Astronomy 12

Stars, Stellar Evolution, and High Energy Astrophysics

http://www.ucolick.org/~woosley/
http://apod.nasa.gov/apod/astropix.html

The Nature of Astronomy

- The scientific study of objects beyond earth (here with emphasis on stars and physics)
- A progress report. Our views of the cosmos change daily (but the new theories often include the old ones as subsets)
- The cosmos itself changes; all of its constituents are evolving.
- A novel aspect of astronomy is its ability to carry out direct studies of the past
- Interesting experiments are set up for us, but we have no control over them. Everyone is an observer!

The scientific mind does not so much provide the right answers as ask the right questions

Claude Levi-Strauss French philosopher

1908 - 2009

1879 - 1955

One thing I have learned in a long life is that all our science, measured against reality, is childlike - and yet it is the most precious thing we have.

Albert Einstein Physicist

"Astrophysics"

The universe obeys physical laws and those laws do not vary with space or time

It is best understood on the basis of physical "models" and mathematics

Scientific notation

$$1 = 1.0 \times 10^{0}$$

$$10 = 1.0 \times 10^{1}$$

$$10 = 1.0 \times 10^{1}$$

$$1,000,000 = 1.0 \times 10^{6}$$

$$3,450,000 = 3.45 \times 10^{6}$$

$$0.10 = 1.0 \times 10^{-1}$$

$$0.00000010 = 1.0 \times 10^{-7}$$

$$0.00346 = 3.46 \times 10^{-3}$$

$$0.002356347 \approx 2.36 \times 10^{-3}$$

$$(1.0 \times 10^{-2})(2.0 \times 10^{4}) = 2.0 \times 10^{2} = 200$$
$$(1.0 \times 10^{-2})/(2.0 \times 10^{4}) = \frac{1}{2} \times 10^{-6} = 5.0 \times 10^{-7}$$

In Ay12 (e.g. homework), use only the precision justified by the statement of the problem. The default is 3 figures of accuracy.

Logarithms

$$\log (1) = 0 \qquad \log(10) = 1$$

$$\log (0.1) = -1. \qquad \log(10^{-6}) = -6$$

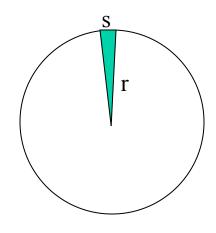
$$\log (52.3) = 1.72...$$

$$\log (a)(b) = \log (a) + \log(b) \qquad \log (a^b) = b \log (a)$$
e.g.
$$\log (10^2) = 2 \log(10) = 2$$

$$\log (10^x) = x \log(10) = x$$

$$\log (100) = \log(10)(10) = \log(10) + \log(10) = 2$$

logarithms are used extensively in the stellar magnitude system because of the need to describe brightnesses than span many orders of magnitude.


Angular Measure (used, e.g., for distance determination)

1 full circle = 360 degrees

1 degree = 60 arc minutes

1 arc minute = 60 arc seconds

http://mintaka.sdsu.edu/GF/explain/atmos_refr/angles.html

 $2 \pi \text{ radians} = 360 \text{ degrees}$

A *radian* is the angle subtended by a length of arc equal to the radius of the citcle

1 radian = $360/2\pi = 57.29...$ degrees = 206,265 arc seconds

Length of arc, s, subtended by angle θ

$$s = r \theta$$

if θ is measured in radians

Thumb at arm's length ~ 2 degrees

Little finger at arm's length ~ 1 degree

hand spread ~ 20 degrees

Smallest angle with naked eye ~ 1 arc min

Sun or moon $\sim \frac{1}{2}$ degree

HST ~ 0.4 milli-arc-seconds (0.01 pixel – for astrometry)

GAIA ~ $10 - 20 \,\mu$ as (planned, by missions end; 1 foot at 2 million miles)

Units

The basic units in Ay12 are cm, gm, and sec (with apologies to the physicists).

How many cm in a light year? 1 ly = c * 1 yr

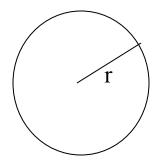
$$c = 2.99 \times 10^5 \text{ km s}^{-1}$$

based on Julian year = 365.25 days (exactly)

day = 24 hours

$$km = 10^3 m$$

hour = 60 minutes


$$m = 10^2$$
 cm

$$1 \text{ ly} = c \times 1 \text{ year}$$

$$\simeq \left(\frac{2.99 \times 10^5 \text{ km}}{\text{s}}\right) (1 \text{ yr}) \left(\frac{10^3 \text{ m}}{\text{km}}\right) \left(\frac{10^2 \text{ cm}}{\text{m}}\right) \left(\frac{365 \text{ day}}{1 \text{ yr}}\right) \left(\frac{24 \text{ hr}}{1 \text{ day}}\right) \left(\frac{60 \text{ min}}{1 \text{ hr}}\right) \left(\frac{60 \text{ s}}{1 \text{ min}}\right)$$

$$\approx 9.44 \times 10^{17}$$
 cm

Spherical Geometry

Circumference of a circle = $2\pi r$

Surface area of a sphere = $4\pi r^2$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Mass of a sphere with constant density ρ

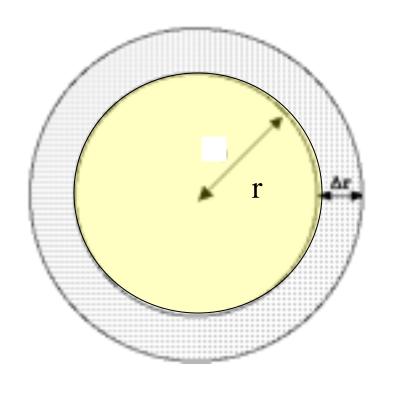
$$\mathbf{M} = \left(\frac{4}{3}\pi\mathbf{r}^3\right)\rho$$

To a good approximation stars are spheres

Mass of a sphere with radius r and constant density ρ (gm cm⁻³)

$$M = \frac{4}{3}\pi r^3 \rho$$

E.g., How much does a (spherical) asteroid with radius 5 km and density 5 gm cm⁻³ "weigh"?


$$M = \frac{4}{3}(3.14)(5 \times 10^{5} \text{ cm})^{3} (5 \frac{\text{gm}}{\text{cm}^{3}})$$
$$= (4.19)(125 \times 10^{15})(5) \text{ gm}$$
$$= 2.62 \times 10^{18} \text{ gm}$$

Calculus

$$\frac{d}{dx} x^n = n x^{n-1} \qquad \int x^n dx = \left(\frac{x^{n+1}}{n+1}\right)$$

$$\frac{d}{d\theta}(Cos\theta) = -Sin\theta \qquad \frac{d}{d\theta}(Sin\theta) = Cos\theta$$

Binomial expansion theorem

Eg. Volume of a sphere

Area of a shell = $4 \pi r^2$ Thickness = $\Delta r \approx dr$ Add up a whole bunch of shells

$$\int_{0}^{r_0} 4\pi r^2 dr = \frac{4}{3}\pi r_0^3$$

ANGULAR MEASURE

 $\pi = 3.14159...$ $2 \pi \text{ radians} = 360^{\circ}$ $1 \text{ radian} = 57^{\circ}.296$ $1 \text{ degree} = 60^{\circ} = 60 \text{ are min}$ $1 \text{ arc min} = 60^{\circ} = 60 \text{ arc sec}$ $1 \text{ radian} = 206265^{\circ}.806$ Number of square degrees on sky = 41,252.961

