Quantum Mechanics and

Stellar Spectroscopy

http://apod.nasa.gov/apod/

Protons in nucleus. Electrons orbit like planets. The neutron was not discovered until 1932 (Chadwick)
classically, any value of v or r is allowed. Much like planets.

Recall the electric force. Like gravity it is a " $1 / r^{2}$ " force/ That is:

$$
F_{\text {clex }}=\frac{Z_{1} Z_{2} e^{2}}{r^{2}}
$$

where Z_{1} and Z_{2} are the (integer) numbers of electronic charges. Similarly, the electric potential energy is

$$
E_{\text {dec }}=-\frac{Z_{1} Z_{2} e^{2}}{r}
$$

Protons in nucleus. Electrons orbit like planets. The neutron was not discovered until 1932 (Chadwick)

$$
\mathrm{KE}=\frac{1}{2} m_{e} v^{2}=\frac{Z e^{2}}{2 r}
$$

$$
v=\sqrt{\frac{Z e^{2}}{m_{e} r}}
$$

Rutherford Atom (1911)
$F_{\text {elec }}=F_{\text {cent }}$
$\frac{Z e^{2}}{r^{2}}=\frac{m_{e} \nu^{2}}{r} \Rightarrow r=\frac{Z e^{2}}{m_{e} v^{2}}$
$Z=1,2,3, \ldots$

Total energy:
$\mathrm{E}_{\mathrm{tot}}=\mathrm{KE}+\mathrm{PE}=\frac{\mathrm{m}_{e} \mathrm{v}^{2}}{2}-\frac{Z e^{2}}{r}$
$\equiv \frac{Z e^{2}}{2 r}-\frac{Z e^{2}}{r}=-\frac{Z e^{2}}{2 r}$
i.e., $2 \mathrm{KE}=-\mathrm{PE}$ (if PE is negative)

Virial theorem still works for the electric force.

Rutherford Atom (1911)

$$
\begin{aligned}
& v=\sqrt{\frac{Z e^{2}}{m_{e} r}} \quad F=m_{e} a=\frac{m_{e} v^{2}}{r} \\
& a=\frac{v^{2}}{r}=\frac{Z e^{2}}{m_{e} r^{2}} \quad E_{t o t}=-\frac{Z e^{2}}{2 r}
\end{aligned}
$$

BUT,
As the electron moves in its orbit it is accelerated, and therefore emits radiation. Because energy is being radiated, the total energy of the system must decrease - become more negative.
This means r must get smaller and v must increase. But smaller r and larger v also imply greater acceleration and radiation.

In approximately $10^{-6} \mathrm{~s}$ the electron spirals into the nucleus. Goodbye universe...

The solution lies in the wave-like property of

Thomas Young early 1800's for light.
http://en.wikipedia.org/wiki/Interference (wave propagation)

Young's experiment

Same basic result obtained using electrons...

$$
\lambda=\frac{h}{p}
$$

$8 e^{-}$
$270 e^{-}$

In 1924, Louis-Victor de Broglie formulated the DeBroglie hypothesis, claiming that all matter, not just light, has a wavelike nature. He related the wavelength (denoted as λ) and the momentum (denoted as p)

$$
\lambda=\frac{h}{p}
$$

A property of our universe

This is a little like the relation we had for photons

$$
\begin{aligned}
\mathrm{E} & =\mathrm{h} \nu \\
& =\mathrm{hc} / \lambda
\end{aligned}
$$

but if

$$
\mathrm{E}=\mathrm{pc}
$$

$$
\lambda=\frac{\mathrm{h}}{\mathrm{p}}
$$

http://en.wikipedia.org/wiki/Wave-particle duality
Light and particles like the electron (and neutron and proton) all have wavelengths and the shorter the wavelength the higher the momentum p. Electrons always have some motion regardless of their temperature

Consider one electron in a contracting box

As you squeeze on the box, the particle in the box has to move faster.

$$
\lambda=\frac{h}{p}=\frac{h}{m v} \quad \lambda \downarrow \Rightarrow \mathrm{~V} \uparrow
$$

The squeezing provides the energy to increase v

A little thought will show how this is going to solve our problem with the stability of matter.

As the electron is forced into a smaller and smaller volume, it must move faster. Ultimately this kinetic energy can support it against the electrical attraction of the nucleus.
Since $p=\frac{h}{\lambda} \Rightarrow \frac{1}{2} m_{e} v^{2}=\frac{p^{2}}{2 m_{e}} \propto \frac{1}{\lambda^{2}} \sim \frac{1}{r^{2}}$

$$
\text { but } \quad-\frac{Z e^{2}}{r} \propto \frac{1}{r}
$$

There comes a minimum radius where the electron cannot radiate because the sum of its potential and kinetic energies has reached a minimum.

