Forces

Lecture 3

Basic Physics of Astrophysics
 - Force and Energy

Note that a force may also be required to balance another force even when nothing is moving. For example a block setting on a table is pulled downwards by gravity but supported by the table.

Momentum is the product of mass and velocity - a vector

$$
\vec{p}=m \vec{v}
$$

(generally m is taken to be constant)
An unbalanced force is capable of producing a change in momentum

$$
\vec{F}=\frac{d \vec{p}}{d t}
$$

(n.b., a mass times an acceleration)

$$
\overrightarrow{\mathrm{F}}=m\left(\frac{d \vec{v}}{d t}\right)=m \vec{a}
$$

Units:

$$
\text { dyne }=\frac{\mathrm{gm} \mathrm{~cm}}{\mathrm{~s}^{2}}
$$

1 dyne $=2.248 \times 10^{-6}$ pounds force
Intuitively, force is the "push or pull" on an object.

A force doesn' t always produce motion. It may be balanced by an equal opposite force.

NEWTON'S THREE LAWS

1) In the absence of an external force. The product of mass and (vector) velocity is a constant. Also may be stated "Objects at rest tend to remain at rest; objects in motion tend to remain in motion in the same straight line". This defines momentum, $\mathrm{p}=\mathrm{m} \mathbf{v}$.
2) When a force acts on a body it produces a change in the momentum in the direction of and proportional to the applied force.
3) For every action there is an equal but opposite reaction.

Conservation of momentum in the absence of forces

Definition of force

$$
\overrightarrow{\mathbf{F}}=\frac{d \overrightarrow{\mathbf{p}}}{d t}
$$

Action-reaction

FORCES IN THE UNIVERSE

There are four fundamental interactions that

 exist, each of which is associated with a force.- The weakest but most commonly experienced force is GRAVITY. This force is exerted by anything that has mass or energy on all other masses. The force is proportional to each of the two masses that interact and declines as $1 / r^{2}$. It thus can be experienced, albeit weakly, over very large distances (infinite range force).

$$
\begin{gathered}
F=\frac{G M m}{r^{2}} \\
G=6.673 \times 10^{-8} \frac{\text { dynes } \mathrm{cm}^{2}}{g m^{2}}
\end{gathered}
$$

Two other forces have only been recognized during the last century. They only affect phenomena on the scale of nuclei and individual particles, i.e., they are "short ranged".

The strong force is responsible for binding together the neutrons and protons in the atomic nucleus. On an even smaller scale, the strong force binds together quarks to make the neutron and proton and other particles on the sub-atomic scale. The typical range of the strong force is $10^{-13} \mathrm{~cm}$.

The strong force is strong enough at short range to overcome the repulsion of electrically charged protons in the nucleus (as well as the "degeneracy" energy of the nucleus itself). But outside the nucleus it falls rapidly to zero. At very short range the nuclear force is actually repulsive.

The weak interaction (actually much stronger than gravity but weaker than the strong or electric interaction) is in some sense analogous with the electric force, but is a short range interaction that acts on a quantum mechanical property called isospin. It allows one kind of quark to turn into another.

Its chief effects are that it allows neutrinos to be produced and to interact with matter and it allows neutrons to change into protons and vice versa if energy conservation allows it.

A free neutron outside the nucleus will decay into a proton in 10.3 minutes by the weak interaction

$$
\begin{aligned}
& \text { (udd) } \\
& n \rightarrow p+e^{-}+\bar{V}_{e}
\end{aligned}
$$

Note conserved quantities - charge, baryon number, lepton number, energy, momentum

SUMMARY

| FORCE | STRENGTH | RANGE | EXAMPLE |
| :--- | :---: | :---: | :---: | :---: |
| Strong | 1 | $10^{-13} \mathrm{~cm}$ | nucleus |
| Electric | 10^{-2} | $1 / \mathrm{r}^{2}$ | chemistry |
| Weak | 10^{-6} | $<10^{-13} \mathrm{~cm}$ | $n \rightarrow p+e^{-}+\bar{v}_{e}$ |
| Gravity | 10^{-38} | $1 / \mathrm{r}^{2}$ | binds earth
 to sun |

http://hyperphysics.phy-astr.gsu.edu/hbase/particles/expar.html

Figure from Nick
Gravity
Strobel's electronic text.
See his website.