PHYSICAL CONSTANTS

Speed of light	e.	2.99792×10^{10} cm s ⁻¹
Constant of gravitation	G	6.672×10^{-8} dyne cm ² g ⁻²
Planck's constant	h	6.626×10^{-27} erg s
Boltzmann's constant	k	1.381×10^{-16} erg (deg K) ⁻¹
Mass hydrogen atom	trour	1.673×10^{-24} g
Avogadro's number	N_A	$6.022 \times 10^{28} \text{ g}^{-1}$
Mass electron	m_e	9.1095×10^{-26} g
Charge on the electron	0	4.803×10^{-10} electrostatic units
Stefan-Boltzmann radiation constant	σ	$5.670 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ (deg K)}^{-1}$
Radiation energy density constant	$\alpha = 4\sigma/c$	7.56×10^{-15} erg cm ⁻³ (deg K) ⁻⁴
Constant in Wien's Law	Aug T	0.28979 cm (deg K) ⁻¹
Electron volt	eV.	1.6022×10^{-12} erg
Million electron volts	MeV	10 ⁶ eV
Angstrom	A	10 ⁻⁸ cm
1 Megaton of TNT	MT	4.2×10^{22} erg

ASTRONOMICAL CONSTANTS

Astronomical Unit	AU	$1.495978707 \times 10^{11}$ cm
Parsec	pc	206265 AU
		3.262 ly
		3.086×10^{48} cm
Light year	ly-	9.4605×10^{17} cm
		$6.324 \times 10^4 \text{ AU}$
(siderial) year	УT	3.155815×10^7 s
Mass of Earth	M_E	5.977×10^{27} g
(Equatorial) radius of Earth	R_E	6.378×10^{8} cm
Mass of sun	M_{\odot}	1.989×10^{33} g
Radius of sun	R.	6.960×10^{10} cm
Luminosity of sun	L	$3.83 \times 10^{33} \text{ erg s}^{-1}$
Solar constant at Earth	S	$1.37 \times 10^6 \text{ erg cm}^{-2} \text{ s}^{-1}$

MISCELLANEOUS

Area circle	$\Lambda = \pi R^2$
Area of a sphere	$\Lambda = 4\pi R^2$
Volume of a sphere	$V = \frac{1}{5}\pi R^3$
Latitude of Santa Cruz	36.9998 degrees N
Longitude of Santa Cruz	122.0624 degrees W
Temperature in K	Temperature in $C + 273.15$
Temperature in F	(Temperature in C)*9/5 + 32
5 magnitudes	factor of 100 in flux
For very small $\theta << 1$ radian	$\sin \theta \approx \tan \theta \approx \theta$

Our location in the Universe

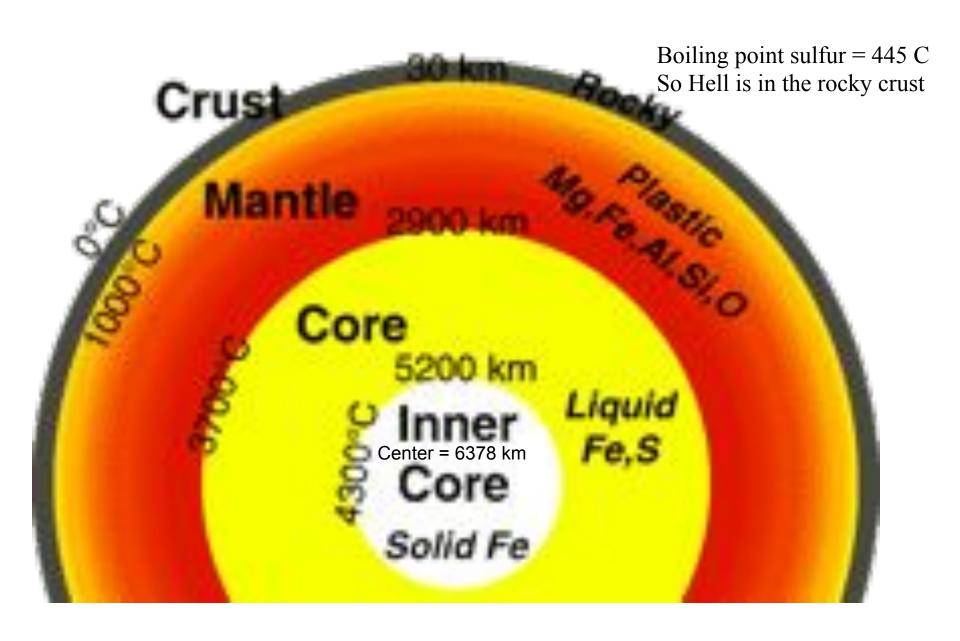
"Spaceship Earth"

From Apollo 11 1969

The Earth as a planet

- $M_{earth} = 5.997 \times 10^{27} \text{ gm}$
- $R_{\text{earth}} = 6.378 \times 10^8 \text{ cm}$
- Age ~ 4.54 billion years (U,Th dating close to age of sun)
- Orbit sun = 1.496 x 10¹³ cm (~average distance) = **AU** (93 million miles) [prior to 1976 was semi-major axis; now radius of circular orbit with the equivalent period]
- Period around the sun = 365.242199... days (Julian year = 365.25 days; 86,400 s; exactly)

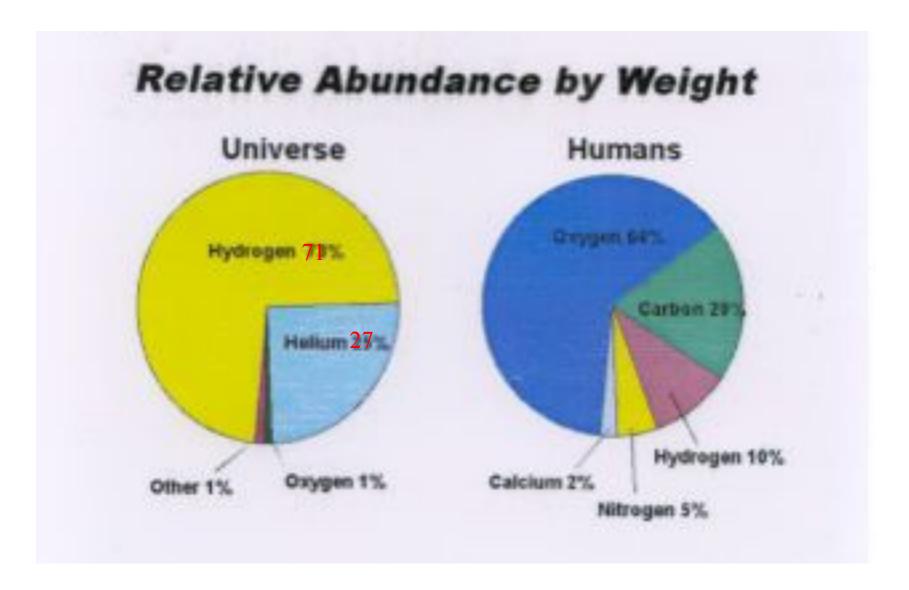
• Average density = 5.52 gm/cm³
$$\rho \approx \left(\frac{M}{4/3\pi r^3}\right)$$
 densest planet in the solar system, barely beats Mercury


aside – leap year

Every year that is divisible by 4

but now years divisible by 100 unless they are divisible by 400

e.g., 2100 will not be a leap year 2000 was a leap year


After 8000 years this system will be off by a day

or a big,rusty,sandy rock....

```
34.6% Fe
29.5% O
15.2% Si
12.7% Mg
2.4% Ni
1.9% S
```

In contrast to

Where did these elements come from?