Ground state of the hydrogen atom - Neils Bohr (1913)
(lowest possible energy state)

Must fit the wavelength of the electron inside a circle of radius r, the average distance between the electron and the proton.

$$
\begin{aligned}
& \lambda=2 \pi r \\
& K E=\frac{m v^{2}}{2}=\frac{m^{2} v^{2}}{2 m}=\frac{p^{2}}{2 m}=\frac{h^{2}}{2 m\left(4 \pi^{2} r^{2}\right)} \\
& P E=-\frac{e^{2}}{r} \quad
\end{aligned}
$$

The 2π here is rather arbitrary but gives the right answer.

Note that PE goes as $1 / \mathrm{r}$ and KE goes as $1 / \mathrm{r}^{2}$

At large distance electrical repulsion dominates. At short distances the

$\frac{h^{2}}{2 m_{e} Z e^{2}}=\frac{4 \pi^{2} r_{0}^{2}}{2 r_{o}}$

Energy would have to be provided to the electron to make it move any closer to the proton (because it would have to move faster), more energy than $\mathrm{e}^{2 / r}$ can give.

Bohr Atom
 (1913)

$$
\frac{2 \pi r=n \lambda}{n h}=n h / p
$$

of the electron are
those for which
$m v r=\frac{n h}{2 \pi}$

Solve as before:

$$
\begin{aligned}
& r=\frac{n^{2} h^{2}}{4 \pi^{2} Z e^{2} m_{e}}=0.53 \frac{n^{2}}{Z} \text { Angstroms } \\
& E_{\text {tot }}=-\frac{Z e^{2}}{2 r}=-\frac{2 \pi^{2} Z^{2} e^{4} m_{e}}{n^{2} h^{2}} \\
& E_{\text {bot }}=-13.6 \mathrm{eV}\left(\frac{Z^{2}}{n^{2}}\right) \quad
\end{aligned} \quad \begin{aligned}
& 1 \mathrm{eV} \equiv 1.602 \times 10^{-12} \mathrm{erg} \\
& \mathrm{n}=1 \text { is the "ground state" }
\end{aligned}
$$

For atoms with only a single electron.

$$
\text { For hydrogen } Z=1
$$

In the full quantum mechanical solution the electron is described by a "wave function" that gives its probability for being found at any particular distance from the nucleus.

In the simplest case these distributions are spherical.

The radius in the Bohr model is the average radius but the energy is precise.

All orbitals from $\mathrm{n}=1$ through 4 Number electrons per shell is $2 n^{2}$, but don't always completely fill one shell before starting on the next.

Bohr's Second Postulate

Only the "ground state", $\mathrm{n}=1$, is permanently stable

Bohr's Second Postulate

Radiation in the form of a single quantum (photon) is Emitted (or absorbed) as the electron makes a transition From one state to another. The energy in the photon is the Difference between the energies of the two states.

$$
\begin{gathered}
\stackrel{\text { emission }}{\mathrm{E}_{m} \rightarrow \mathrm{E}_{n}+h v \quad\left(\text { or } \mathrm{E}_{n}+h v \rightarrow \mathrm{E}_{m}\right) \quad m>n} \\
h \nu=\frac{h c}{\lambda}=E_{m}-E_{n} \\
\frac{1}{\lambda}=\frac{E_{m}-E_{n}}{h c}=\frac{2 \pi^{2} Z^{2} e^{4} m_{e}}{h^{3} c}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right) \\
\frac{1}{\lambda_{m n}}=1.097 \times 10^{5} Z^{2}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right) \mathrm{cm}^{-1} \\
\lambda_{m n}=\frac{911.6 \mathrm{~A}}{Z^{2}}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{-1}
\end{gathered}
$$

(for atoms with only one electron)

BALMER SERIES

E.g.,

Lines that start or end on $n=1$ are
$m=3, n=1, Z=1$

$$
\begin{aligned}
\lambda & =911.6\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)^{-1}=911.6\left(\frac{8}{9}\right)^{-1} \\
& =911.6\left(\frac{9}{8}\right)=1026 \AA
\end{aligned}
$$

$m=3, n=2, Z=1$

$$
\left.\begin{array}{rl}
\lambda & =911.6\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)^{-1}=911.6\left(\frac{1}{4}-\frac{1}{9}\right)^{-1} \\
& =911.6\left(\frac{5}{36}\right)^{-1}=911.6\left(\frac{36}{5}\right)=6564 \AA
\end{array}\right\}
$$

Lines that start or end on $n=2$ are called the "Balmer" series. All are between 3646 and 6564 A.

