a given location?

The poles and the celestial equator remain fixed in the sky as the earth rotates

Stellar Coordinates

Right Ascension and Declination

- Celestial Equator

Projection of the Earth' s equator into the sky

- Declination $-90^{\circ} \leq \delta \leq+90^{\circ}$

The angle to a star or other object in degrees, minutes, and seconds measured north or south of the Celestial Equator

Stars will be "circumpolar", i.e., never set if their declination is

$$
\delta \geq 90^{\circ}-L
$$

$$
\begin{gathered}
\mathrm{L}=\text { latitude } \\
\mathrm{L}>0
\end{gathered}
$$

in the northern hemisphere and

$$
\delta \leq-90^{\circ}-L \quad \mathrm{~L}<0
$$

in the southern hemisphere. Note that L is negative in the southern hemisphere. At the south pole $\mathrm{L}=-90$. At the north pole $\mathrm{L}=+90$.

A star will rise above the horizon sometime in a 24 hour period if

$$
\begin{aligned}
& \delta>L-90^{\circ} \\
& \delta<L+90^{\circ}
\end{aligned}
$$

Where δ is the declination of the star and L is your latitude.

$$
\begin{aligned}
& 90 \geq \delta \geq-90 \\
& 90 \geq L \geq-90
\end{aligned}
$$

$\mathrm{L}=-90$ is the south pole. $\mathrm{L}=90$ is the north pole, 37 is Santa Cruz.

- What stars are visible from Santa Cruz (Latitude $37^{\circ} \mathrm{N}$)?

$$
\begin{aligned}
& \text { Sometime each day: } \delta>37^{\circ}-90^{\circ}=-53^{\circ} \quad \mathrm{L}-90 \\
& \text { Never: } \delta<37^{\circ}-90^{\circ}=-53^{\circ} \\
& \text { Always: } \delta>90^{\circ}-37^{\circ}=+53^{\circ} \quad 90-\mathrm{L}
\end{aligned}
$$

Examples:
Sirius $-\delta=-16^{\circ} 39^{\prime}$
Polaris - $\delta \approx 90^{\circ}$
α-Centauri $-\delta=-60^{\circ} 38$

- What stars are visible from the north pole?

$$
\text { All with } \delta>0 \text { all the time }
$$

- What stars are visible from the equator?

All stars (including the sun) 12 hours per ddy

- What stars are above the horizon 12 hours per day everywhere?

Those on the Celestial Equator
http://aa.quae.nl/en/index.html
Click on answerbook and e.g., position of the sun

Brightest Stars
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Star } & \text { Name } & \text { M } & \text { RA } & \text { Dec } \\ \hline \text { alpha } & \text { Sirius } & -1.46 & \begin{array}{l}06 \\ 45\end{array} & -16 \\ \text { CMa }\end{array}\right)$

The Altitude of the Sun

- The declination, δ, of the sun varies from -23.5° to $+23.5^{\circ}$

For regions above latitude 66.5° or below 66.5° there are times when the sun is not visible

- What is the highest the sun rises in Santa Cruz? $\underbrace{90^{\circ}-37^{\circ}}+23.5^{\circ}=76.5^{\circ}$ on June 21 -What is the lowest
$90^{\circ}-37^{\circ}-23.5^{\circ}=29.5^{\circ}$ on December 21

- When is the day 12 hours lòng everywhere

When the sun is on the Celestial Eciritor, i.e., the two equinoxes

- Is the sun ever directly overhead in Santa Cruz?

No

- : Iow far south must one go?

To the "tropics" - latitudes below 23.5°

"copied from Nick Strobel's
my notes". See his

Fall + winter: short, Iow path. Sunrise in southeast Sunset in southwest
top view

Spring + summer: long, high path Sunrise in northeast Sunset in northwest

How we define our location on the Earth...

How do we assign a location to a star in the sky?
We could say so many degrees above the horizon and so many degrees east or west from some point, like the southern direction, but a little thought shows that location would vary with location and time on the Earth.

The autumnal equinox is in Virgo. Astrologers would say Libra (offset by the precession of the equinoxes).

An important location in the sky, to astronomers, is the "Vernal Equinox", where the center of the sun crosses the CE.

Stellar Coordinates

- Celestial Equator

Projection of the Earth's equator into the sky

- Declination

The angle to a star or other object in degrees, minutes, and seconds measured north or south of the Celestial Equator

$$
-90^{\circ} \leq \delta \leq+90^{\circ}
$$

- Right Ascension

The angle measured eastwards from the Vernal equinox along the Celestial equator to the hour circle of the star. Measured in units of time (1 hour $=15$ degrees; 1 minute of time $=15^{\prime}$ of angle)

$$
0^{\mathrm{h}} \leq \mathrm{RA} \leq 24^{\mathrm{h}}
$$

26. Pasactiof

Copynght = 1991 by Saunders College Pubtshing. A Divsion of Hott, Rinehart
and Winston, Inc.
copied from Nick Strobel's
website.

A star's position in the equatorial coordinate system. The right ascension (R.A.) $=1 \mathrm{hr} 30 \mathrm{~min}$ and the declination (Dec.$)=15^{\circ}$. The right ascension is measured in hours, minutes, and seconds in the easterly direction from the vernal equinox position on the cel estial equator. The declination is measured in degrees above the celestial equator. The star's R.A. and Dec. does NOT change throughout the night-its equatorial coordinate position is fixed with respect to the stars. The star's position does depend on the location of the NCP and Celestial Equator in this system.

Measuring angles in units of time?

A convention used in

astronomy because of historical reasons.
Declination is measured in degrees (and minutes and seconds), but Right Ascension (RA) is measured in hours, minutes, and seconds.