This rusty sandy rock orbits the nearest star, the sun....

The Sun

The only star we can study in great detail

Mass = $1.989 \times 10^{33} \text{ gm}$; about 300,000 Earth masses

Radius = $6.96 \times 10^5 \text{ km}$; almost 100 Earth radii

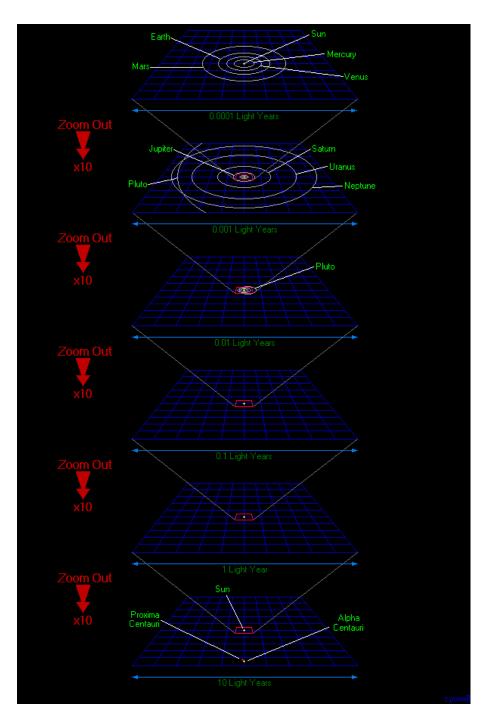
Average density 1.41 gm/cm³

Age = $4.567 \times 10^9 \text{ years}$

Luminosity = $3.90 \times 10^{33} \text{erg/s}$

(world's armament in 10⁻⁵ seconds)

 $1.37 \times 10^6 \text{ erg cm}^{-2} \text{ s}^{-1}$ at earth

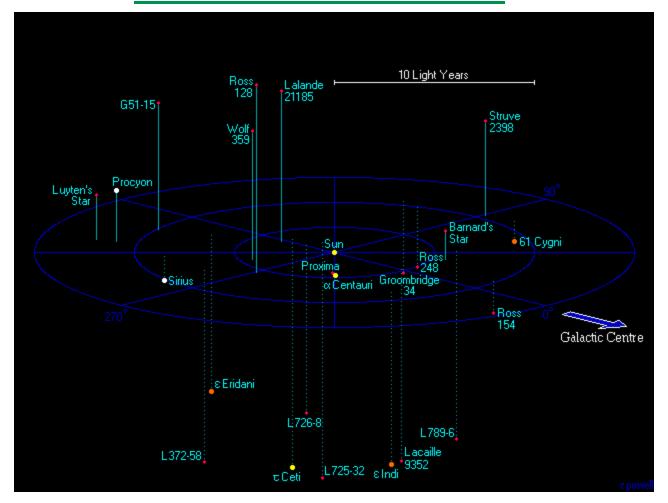

Central temperature = 15.7 million K Photospheric temperature about 5700 K

K = C + 273

Rotation period 24.47 days at the equator slower near poles

Surface composition (by mass) 70.6% H 27.5% He, 1.9% C, N, O, Fe, Si, etc (like "universe")

A typical star. A little on the heavy side.



The figure at the left shows the effect of zooming out in distance from our solar system by a total factor of 100,000 (10⁵).

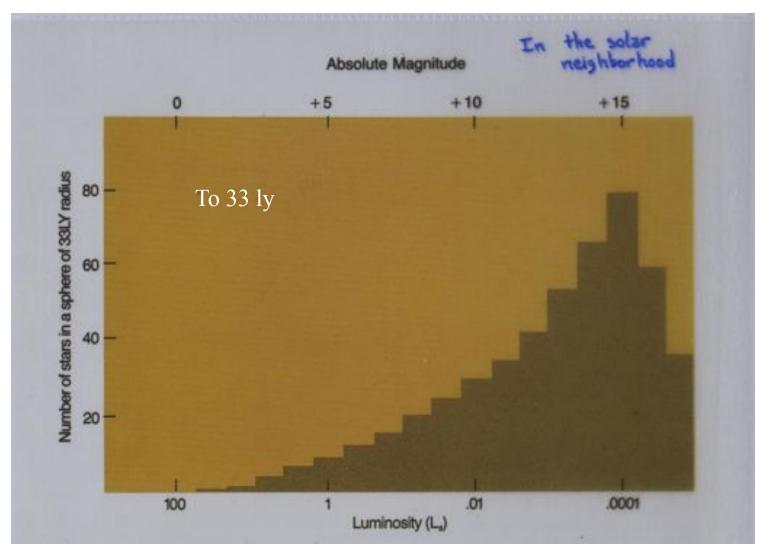
At this scale the next star system over, alpha-centauri, becomes visible.

Most of the universe, even within galaxies, is empty.

12.5 ly www.atlasoftheuniverse.com

circles indicate plane of Milky Way galaxy

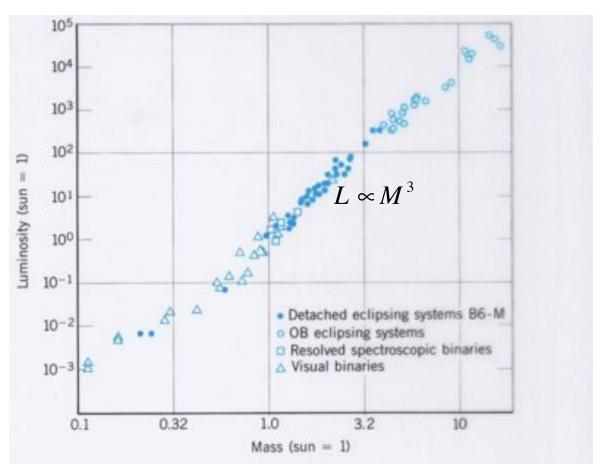
The nearest (24) stars within 12.5 light years of the earth. The closest star system – Alpha Centauri – is about 7000 times the radius of Pluto's orbit. 270,000 times the radius of the Earth's orbit,


Some specific nearby stars:

- The sun a typical yellow dwarf star. Type G2 with 8 planets
- *Proxima Centauri* closest of the triplet of stars loosely known as "alpha-Centauri" Proxima Centauri is a faint red star that orbits Alpha-Centauri A and B with a period of about one million years. Proxima Centauri is 4.22 light years from the Earth (now) and about 0.24 light years from Alpha-Centauri A and B.
- *Alpha-Centauri A and B* a double star system with a period of about 80 years. Component A is a near twin of the sun (Type G2). Component B is a little fainter and orange. Alpha-Centauri A and B are 4.39 light years from the Earth.
- *Barnards star* highest proper motion of all stars. 5.9 light years away. It moves 0.29 degrees per century. In another 8000 years Barnard's star will be the closest star to us (3.8 ly in 11700 AD). M star, faint, red, about 11 Gyr old. No big planets.
- *Lalande 21185* One of the brightest red dwarfs in the sky but still requires binoculars to see it. In 1996 a couple of Jupiter sized planets were discovered here
- *Epsilon Eridani* 10.5 light years away. Searched for life by radio searches in the 1960's. May have a Jupiter sized planet orbiting at a distance of 3.2 AU. Young star (1Gyr?). K2
- *Procyon A,B* 11.41 light years away. Another multiple star system. 8th brightest star in the sky has a white dwarf companion
- *Sirius A,B* At a distance of 8.60 light years Sirius A is the brightest star in the sky. Sirius B is a white dwarf

