
Stellar Interiors - 
Hydrostatic Equilibrium and 

Ignition on the Main Sequence 

http://apod.nasa.gov/apod/astropix.html 
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Inside a star the weight of the matter is supported by 
a gradient in the pressure. If the pressure on the top and  
bottom of a layer were exactly the same, the layer  
would fall because of its weight.  

The difference between pressure times area on the top  
and the bottom balances the weight 



HYDROSTATIC  EQUILIBRIUM 
 

forces must balance if nothing is to move 

E.g. the earth’s atmosphere or a swimming pool 



Larger upwards 
force from  
pressure 



Hydrostatic Equilibrium 

The volume of the red solid is 

its area, A, times its thickness, 

Δr. For example, for a cylinder

A = πa2 where a is the radius of 

the cylinder and the volume is

V = πa2
Δr

     



For all kinds of gases –  ideal, degenerate, whatever. 

This (top) equation is one of the fundamental equations 
of stellar structure. It is called the “equation of hydrostatic  
equilibrium”. Whenever dP/dr differs from this value, matter  
moves. 

If M (r) is the mass interior  to radius r and ρ(r) is the density at r
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for a sphere  
of constant density 

off by a factor of 2; using 25% H would help.   

1.69→1.19
6.8→9.7
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(20 - 30 My is more accurate) 

For stars supported by  
ideal gas pressure and 
near uniform structure 
(not red giants) 



  Ignition happens when the nuclear energy generation rate  
becomes comparable to the luminosity of the contracting  
proto-star. As we shall see shortly, nuclear burning rates 
are very sensitive to the temperature. Almost all main sequence 
stars burn hydrogen in their middles at temperatures between 1  
and 3 x 107 K. (The larger stars are hotter in their centers). 
If nuc is the equation for the energy release per second in  
a gram of matter because of nuclear reactions 
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on the main sequence n ≈   4 to 16
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4p He→ lightest star will 

be mass that hits 
this point. 

Pdeg =Pideal

This gives the blue lines in the plot 
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Pdeg ≈Pideal
1.69ρN

A
kT ≈ 1.00×1013 (ρY

e
)5/3 (assuming 75% H,

                                                              25% He by mass)

At 107  K, this becomes

1.40 ×108 ρ (107 ) ≈ 8.00× 1012 ρ5 /3 (taking Ye =0.875)

which may be solved for the density to get ρ≈2300gm cm-3

The total pressure at this point is
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i.e., ρ =
M

4/3 πR3

Minimum Mass Star Solve for condition that ideal  
gas pressure and degeneracy  
pressure are equal at 107 K. 



Combining terms we have  

  

3.2 x1018 ≈
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and using again ρ≈2300gm cm-3

M ≈8.7 x1031 gm

or 0.044 solar masses.

A more detailed calculation gives 0.08 solar masses. 
Protostars lighter than this can never ignite nuclear reactions.  
They are known as brown dwarfs (or planets if the mass is  
less than 13 Jupiter masses, or about 0.01 solar masses. 
[above 13 Jupiter masses, some minor nuclear reactions occur 
that do not provide much energy - “deuterium burning”] 
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For constant density 



14 light years away in the constellation Lepus orbiting the low mass red 
star Gliese 229 is the brown dwarf Gliese 229B. It has a distance 
comparable to the orbit of Pluto but a mass of 20-50 times that of Jupiter. 
Actually resolved with the 60” Palomar telescope in 1995 using adaptive optics. 

Brown Dwarfs - heavier than a planet 

(13 MJupiter ) and lighter than a star



Spectrum of Gliese 229B 



Nuclear  
Fusion 

Reactions 



Main Sequence Evolution 
 (i.e., Hydrogen burning) 

The basis of energy generation by nuclear fusion is that  
two ions come together with sufficient collisional 
energy to get close enough to experience the strong 
force. This force has a range ~10-13 cm, i.e., about 1/100,000 
the size of the hydrogen atom. Beyond this short range, it 
is zero. 



•  Before 2 protons can come close 
enough to form a bound state, they have 
to overcome their electrical repulsion.  
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Classically (before QM), the 
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The classical  turning  radius is given by 
energy conservation
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note : rturning >> λ

Note that as the charges become big or T gets small, P gets very small.

QM Barrier Penetration 

v ∝ T
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Whoopee!! 



But when two protons do get close enough to (briefly)  
feel the strong force, they almost always end up flying  
apart again. The nuclear force is strong but the  
“diproton”, 2He, is not sufficiently bound to be stable. 
 