1 hr of RA = 15 degrees of ordinary angular measure (360/24)
1 min of RA $=15 / 60=1 / 4$ degree $=15 \mathrm{arc} \mathrm{min}$ of angular measure
1 sec of $\mathrm{RA}=15 / 3600=1 / 240$ degree $=15 \mathrm{arc} \sec$
nb. 0 longitude on Earth is defined by Greenwich England.
0 right ascension in astronomy is defined by the vernal equinox

Brightest Stars

Star	Name	M	RA	Dec
$\begin{aligned} & \text { alpha } \\ & \text { CMa } \end{aligned}$	Sirius	-1.46	$\begin{aligned} & 06 \\ & 45 \\ & 8.9 \end{aligned}$	$\begin{aligned} & -16 \\ & 42 \\ & 58 \end{aligned}$
alpha Car	Canopus	-0.72	$\begin{aligned} & 06 \\ & 23 \\ & 57.2 \end{aligned}$	$\begin{aligned} & -52 \\ & 41 \\ & 44 \end{aligned}$
alpha Cen	Rigil Kent	-0.01	$\begin{aligned} & 14 \\ & 39 \\ & 36.2 \end{aligned}$	$\begin{array}{\|l\|l} -60 \\ 50 \\ 07 \\ \hline 07 \end{array}$
alpha Boo	Arcturus	-0.04	$\begin{aligned} & 14 \\ & 15 \\ & 39.6 \end{aligned}$	$\begin{aligned} & +19 \\ & 10 \\ & 57 \end{aligned}$
alpha Lyr	Vega	0.03	$\begin{aligned} & 18 \\ & 36 \\ & 56.2 \end{aligned}$	$\begin{aligned} & +38 \\ & 47 \\ & 01 \end{aligned}$
alpha Aur	Capella	0.08	$\begin{aligned} & 05 \\ & 16 \\ & 41.3 \end{aligned}$	$\begin{aligned} & +45 \\ & 59 \\ & 53 \end{aligned}$
beta Ori	Rigel	0.12	$\begin{aligned} & 05 \\ & 14 \\ & 32.2 \end{aligned}$	$\begin{array}{\|l\|l} -08 \\ 12 \\ 06 \end{array}$

http://www.google.com/sky/

Examples

Actual Coordinates of Polaris:

$$
\begin{aligned}
& \text { Declination }=89^{\circ} 15^{\prime} \quad 51^{\prime \prime} \\
& \text { RA }=2^{\mathrm{h}} 31^{\mathrm{m}} 48.7^{\mathrm{s}}
\end{aligned}
$$

NAVIGATION

Your Celestial Meridian is the imaginary line through your zenith and north (or south pole) from horizon to horizon.

Your siderial time is equal to the right ascension of stars on your CM.

Your longitude is the difference between your local siderial time and the siderial time in Greenwich.

To navigate in the old days your prime need was a good clock (if the sky was clear) and knowledge of the stars.

$$
\begin{array}{ll}
\text { Sirius: } & \delta=-16^{\circ} 39^{\prime} ; \mathrm{RA}=6 \mathrm{hr} 42.9 \mathrm{~min} \\
\alpha \text {-Centauri: } & \begin{array}{l}
\delta=-60^{\circ} 38^{\prime} ; \mathrm{RA}=14 \mathrm{hr} \mathrm{36.2} \mathrm{~min} \\
\text { http://www.google.com/sky } /
\end{array}
\end{array}
$$

How many degrees is 14 hr 36.2 min ?

$$
\begin{aligned}
& 1 \mathrm{hr}=15 \text { degrees } \\
& 1 \mathrm{~min}=15
\end{aligned}
$$

$14 \mathrm{hr}^{*}\left(15^{\circ} / \mathrm{hr}\right)+36.2 \mathrm{~min}\left(15^{\prime} / \mathrm{min}\right)=210^{\circ} 543^{\prime}$
but $543^{\prime} / 60^{\prime}$ per degree $=9^{\circ}$ with 3^{\prime} left over
so 14 hr 36.2 min or RA is $219^{\circ} 3^{\prime}$ East of the Vernal Equinox
This is also $360^{\circ}-219^{\circ} 3^{\prime}=140^{\circ} 57^{\prime}$ West of the Vernal Equinox

The Longitude Prize was a reward offered by the British government for a simple and practical method for the precise determination of a ships longitude. The prize was established through an act of Parliament (the Longitude Act) in 1714 and was administered by the Board of Longitude

Precession of the Equinoxes

E.g. RA of Betelgeuse is 0555 m 10.3053 s

Suppose Betelgeuse crosses your CM when the siderial time in Greenwich is midnight (0 h 0 m)

Your longitude is $5 \mathrm{~h} 55 \mathrm{~m} \ldots$ or 5.920 h or 88.79 degrees
You are 88.79 degrees east of Greenwich.
(Time is later as you go east, e.g., NY vs Santa Cruz)

Aside, the vernal equinox is on your CM at "midnight" siderial time (not necessarily at night). Siderial time is defined as the "hour angle" of the vernal equinox.

1.38 degrees per century

Precession and the change of position of the north celestial pole with respect to the stars.

$$
\tau_{p}=26,000 \text { yr. }
$$

As a result of this precession the projection of the earth's equator into the sky - the celestial equator also moves and this causes an adjustment of the equinoxes.
This in turn changes the coordinate system in which a star's location is measured. The vernal equinox drifts westward along the ecliptic about an arc minute per year (actually 50.35 arc seconds).

So when a star's coordinates are given (RA and δ), a date must also be given. Current tables use 2000 as a reference point.

Corrections to where to point a telescope are discussed at e.g.,
http://star-www.st-and.ac.uk/~fv/webnotes/chapt16.htm