Brightest stars		Nearest Stars	
	Apparent magnitude	Star name	distance (ly)
Sun	-26.8	Sun	_
Sirius	-1.46	Proxima Centauri	4.2
Canopus	-0.72	Alpha Centauri AI	3 4.3
Arcturus	-0.04	Barnards stars	6.0
Alpha Centauri	i -0.01	Wolf 359	7.7
Vega	0.00	BD 36+2147	8.2
Capella	0.08	Luyten 726-8AB	8.4
Rigel	0.12	Sirius A B	8.6
Procyon	0.38	Ross 154	9.4
Betelgeuse	0.41	Ross 248	10.4

most nearby stars are too faint to see without a telescope

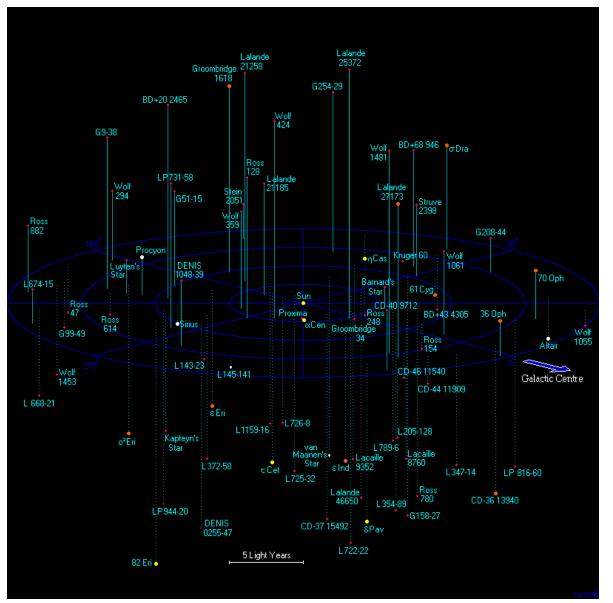

In a volume limited sample – counting all stars...

Most stars are less luminous than the sun, only a few are brighter.

Masses and luminosities

In binary star systems we can determine the mass of the star. For stars thar are spectroscopically "main sequence" the star's luminosity is correlated with its mass.

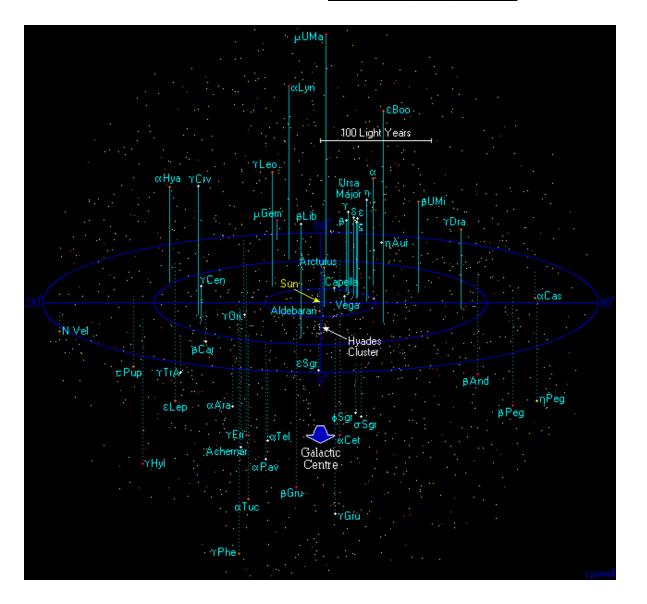
e.g., 10 solar masses is between 10^3 and 10^4 times more luminous than the sun. 0.1 solar masses is down by 10^3


To summarize:

- There are many more faint stars than bright ones
- Faint stars also have low mass
- Low mass stars live a long time

The converse is also true:

- Bright (high luminosity) stars are rare
- Bright stars are more massive (exception red giants)
- Massive stars have short lives


20 light years – 78 systems – 109 stars

isotropic distribution

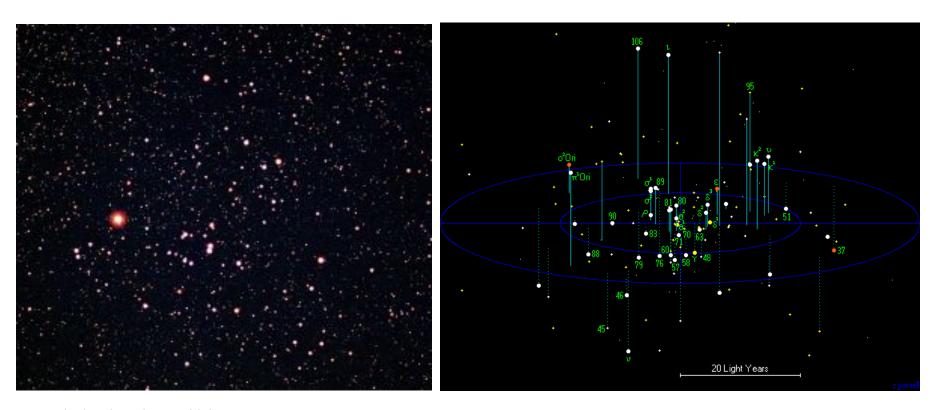
50 ly ~2000 stars

250 light years

Starting to see some preference for Galactic plane for distances beyond this.

Number for isotropic distribution and constant density

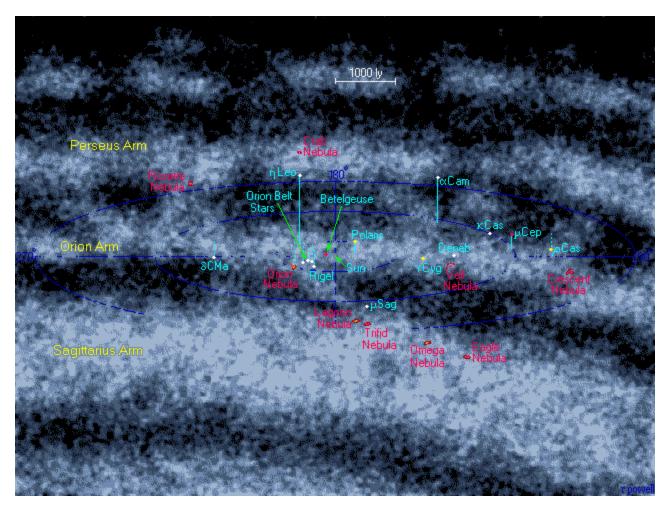
$$n \propto d^3$$


About 250,000 stars lie within 250 light years of the Earth. Beyond this distance it becomes difficult to see all the stars in the plane of the Milky Way Galaxy because of the presence of dust.