For spherically symmetric objects, gravity acts as if all the mass were concentrated at the center of the sphere (more generally at the center of mass). [often we Use r instead of d for distance]

GRAVITY

- Examples:

$$
\begin{aligned}
& \text { Your weight (assume } \mathrm{m}=70 \mathrm{~kg} \text {): } \\
& F=-\frac{G M_{\text {Earth }}(m)}{R_{\text {Eart }}^{2}} \\
& =-\frac{6.67 \times 10^{-8} \mathrm{dyne} \mathrm{~cm}^{2}\left(5.32 \times 10^{27} \mathrm{gm}\right)\left(7 \times 10^{4} \mathrm{gm}\right)}{\mathrm{dm}^{2}\left(6.38 \times 10^{8} \mathrm{~mm}\right)^{2}} \\
& =-6.9 \times 10^{7} \text { dyne } \\
& =154 \text { pound force } \quad 1 \text { dyne }=2.248 \times 10^{-6} \text { pound fprce } \\
& \text { The moon's force: } \\
& \begin{aligned}
F & =-\frac{G M_{\text {Moon }} r .2}{R_{\text {Moon }}^{2}} \\
& =-233 \text { dynes }
\end{aligned}
\end{aligned}
$$

The sun's force:

$$
\begin{aligned}
F & =-\frac{G M_{\odot} m}{A U^{2}} \\
& =-4.1 \times 10^{4} \text { dynes almost } 200 \text { times that of the moon }
\end{aligned}
$$

Force from sun at $4.4 \mathrm{ly}=5 \times 10^{-7}$ dyne
Force from Jupiter at nea est point $=2.2$ dynes
Force from another peson at $1 \mathrm{~m}=0.033$ dynes

$$
\begin{aligned}
& F_{\text {tide }}(\text { moon })=\left(\frac{G M_{\text {moon }} m}{r_{\text {moon }}^{2}}\right)\left(\frac{2 d_{\text {earth }}}{r_{\text {moon }}}\right) \\
& \begin{aligned}
& F_{\text {tide }}(\text { sun })=\left(\frac{G M_{\text {sun }} m}{r_{\text {sun }}^{2}}\right)\left(\frac{2 d_{\text {earth }}}{r_{\text {sun }}}\right) \\
&\left(\begin{array}{c}
\left.\frac{F_{\text {tide }}(\text { moon })}{F_{\text {tide }}(\text { sun })}\right)
\end{array}\right)\left(\frac{F_{\text {grav }}(\text { moon })}{F_{\text {grav }}(\text { sun })}\right)\left(\frac{r_{\text {sun }}}{r_{\text {moon }}}\right)=\left(\frac{233}{4.1 \times 10^{4}}\right)\left(\frac{1.5 \times 10^{13}}{3.84 \times 10^{10}}\right) \\
&=\left(\frac{390}{176}\right)=2.2
\end{aligned}
\end{aligned}
$$

The calculations on the previous page would suggest that the sun is actually more influential on the Earth (tides, etc.) than the moon, but the Earth is in free fall around the sun.

What matters is the differential force because the Earth has finite size.

$$
\frac{d F}{d r}=\frac{2 G M m}{r^{3}} \quad \text { i.e., } \frac{d}{d r}\left(-\frac{1}{r^{2}}\right)=\frac{2}{r^{3}}
$$

For an object of diameter d, the difference in force from one side to the other is

$$
\Delta F=\frac{d F}{d r}(d)=F\left(\frac{2 d}{r}\right)
$$

The distance (r in this equation) to the sun is 390 times that to the moon so the tidal forces from each are comparable

Tides

The moon pulls on all parts of the Earth. It pulls strongest on the part that is closest, less on the center, and least of all on the far side. Subtracting the force at the center of mass from all components leads to a bulge in the oceans both on the near and far side of the Earth.

Q: Are there tides at the earth' s poles?

A: Yes. But the biggest tides are in the tropics and near the equator.

Remember that it is the sun and moon causing the tides. These are not generally in the celestial equator. The path of the sun is the ecliptic, which we discussed. The moon's orbit is inclined by about 5° to the ecliptic.