[^0] ground state becomes zero), one gets a diagram where the energies of the transitions can be read off easily.

Emission line

electron in higher energy orbit

Atom was hithumped by another atom and gained some energy $=\left(E_{2}-E_{1}\right)$. Electron in higher energy orbit $\left(\mathrm{E}_{2}\right)$.

Emission line produced!

How are excited states populated?

- Absorb a photon of the right energy
- Collisions
- Ionization - recombination

When we examine the spectra of stars, with a few exceptions to be discussed later, we see blackbody spectra with a superposition of absorption lines.

The identity and intensity of the "spectral lines" that are present reflect the temperature, density and composition of the stellar photosphere.

table P. 1 THE COSMICALLY ABUNDANT

 ELEMENTSElement Symbol Million Hydrogen Atoms

Hydrogen	H	$1,000,000$
Helium	He	68,000
Carbon	C	420
Nitrogen	N	87
Oxygen	O	690
Neon	Ne	98
Magnesium	Mg	40
Silicon	Si	38
Sulfur	S	19
Iron	Fe	34

Reminder: We know the temperature from Wien' s Law

The solar spectrum

Wollaton (1802) discovered dark lines in the solar spectrum. Fraunhaufer rediscovered them (1817) and studied the systematics

As the temperature in a gas is raised, electrons will be removed by collisions and interactions with light. The gas comes ionized.

The degree of ionization depends on the atom considered and the temperature.

H I	neutral hydrogen	1 p	1 e
H II	ionized hydrogen	1 p	0 e
He I	neutral helium	2 p	2 e
He II	singly ionized helium	2 p	1 e
He III	doubly ionized helium	2 p	0 e
C I	neutral carbon	6 p	6 e
C II	C^{+}	6 p	5 e
C III	C^{++}	6 p	4 e
etc.			

The ionization energy is the energy required to remove a single electron from a given ion. The excitation energy is the energy required to excite an electron from the ground state to the first excited state.

Ion	Excitation energy (eV)	Ionization energy (eV)
H I	10.2	
He I	20.9	13.6
He II	40.8	24.5
Li I	1.8	54.4
Ne I	16.6	5.4
Na I	2.1	21.5
Mg I	2.7	5.1
Ca I	1.9	7.6

Li is He plus one proton, Na is Ne plus 1 proton, Ca is Ar plus 2 protons. The noble gases have closed electron shells and are very stable.

Some of the stronger lines in stars

Fraction MS stars solar neighborhood

O	$>25,000 \mathrm{~K}$	Delta Orionis	$1 / 3,000,000$
B	$11,000-25,000$	Pleiades brightest	$1 / 800$
A	$7500-11,000$	Sirius	$1 / 160$
F	$6000-7500$	Canopus	$1 / 133$
G	$5000-6000$	Sun	$1 / 13$
K	$3500-5000$	Arcturus	$1 / 8$
M	<3500	Proxima Centauri	$3 / 4$

The Spectral Sequence

Hottest Coolest 50,000K 4300K

Spectral Sequence is a Temperature Sequence

Our sun' s spectral class is G2-V

- Cannon further refined the spectral classification system by dividing the classes into numbered subclasses:
- For example, A was divided into

A0 A1 A2 A3 ... A9

- Between 1911 and 1924, she classified about 220,000 stars, published as the Henry Draper Catalog.

The Henry Draper Spectral Sequence

Spectral Type	Principal Characteristics	Spectral Criteria

White stars
Hydrogen lines declining
Neutral metal lines increasing

Yellow stars
Many metal lines
Ca 11 lines dominate

Reddish stars
Molecular bands appear
Neutral metal lines dominate

[^1]The hydrogen lines are weakening rapidly, while the H and K lines of Ca II strengthen. Neutral metal (Fe I and Cr I) lines gaining on ionized metal lines by late \mathbf{F}

The hydrogen lines are very weak. The Ca II H and K lines reach maximum strength near G2. Neutral metal (Fe 1, Mn I, Ca I) lines strengthening, while ionized metal lines diminish. The molecular G -band of CH becomes strong.

The hydrogen lines are almost gone. The Ca lines are strong. Neutral metal lines are very prominent. By late K the molecular bands of: TiO begin to appear.

The neutral metal lines are very strong. Molecular bands are prominent, with the TiO bands dominating the spectrum by M5. Vanadium oxide (VO) bands appear.