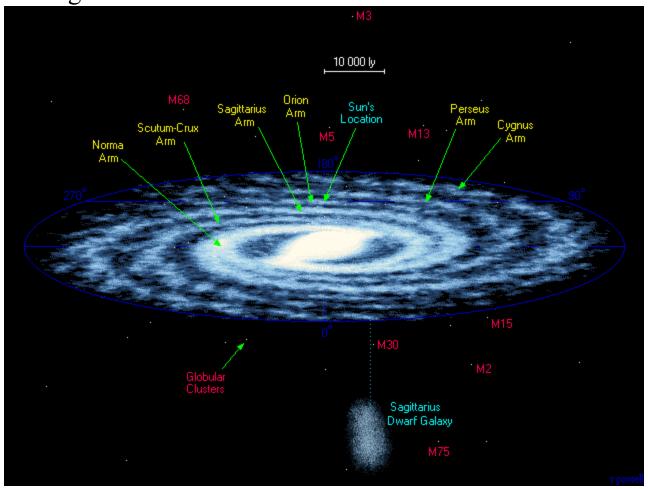
Only the 1500 most luminous of these stars are plotted. Most of these are visible to the unaided eye.

Note the presence of the Hyades cluster.

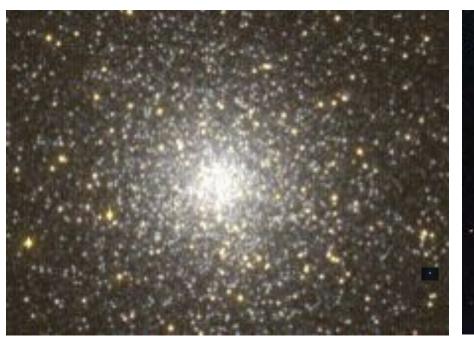
< 1500 stars are visible to the unaided eye. More often it's a few hundred.


The Hyades Open cluster of stars (151 light years)

The bright red star Aldebaran is not in the Hyades


This cluster of stars is only about 625 million years old and is in the process of coming apart. Stars like this are born together from a giant cloud of molecular gas, most of which is blown away by the young stars. About 200 stars are catalogued at http://en.wikipedia.org/wiki/List_of_stars_in_Hyades

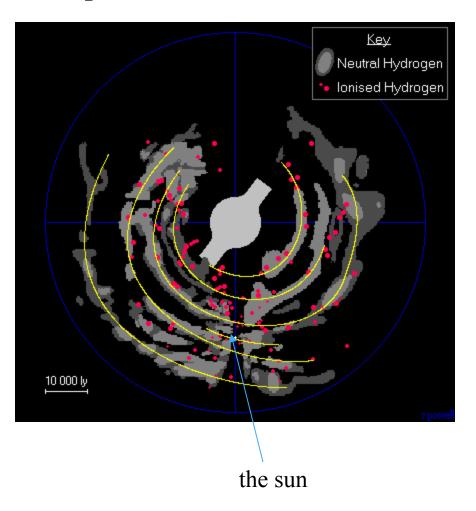
5000 light year view – Galactic spiral arm structure is becoming apparent. The sun is on the "Orion Arm" a lesser arm of the Milky Way compared e.g., to the Sagitarius Arm. There is also a lot of gas and dust.


Betelgeuse 650 ly; Orion 1350 ly

The entire visible galaxy is about 80,000 light years across. Note orbiting galaxy and globular clusters

http://www.atlasoftheuniverse.com/galaxy.html

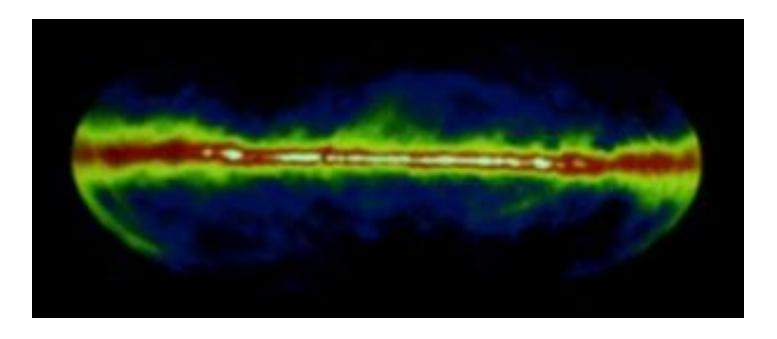
Globular Clusters


47 Tuc

Second brightest globular cluster (behind Omega Cen). There are about 200 globular clusters altogether. This one is near the direction of the SMC in the sky and about 20,000 ly distant. Lots of red giants visible here.

M13

This globular cluster in Hercules is 22,000 ly distant and contains $10^5 - 10^6$ stars. Age ~ 12 to 14 billion years. It is about 150 light years across.


The clearest experimental evidence for spiral structure in our own galaxy comes from radio observations. The galaxy is transparent in the 21 cm line of atomic H.

Radio View of the Milky Way

Interstellar dust does not absorb radio waves

We can observe any direction throughout the Milky Way at radio waves

Radio map at a wavelength of 21 cm, tracing neutral hydrogen

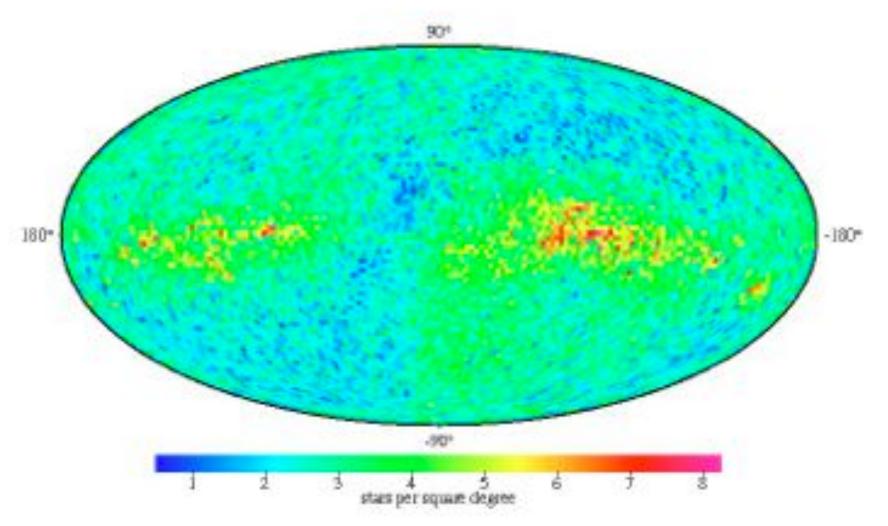
http://www.geekosystem.com/wise-all-sky-atlas/

Released 2012. Wide Field Infra-Red Survey Explorer (WISE) composite photograph of the entire sky. Over 500 million individual stars catalogued, though not with great precision.

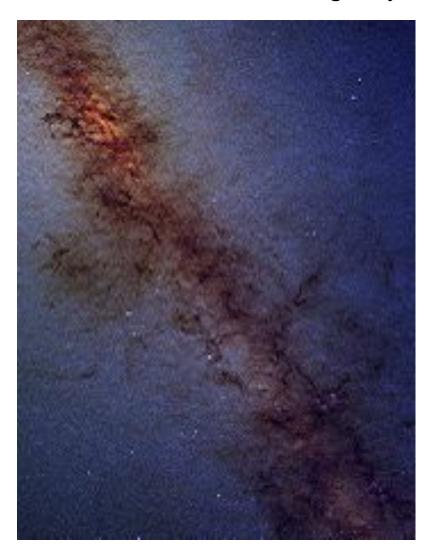
Aside: In AD 150 Ptolemy in his Almagest catalogued 1,022 of the brightest stars.