The biggest tides are when the moon and sun are in the same direction or in opposite directions, i.e. at new moon and full moon.

Because two bodies are responsible and their position with respect to the equator changes during the year there is no place on earth with no tides. There are also small forces due to the rotation of the earth.

CENTRIFUGAL FORCE

Even when an object moves at constant speed a force is required to continually change its direction.

Approximately:
half
At the top of the circle the momentum is -mv. At the bottom it is +mv. Every orbit the momentum changes by 2 mv . The time tc execute one orbit is $2 \pi \mathrm{r} / \mathrm{v}$. The change in momemtum jer unit time is then approximately

$$
\begin{aligned}
F=\frac{d p}{d t}=\frac{\Delta p}{\Delta t} & =2 m v\left(\frac{v}{\pi r}\right) \\
& =\frac{2}{\pi} \frac{m v^{2}}{r}
\end{aligned}
$$

When derived correctly the $2 / \pi$ is not there

$F_{c}=m v^{2} / r$

Just enough speed that centrifugal force balances the force on the string.

Centrifugal force is sometimes called a "fictitious" force or an "inertial"force.

Centrifugal Force

$$
\vec{x}=r \cos \theta \hat{x} \quad \vec{y}=r \sin \theta \hat{y}
$$

$$
\vec{v}=\frac{d \vec{r}}{d t}=r(-\sin \theta) \frac{d \theta}{d t} \hat{x}+r(\cos \theta) \frac{d \theta}{d t} \hat{y}
$$

Assume:
$\frac{d \theta}{d t}=$ constant,$\quad r=$ constant

$$
\nu=r \frac{d \theta}{d t} \Rightarrow \frac{d \theta}{d t}=\frac{v}{r}
$$

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}=r(-\cos \theta)\left(\frac{d \theta}{d t}\right)^{2} \hat{x}
$$

$$
\vec{F}=m \frac{d^{2} \vec{r}}{d t^{2}}=-m \vec{r}\left(\frac{d \theta}{d t}\right)^{2}=-m \vec{r}\left(\frac{v^{2}}{r^{2}}\right)=-\left(\frac{m v^{2}}{r}\right)
$$

$$
+r(-\sin \theta)\left(\frac{d \theta}{d t}\right)^{2} \hat{y}
$$

(directed along r.)

$$
=-(\vec{x}+\vec{y})\left(\frac{d \theta}{d t}\right)^{2}=-\vec{r}\left(\frac{d \theta}{d t}\right)^{2}
$$

Combining the definition of centrifugal force and Newton's equation for gravitational attraction we get

$$
F_{\text {cen } i}=\frac{m v^{2}}{r}
$$

- Kepler's Third Law

$$
\begin{aligned}
\frac{G M_{\odot} m}{r^{2}} & =\frac{m v^{2}}{r} \quad v=\frac{2 \pi r}{P} \\
& =\frac{m}{r}\left(\frac{2 \pi r}{P}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore } \\
& \frac{G M_{\odot}}{r}=\left(\frac{2 \pi r}{P}\right)^{2} \Rightarrow P^{2}=\frac{4 \pi^{2}}{G M_{\odot}} r^{3}
\end{aligned}
$$

Kepler's First

Law

The orbit of a planet around the sun is an ellipse with the sun at one focus of the ellipse. a is called the "semi-major axis" of the ellipse. e is the "eccentricity" For earth $e=0.0167$. For Mercury $e=0.206$.

ORBITS

KEPL玉R'S THREE LAWS

http://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion
Soulution of

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}=-\frac{G M}{r^{3}} \mathbf{r} \quad \begin{aligned}
& \text { general equation }- \text { not } \\
& \text { circular orbits }
\end{aligned}
$$

- The planets orbit the sun in elliptical orb: ts with the sun at one focus of the ellipse.
- A line connecting the planet ancirue san eweer. 3 out equal areas in equal times
- $P^{2} \propto r^{3} \quad$ as we derived

In Ay 12 we shall presume dircular ciabits to be a good approximation

Kepler's Second Law

A line connecting the orbiting both with one focus of the ellipse (e.g., the sun) sweeps out equal areas in equal times.