Summary of spectroscopic types

Class	Temperature ${ }^{(8)}$ （kelvins）	Conventional color	$\begin{gathered} \text { Apparent } \\ \text { color }[10 \mid 111] \end{gathered}$	$\begin{gathered} \text { Mass }{ }^{171} \\ \text { (solar } \\ \text { masses) } \end{gathered}$	$\begin{aligned} & \text { Radius } \\ & \text { (solar radil) } \end{aligned}$	Luminosity ${ }^{\text {（8］}}$ （bolometric）	Hydrogen lines	Fraction of all main sequence stars ${ }^{[12]}$
0	$233,000 \mathrm{~K}$	blue	blue	$=16 \mathrm{M}$ 。	26.6 R ．	$=30,000 \mathrm{~L}$ ．	Weak	－0．00003\％
B	$\begin{aligned} & 10,000- \\ & 33,000 \mathrm{~K} \end{aligned}$	blue to blue white	blue white	2．1－16 M．	1．8－6．6 R．	25－30，000 L．	Medium	0．13\％
A	$\begin{aligned} & 7,500- \\ & 10,000 \mathrm{~K} \end{aligned}$	white	white to blue white	1．4－2．1 M	1．4－1．8 R．	5－25L。	Strong	0．6\％
F	6，000－7，500 K	yellowish white	white	1．04－1．4 M	$\begin{aligned} & 1.15-1.4 \\ & \text { R. } \end{aligned}$	1．5－5 L	Medium	3\％
G	5，200－6，000 K	yellow	yellowish white	0．8－1．04 M	$0.96-1.15$	0．e－1．5 L	Weak	7．6\％
K	3，700－5，200 K	orange	yellow orange	$0.45-0.8 \mathrm{M}$ 。	$\begin{aligned} & 0.7-0.96 \\ & \text { R. } \end{aligned}$	0．00－0．6 L	Very weak	12．1\％
M	\＄3，700 K	red	crange red	$\leq 0.45 \mathrm{M}$ 。	＝ 0.7 月．	$\leq 0.08 \mathrm{~L}$ 。	Very weak	76．45\％

http：／／en．wikipedia．org／wiki／Stellar classification

http：／／nedwww．ipac．caltech．edu／level5／Gray／Gray＿contents．html

Main Sequence B 5 － AS

H lines start to decrease
in strength． Ca II strong．
Fe I growing in strength．
Mg II decreasing．

H lines reach maximum strength．Ca II growing． Fe II，Si II，Mg II reach
,

Balmer Series

Transition	$\mathbf{3 - > 2}$	$\mathbf{4 - > 2}$	$\mathbf{5 - > 2}$	$\mathbf{6 - > 2}$	$\mathbf{7 - > 2}$
Name	H_{α}	H_{β}	H_{γ}	H_{δ}	H_{ε}
Wavelength	6563	4861	4341	4102	3970
Color	Red	Blue－ green	Violet	Violet	Ultra－ violet

(Part of) the solar spectrum

DISTINGUISHING MAIN SEQUENCE STARS

The surface gravity

$$
g=\frac{G M}{R^{2}}
$$

of a star is clearly larger for a smaller radius (if M is constant)
To support itself against this higher gravity, a the stellar photosphere must have a larger pressure. As we shall see later for an ideal gas

$$
P=n k T
$$

where n is the number density and T is the temperature. If two stars have the same temperature, T , the one with the higher pressure (smaller radius) will have the larger n , i.e., its atoms will be more closely crowded together. This has two effects:

1) At a greater density (and the same T) a gas is less ionized
2) If the density is high, the electrons in one atom "feel" the presence of other nearby nuclei. This makes their binding energy less certain. This spreading of the energy level is called "Stark broadening"

A3 I (supergiant)

Note: Surface gravity on the main sequence is higher for lower mass stars
$R \propto M^{0.65}$
$\frac{G M}{R^{2}}$ decreases with increasing M

All 3 stars have the same ionized calcium $\begin{gathered}\text { indure but, }\end{gathered}$

- The supergiants have the narrowest absorption lines
- Small Main-Sequence stars have the broadest lines
- Giants are intermediate in line width and radius
- In 1943, Morgan \& Keenan added the Luminosity Class as a second classification parameter:
-Ia = Bright Supergiants
$-\mathrm{Ib}=$ Supergiants
-II = Bright Giants
-III = Giants
-IV = Subgiants
$-\mathrm{V}=$ Main sequence

[^0]: Adjusting the energy of each state in hydrogen by adding 13.6 eV (so that the

[^1]: Coolest red stars
 Neutral metal lines strong
 Molecular bands dominate