Hipparcos Space Astrometry Mission (1989 – 1993)

Catalogue of accurate distances (1 milli arc s angular resolution)


118,218 stars

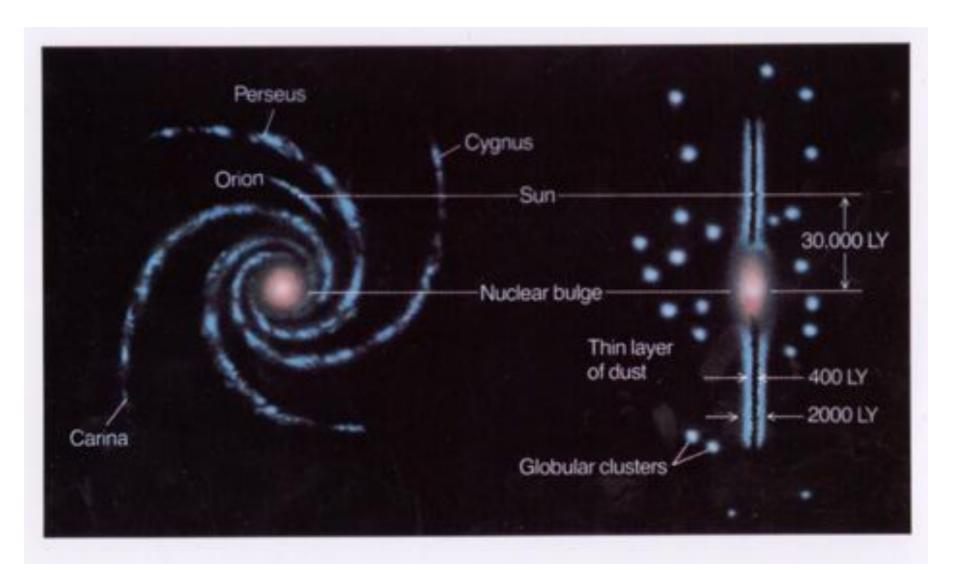
Total stars observed (Tycho 2 Catalogue; 25 mas)


2,539,913 stars

Including 99% of all stars brighter than 11th magnitude

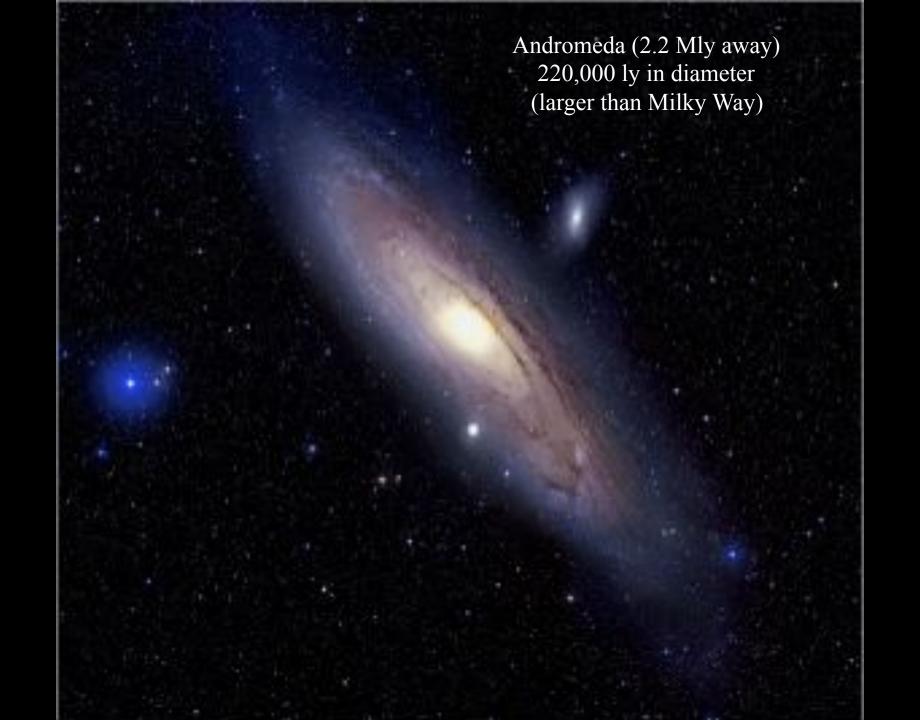
Hipparcos – number of stars per square degree (there are 41,253 square degrees in the sky)

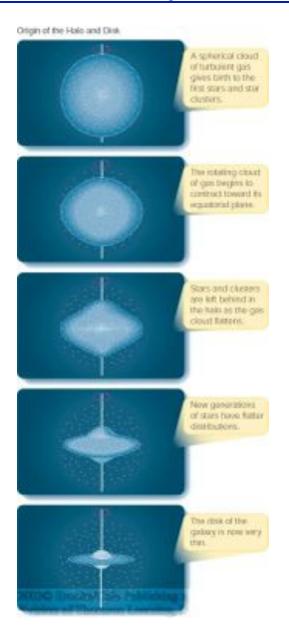
The center of our galaxy is towards the constellation Sagitarius



APOD 12/29/01

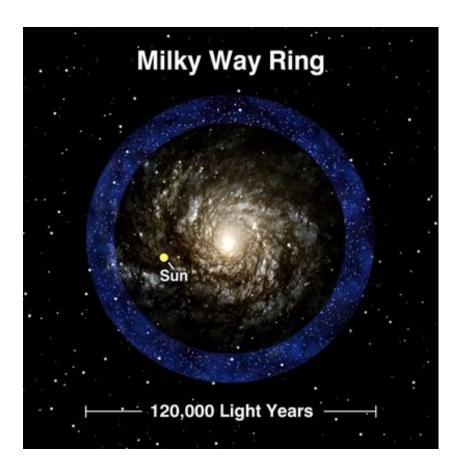
Infrared observation (2MASS) towards center of the Milky Way - dust glows in IR


Optical - M 6,7,18,21,23,24,24 = open clusters; M 16,17,20 = nebulae; M 9, 22,28,54,69,70 = globular clusters



Other *spiral* galaxies are thought to look very similar to our own Milky Way.

History of the Milky Way


The traditional theory:

Quasi-spherical gas cloud fragments into smaller pieces, forming the first, metal-poor stars (pop. II);

Rotating cloud collapses into a disk-like structure

Later populations of stars (pop. I) are restricted to the disk of the Galaxy

Changes to the Traditional Theory

Ages of stellar "populations" may pose a problem to the traditional theory of the history of the Milky Way

Possible solution: Later accumulation of gas, possibly due to mergers with smaller galaxies

Recently discovered ring of stars around the Milky Way may be the remnant of such a merger

http://www.sdss.org/news/releases/20030106.milkyway.html

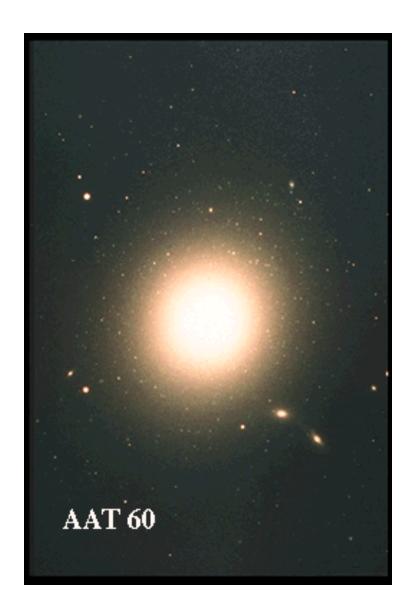
Sloan Digital Sky Survey

About 3 billion years in the future, our galaxy and Andromeda will merge.