The equation for an ellipse
The equation for a circle
is $\mathrm{x}^{2}+y^{2}=\mathrm{r}^{2}$

Kepler's Third Law

The squares of the periods of the planets are proportional to the cubes of their semi-major axes

Planet	$\mathrm{P}(\mathrm{yr})$	$\mathrm{a}(\mathrm{AU})$	P^{2}	a^{3}
Mercury	0.24	0.39	0.058	0.058
Venus	0.62	0.72	0.38	0.38
Earth	1.0	1.0	1.0	1.0
Mars	1.88	1.52	3.52	3.52

Kepler's third law.

THE ASTRONOMICAL UNIT (AU)

$$
P^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

for the Earth
$\begin{gathered}(1 y r)^{2}=\frac{4 \pi^{2}}{G M_{\odot}}(A u)^{3} \\ \text { So for any object orbiting the sun }\end{gathered} \quad \frac{P^{2}}{(1 y r)^{2}}=\frac{\left(\frac{4 \pi^{2}}{G M}\right)}{\left(\frac{4 \pi^{2}}{G M_{\odot}}\right)}\left(\frac{r}{1 \mathrm{AU}}\right)^{3}$

$$
\frac{p^{2}}{1 y r^{2}}=r^{3} /(A u)^{3}
$$

$$
\left.r(\text { in } A U)=\left[\begin{array}{lll}
P & \text { in } y r
\end{array}\right)\right]^{2 / 3}
$$

This only works when comparing small masses, each of which orbits the same big mass, M (e.g., planets around the sun).

The astronomical unit (AU) is the distance from the earth to the sun. It is measured from the center of the earth to the center of the sun.

Actually the distance from the earth to the sun varies about 1.7% during the year since its orbit is elliptical. Prior to 1976 the AU was defined as the semi-major axis of the earth' s orbit but in 1976 the IAU redefined it to be the average distance to the sun over a year.

Its standard (1996) value is $1.495978707 \times 10^{13} \mathrm{~cm}$

APLLICATIONS OF KEPLER'S THIRD LAW

$$
P^{2} \propto r^{3}
$$

- Distance to sun

The modern way. Bounce radar off of Mars when Mars is in "opposition". Determine distance between earth and mars (or Venus or a spacecraft) o high accuracy.

Know $P_{\text {Mars }}=686.98$ days $=1.881$ years. Therefore $r_{\text {Mars }}=(1.881)^{2 / 3}=1.524 \mathrm{AU}$

And since 0.524 AU has been measued by radar we can solve for the $\mathrm{AU}\left(1.49597870 \times 10^{13} \mathrm{~cm} \pm 5 \mathrm{~km}\right)$.
For our purposes usually $\mathrm{AU}=1.50 \times 10^{13} \mathrm{~cm}$.
from center of mass of the earth to center of mass of the sun

Later we shall see how to get the masses of other stars (and planets) if those stars are in binary systems

WEIGHING THE UNIVERSE

$$
\begin{aligned}
& P^{2}=\frac{4 \pi^{2}}{G M} r^{3} \\
& M=\frac{4 \pi^{2}}{G P^{2}} r^{3}
\end{aligned}
$$

and the length of the year and AU are known

$$
\begin{aligned}
M_{\odot} & =\frac{4 \pi^{2}}{G(1 y r)^{2}}(A U)^{3} \\
& =\frac{(4)(3.14)^{2}(\mathrm{gm})^{2}}{\left(6.67 \times 10^{-8}\right)\left(\mathrm{dyne} \mathrm{~cm}^{2}\right)(1 \mathrm{yr})^{2}}(1 \mathrm{AU})^{3}\left(\frac{1.50 \times 10^{13} \mathrm{~cm}}{1 \mathrm{AU}}\right)^{3}\left(\frac{\mathrm{dyne} \mathrm{~s}^{2}}{\mathrm{gm} \mathrm{~cm}}\right)\left(\frac{1 \mathrm{yr}}{3.16 \times 10^{7} \mathrm{~s}}\right)^{2} \\
& =\left(\frac{(4)(3.14)^{2}\left(1.50 \times 10^{13}\right)^{3}}{\left(6.67 \times 10^{-8}\right)\left(3.16 \times 10^{7}\right)^{2}}\right) \mathrm{gm} \\
& =2.00 \times 10^{33} \mathrm{gm}
\end{aligned}
$$

- The Earth

The moon has a distance (radar) of 3.84×10^{10} cm (semi-major axis).