One must also have, while the protons are briefly  
together, a weak interaction. 

2 2( )
e

p p He H e ν
+

+ → → + +

That is, a proton turns into a neutron, a positron, 
and a neutrino. The nucleus 2H, deuterium, is  
permanently bound. 



The rate of hydrogen burning in the sun is thus 
quite slow because: 

•  The protons that fuse are rare, only the ones 
   with about ten times the average thermal energy 
 
•  Even these rare protons must penetrate a  
   barrier to go from 10-10 cm to 10-13 cm and the 
   probability of doing that is exponentially small 
 
•  Even the protons that do get together generally  
   fly apart unless a weak interaction occurs turning 
   one to a neutron while they are briefly togther 

and that is all quite good because if two protons fused every 
time they ran into each other, the sun would explode. 







pp1 

pp2,3 

no weak interaction needed, 
very fast 

4Li is unbound 



Write the element’s symbol 
(given by Z, the number of 
protons in the nucleus), with  
A = Z+N, the number of neutrons 
and protons in the nucleus, as 
a preceding superscript. 
 

2 neutrinos and 
two positrons 
are made along  
the way 

 heat and lightγ =

PP1 Cycle 

Here eβ + +
=



Lifetimes against various reactions 

Reaction Lifetime (years) 

1H(p,e+)2H 7.9 x 109 
2H(p,)3He 4.4 x 10-8 

3He(3He,2p)4He 2.4 x 105 
3He(4He,)7B 9.7 x 105 

For 50% H, 50% He at a density of 100 g cm-3 
and  a temperature of 15 million K 
 
The time between proton collisions, for a given  
proton, is about a hundred millionth of a second. 



  i.e. 24.68 + 2.04 − 0.52 = 26.20





 

Nuclear reaction shorthand:

                  I(j,k)L

   I = Target nucleus              j = incident particle
   L = Product nucleus           k = outgoing particle
                                                     or particles
If there is no incident particle put the outgoing 
particles together without a comma
   E.g., pp1

             p(p,e+ν )2 H(p,γ )3He(3He, 2p)4He

  E.g., the main CNO cycle (later)

12C(p,γ )13N(e+ν )13C(p,γ )14N(p,γ )15O(e+ν )15 N(p,4He)12C



H. A. Bethe (b 1906) 
Nobel 1967 







How much mass burned per second? 
 
  

33 -1

18 -1

14 -1

3.8 10 erg s

6.4 10 erg gm

5.9 10 gm s 650 million tons per second
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M

q x

x

= =

= =



How much mass energy does the sun lose each year? 

33
12 -1

2 10 2

-14

3.83 10 erg/s
4.3 10 gm s

(3.0 10 ) erg/gm

or about 7 10 M per year
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×
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Now… 
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http://www.lcse.umn.edu/index.php?c=movies 



Diffusion time for the sun 

  

On the average, ρ~1 gm cm-3

κ ~10cm2 gm-1

l ~1/κρ ≈ 0.1cm
R = 6.96 x 1010 cm

                   τ = R2

lc
= (6.96x1010 )2

(0.1)(3.0x1010 )
=1.6 x1012 sec

                      = 51,000 years

(less in center, 
 more farther out) 

Mitalas and Sills, ApJ, 401, 759 (1992) give 170,000 y. Eq above lacks  
factor of 3 and they say  is 0.09 cm2 g-1. 





ON  THE  MAIN  SEQUENCE 

 

≤ 0.30 M   - Star completely convective 

1.0 M − Only outer layers convective

1.5M  - Whole star radiative

≥2.0M −  Surface stable; core convective
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STRUCTURE OF THE SUN 









  

               Why is L ∝ M3 for main sequence stars?

Luminosity ≈ Heat content in radiation
Time for heat to leak out

=
Eradiation

τ diffusion

Eradiation ≈
4
3
πR3 aT 4 ∝R3T 4 ∝ R3 M 4

R4 = M 4

R

τ diffusion ≈
R2

lmfp c
lmfp =

1
κρ

κ  is the "opacity" in cm2  gm-1

Assume κ is a constant

M≈ 4
3
π R3 ρ ⇒ ρ≈ 3M

4πR3

lmfp ∝
R3

M
τ diffusion ∝

R2M
R3 = M

R

L  ∝M4

R
/ M

R
= M3

Other powers of M possible 
when  is not a constant 
but varies with temperature 
and density 

True even if star is 
not supported by Prad 
Note this is not the  
total heat content, just  
the radiation. 