Calculation by John Dubinsky at CITA.

Galaxies collide

The Antenna Galaxy is not one but two galaxies in the process of merging.


New generations of stars are being born, even new globular clusters, in the blue regions. Note also the presence of a lot of dust.

Besides spiral galaxies like Andromeda ... (2.2 Mly)

Similar to but somewhat larger and brighter than the Milky Way (has about 250 globular clusters and many orbiting dwarf ellipticals)

There are also Elliptical galaxies

For example, the massive elliptical galaxy M87 at the center of the Virgo cluster of galaxies.

Such galaxies are oval in shape, have no discernible spiral structure, and little gas or dust.

Reddish in color. Very few new stars being born.

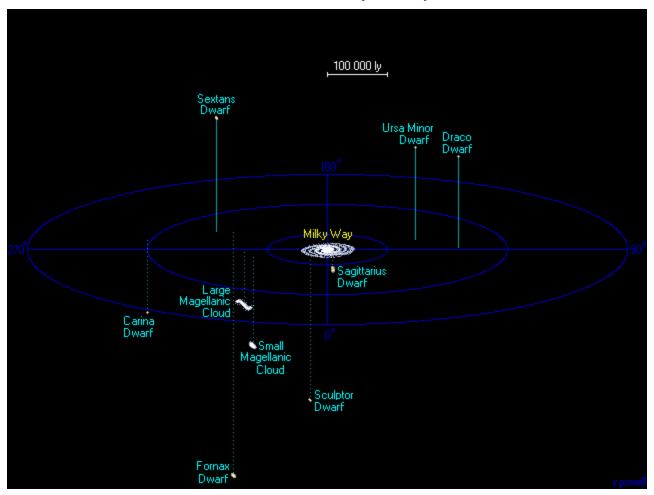
Elliptical galaxies come in all sizes from just a little larger than globular clusters to 10 times the mass of the Milky Way.

The most common kind of galaxy nowadays are the dwarf ellipticals.

Gas used up long ago making stars or stripped by galactic collisions and encounters.

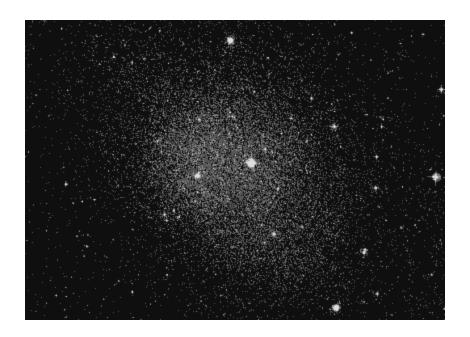
Irregular and other galaxies

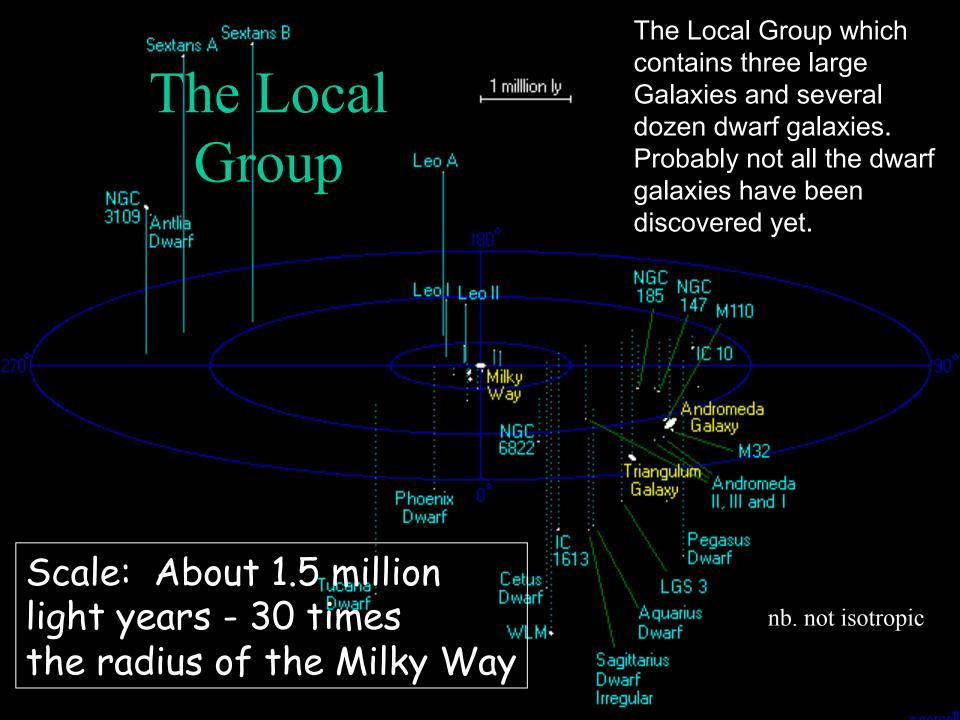
The SMC contains several hundred million stars



The LMC (157,000 ly) is the fourth largest galaxy in the local group and contains about 10 billion solar masses

- 1) Andromeda
- 2) Milky Way
- 3) Triangulum Galaxy (M33)
- 4) LMC


The nearest members of the Local Group of Galaxies orbit our Milky Way

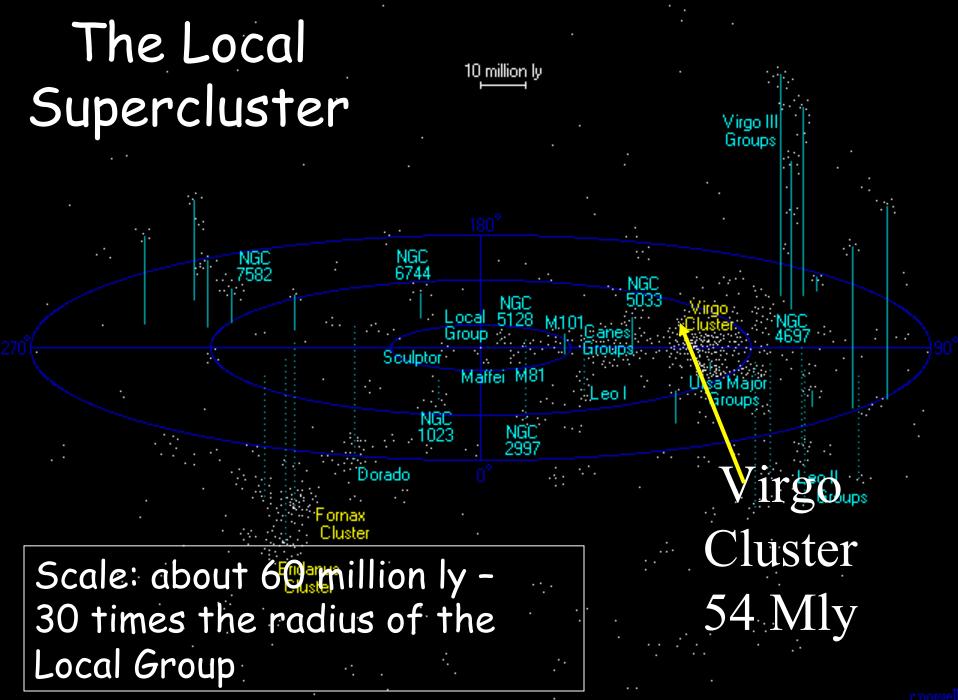

(500,000 ly)