The month is 27.32 days $=2.36 \times 10^{6}$ seconds.

$$
\begin{aligned}
& M_{E}=\frac{4 \pi^{2}}{G(1 m o)^{2}} r_{\text {Moon }}^{3} \quad \mathrm{M}=\left(\frac{4 \pi^{2}}{\mathrm{GP}^{2}}\right) \mathrm{r}^{3} \\
& =\frac{(4)(3.14)^{2}}{\left(6.67 \times 10^{-8}\right)\left(2.36 \times 10^{6}\right)^{2}}\left(3.84 \times 10^{10}\right)^{3} \\
& =6.0 \times 10^{27} \mathrm{gm} \\
& \left(5.977 \times 10^{27}\right) \\
& \text { - Other planets that have satellites (all but Meroury } \\
& \text { - The moon } \\
& \text { - Other stars that are in binary systems }
\end{aligned}
$$

- Lest we forget Kepler's orginal intent, if we l.now the period of other planets their semi-major axes follow immediately. E.g. Jupiter
Jupiter year $=11.9$ Earth Years
Therefore its semi-major axis around the sun is
$(11.9)^{2 / 3}=5.2 \mathrm{AU}$

How massive is the Milky Way Galaxy?
(and how many stars are in it?)

COBE (1990) - the galaxy as seen in far infrared
$1.25,2.2$, and 3.5 microns (optical $=0.4-0.7$ microns) stars are white; dust is reddish

THE MASS OF THE MILKY WAY GALAXY

Measurements of the parallax of numerous star forming regions using radio (Very Long Baseline Array) have given (2009) accurate measurements of the distance from the galactic center to the earth (28,000 ly) and the speed of the solar system in its orbit around the center ($254 \mathrm{~km} / \mathrm{s}$; used to be $220 \mathrm{~km} / \mathrm{s}$ prior to January, 2009)

THE MASS OF THE

 MILKY WAY GALAXYTreat Milky Way as a disk. Gravitationally, the sun "sees" only the mass interior to its orbit and that mass acts as if it were all located at the center of mass, i.e., the center of the Galaxy.

Milky Way interior to sun's orbit

The matter outside the sun's orbit exerts zero net force on the sun.

$$
\begin{aligned}
& \mathrm{M}_{M W}=\left(\frac{4 \pi^{2}}{\mathrm{GP}^{2}}\right) r^{3} \\
& \mathrm{P}=\left(\frac{2 \pi r}{v}\right) \quad\left\{\begin{array}{l}
\text { Period not known but do know } \\
\text { the speed and the distance }
\end{array}\right. \\
& \mathbf{M}_{M W}=\left(\frac{\left(4 \pi^{2}\right)\left(v^{2}\right)}{\left(\pi^{2}\right)}\right) r^{3} \quad(\text { period is actually about } 200 \mathrm{My}) \\
& =\frac{v^{2} r}{G} \\
& =\frac{\left(2.56 \times 10^{7}\right)^{2}\left(2.65 \times 10^{22}\right)}{6.67 \times 10^{-8}}\left\{\begin{array}{l}
28,000 \text { ly is } 2.65 \times 10^{22} \mathrm{~cm} \\
\left(1 \mathrm{ly}=9.46 \times 10^{17} \mathrm{~cm}\right)
\end{array}\right. \\
& \begin{array}{l}
=2.51 \times 10^{44} \mathrm{gm} \\
=1.29 \times 10^{11} \mathrm{M}_{\odot} \quad \text { interior to sun' } \mathrm{s} \text { orbit }
\end{array}
\end{aligned}
$$

Where is the edge of the Milky Way, i.e. where does the amount of mass enclosed reach a constant?