Fornax dwarf galaxy

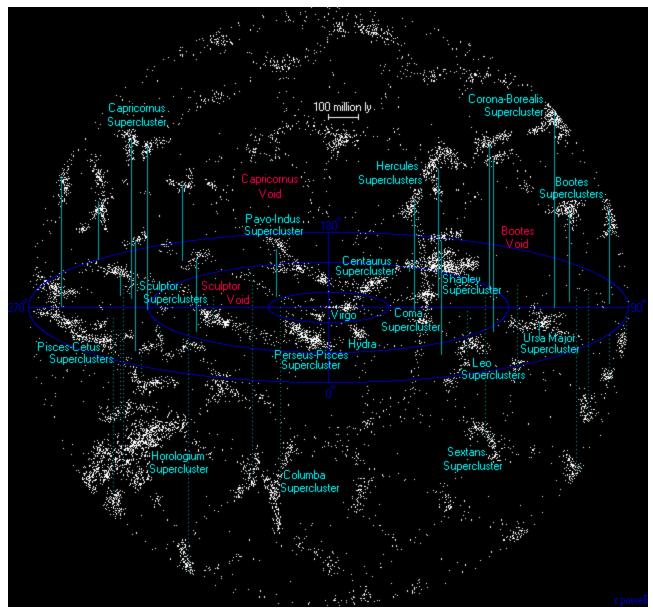
460,000 ly distant, discovered in 1938


Like most dwarf galaxies it doesn't look very impressive. Contains only a few million stars. Orbited by six globular clusters

Clusters of Galaxies


Rich clusters of galaxies

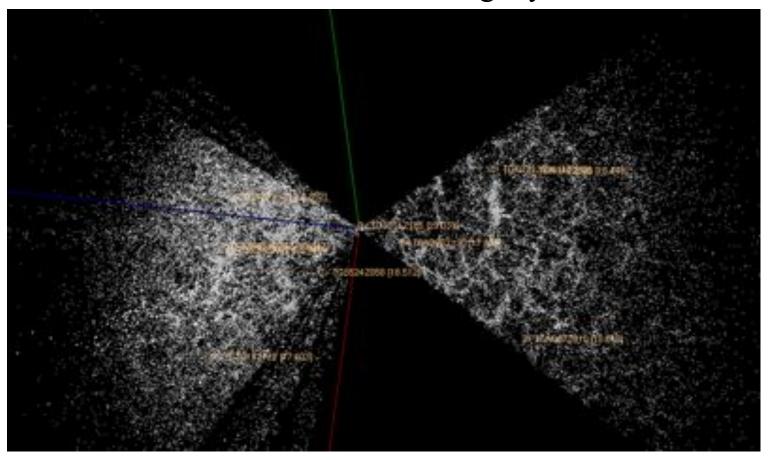
- thousands of galaxies
- concentrated toward the center
- more ellipticals
- hot gas
- lots of mergers



Poor clusters of galaxies

- just a few galaxies
- ragged shapes
- more spirals,
- fewer ellipticals

One Billion Light Years


7% of the radius of the visible universe

80 superclusters 160,000 galaxy groups 3 million large galaxies 30 million dwarf galaxies 500 million billion stars

The nearest really large supercluster is in Centaurus. Virgo is small by comparison.

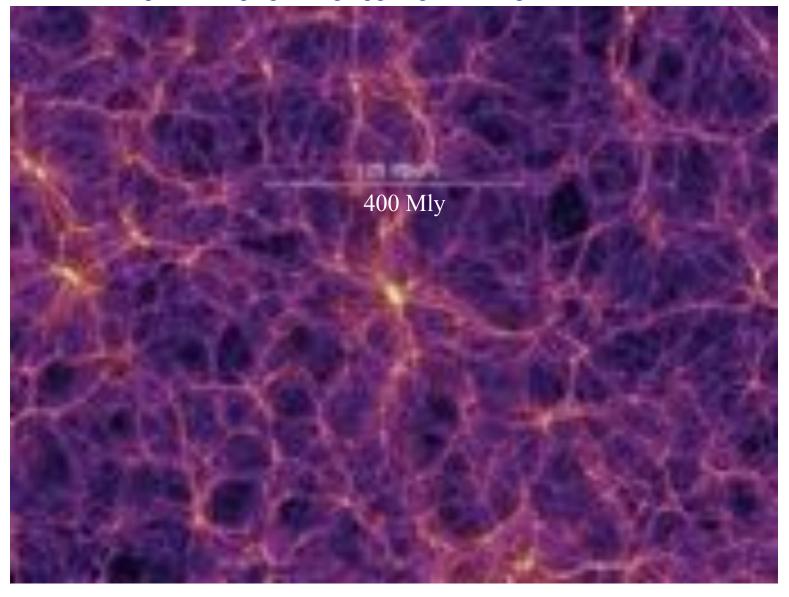
Structure starting to be filamentary with walls and voids.

2dF Galaxy Redshift Survey - AAT (2003) closest 3 billion light years

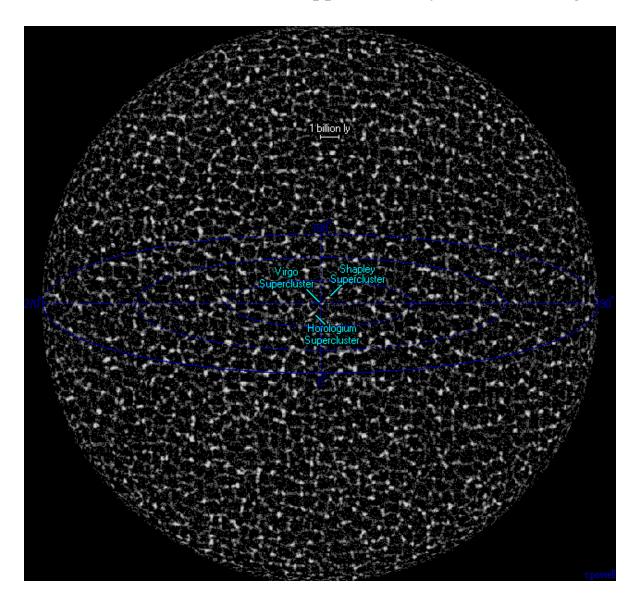
Survey obtained spectra for 232,155 galaxies over 272 nights of observation. 1500 square degrees. Did not sample the whole sky. On the whole the universe is *homogeneous and isotropic*. Note cellular structure.

http://www.mso.anu.edu.au/2dFGRS/

The Hubble eXtreme
Deep Field photo
made from a composite
of 2000 images taken
over a decade. Like
a 23 day time
exposure


Shows a piece of the universe when it was "only" 400 million years old.

5500 galaxies


The current age is 13.8 billion years

Hubble eXtreme Deep Field 9/2012 z = 10.3

http://www.mpa-garching.mpg.de/galform/virgo/millennium/

Numerical simulation of cosmic structure
"The millenium simulation project"
http://www.mpa-garching.mpg.de/galform/virgo/millennium/

- ~300,000 superclusters
- $\sim 10^{10}$ large galaxies
- ~ 2000 billion billion stars

The end of the road (for now) ...