Once $\mathrm{M}=$ constant then as r increases

$$
\frac{\mathrm{GMm}}{\mathrm{r}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \Rightarrow \mathrm{v} \propto 1 / \sqrt{\mathrm{r}} \quad \mathrm{r}>\mathrm{R}
$$

KEPLER'S LAW for the arbital velocity of planets in the solar system, in which 11 oratha 99
 tinversely ms the square root of n, the rimee's mean distance from of = sse.. The il tance is shown
 Prbital velocity is about 47,9 kilometers per second; Pluto's velocity is accordingly slower by a orbitar velocity is $\mathbf{2 l}$.
factor of 10 , or 4.7 kilometers per second $(47.9 \times 1 / \sqrt{100)}$. The author's results show that the orbital velocities of stars in a spiral galaxy depart strongly from a Keplerian distribution.

$$
\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}
$$

$$
v=\text { const } . \Rightarrow M \propto r
$$

If density were independent of r,
$M \propto r^{3}($ sphere $), \quad M \propto r^{2}($ disk $)$
so the density is indeed declining

Figure 3.12. Luminosity profiles and rotation curves for spiral galaxies (van Albada and Sancisi 1986). The numerical value of the radius is based on the Hubble parameter $h=0.75$.

That is the orbital velocity should decrease with in creasing distance from the center of the filky Way.

- In fact the orbital ýelocity measured by radio observations does not fall off but tends to stay nearly constant outside the sun's orbit, maybe even increase
- But the optical luminosity of our galaxy outside the sun's orbit does decline dramatically. Therefore there is a lot of non-luminous mass. The mass interior to 75,000 y is about 3 times that interior to the sun's ork.t.
- Note that the Milky Way does not rotate a "rigid" body. Stars in the disk closer to tho center execute an orbit quicker than stars fart ${ }^{2}$ er out. Note also that v stays about constan interic: to the suns orbit.

http://www.sdss.org/news/releases/20080527.mwmass.html
May 27, 2008 - Sloan sky survey using a sample of over 2400 Population II (blue horizonal branch) stars infers a mass of slightly less than 10^{12} solar masses

What is Dark Matter?

Anything with a large mass to light ratio
Baryonic dark matter: (made of neutrons, protons and electrons)

- White dwarfs
- Black holes (large and small)
- Neutron stars
- Brown dwarfs and planets
- Gas either in small cold clouds or a hot inter-galactic cluster gas

But Big Bang nucleosynthesis limits the amount of baryonic mass.

Big Bang nucleosynthesis implies several times more baryonic matter than we see in galaxies and stars. Where is the rest?

Probably in an ionized hot intergalactic medium.
But observations of the dynamics of galactic clusters suggest even more matter than that.

Baryon (p and n) - Density

The Ratio between Protonand Neutron- Abundance at the Time of Nucleosynthesis (as it is today) depends on the Baryon-Density

The Abundance of light Elements ($\mathrm{He}, \mathrm{D},{ }^{3} \mathrm{He}$) reflects the n / p-Ratio

Light Elements
\Rightarrow Baryon-Density

The value inferred is less than that required to bind galaxies and especially clusters of galaxies together.

Best indications are that dark matter is composed of two parts "baryonic dark matter" which is things made out of neutrons, protons and electrons, and non-baryonic dark matter, which is something else.

Of the baryonic matter, stars that we can see are at most about 50% and the rest (the dark stuff) is in some other form. Part of the baryonic matter may be in the hot intergalactic medium and in ionized halos around galaxies (50% ?).

The non-baryonic matter has, in total, 5 times more mass than the total baryonic matter. I.e. baryonic matter is $1 / 6$ of matter and non-baryonic matter is $5 / 6$.

- The universe was not born recently (i.e., there is nothing special about the present
- We are not at the center of the solar system
- Our solar system is not at the center of the Milky Way Galaxy
- Our galaxy is not at the center of the universe (and there are many other galaxies)
- We are not made of the matter which comprises most of the universe (as thought <30 years ago)
- [Still to come - matter is not the dominant constituent of the universe]

Anything with a large mass to light ratio

Non-baryonic dark matter:

- Massive neutrinos
- Axions (particle that might be needed to understand absence of CP violation in the strong interaction)
- Photinos, gravitinos,
- WIMPs
- unknown...

In general, particles that have mass but little else

