A supernova is the explosive death of a star. Unlike an ordinary nova, it does not repeat.

Two types are easily distinguishable by their spectrum. Type II has hydrogen (H_α). Type I does not.

Very luminous. Typical luminosities range from a few times $10^{42} \text{ erg s}^{-1}$ (relatively faint Type II; about 300 million L_\odot) to $2 \times 10^{43} \text{ erg s}^{-1}$ (Type Ia; 6 billion L_\odot) - roughly as bright as a small galaxy.

(Recently some rare supernovae have been discovered to be even brighter)

For several weeks a supernova’s luminosity rivals that of a large galaxy.

Supernovae are named for the year in which they occur + A .. Z, aa – az, ba – bz, ca – cz, etc

Currently at SN 2016aqz (3/1/16)

http://apod.nasa.gov/apod/
How many supernovae?

For the year 2015, 3449 supernovae and 47 extragalactic novae were reported, 66 of these supernovae were named by CBAT, http://www.cbat.eps.harvard.edu. 125 were possible supernova designations, and 258 were not reported to CBAT. 102 supernovae were found in MGC/IC galaxies, 419 were found in named galaxies. 145 objects were discovered by amateurs. 1 were brighter than 13th Magnitude, 100 were brighter than 16th Magnitude, 490 were brighter than 18th Magnitude. 675 Type I supernovae were found. 633 Type Ia, but SN Ia are brighter so there is some selection bias.

http://lanl.arxiv.org/abs/1004.3311v1

Light Curve of Type IIp Supernovae

• The most common kind of supernova (in a volume-limited sample). Death of a massive star that still has its hydrogen envelope. The star is a red (usually) or blue (rarely) supergiant when it dies.

• There are three stages – shock breakout, the “plateau”, and the decline.

• Breakout is the first time the supernova brightens. The shock wave erupts from the surface heating it to about 200,000 K for about 2000 s. It declines to 30,000 K after one day. Meanwhile the luminosity declines from about 10^{11} solar luminosities to about 10^{9} solar luminosities. This emission, in UV has been seen in at least two supernovae less than one day after their explosion (Gezzari et al 2008)

Model Summary

- M < 8
 - Type II Supernova
 - Planetary Nebula
 - White dwarf in a binary
- M > 8
 - Type Ia Supernova
 - Evolved massive star
 - Neutron star
 - Black hole

http://www.cbat.eps.harvard.edu
A sequence of ultraviolet images released in June 2008 shows shock break out. Just before the explosion, the host galaxy (top left) appears relatively quiet. Then a bright ultraviolet flash signals the onset of the supernova.

Light Curve of Type IIp Supernovae (cont’d)

- As the hydrogen envelope expands and cools it eventually reaches 5500 K where the hydrogen starts to recombine. This recombination moves into the expanding envelope as a wave over a period of about 3 months. The recombination reduces the opacity and lets out the energy deposited by the shock as it passed through the envelope. This is the plateau. The temperature stays pegged to 5500 K.

- Still later the decay of radioactivity produced in the supernova keeps it bright for years.

\[
\begin{align*}
56\text{Ni} + e^- & \rightarrow 56\text{Co} + \nu_e + \gamma \quad (6.1 \text{ days}) \\
56\text{Co} + e^- & \rightarrow 56\text{Fe} + \nu_e + \gamma \quad (77 \text{ days})
\end{align*}
\]

Together these release 9.4×10^{49} erg. Thus 0.1 solar masses of ^{56}Ni releases 2×10^{49} erg.
Type I Supernovae

- Type I supernovae lack hydrogen and thus have no plateau stage. The shock break out is also considerably fainter and shorter in wavelength (x-rays).

- The Type I supernova light curve is thus powered at all times by the decay of radioactive 56Ni and 56Co.

- Type I supernovae are segregated into several classes: Type Ia, Ib, and Ic depending upon special features in their spectra (Si II, He I) and where they are found.

- Type Ib and Ic are also the death of a massive star but one that has lost its envelope – most of the time to a binary companion. Type IIp and Ib/c are found in star forming regions.

Type IIp Supernovae (cont’d)

- The spectrum is dominated by the Balmer lines of hydrogen. On the plateau the spectrum is dominatly absorption lines, but at late time as the supernova becomes a nebula, one sees emission lines.

- Radii inferred on the plateau are about 10^{15}cm (100 AU). The emission resembles a blackbody with T_{eff} approximatey 5500 K.

- Type II supernovae always leave behind either a neutron star or a black hole. In many instances the neutron star is a “pulsar”.
Type I Supernovae (cont’d)

- Type Ia supernovae are not found in star forming regions. They show no preference for spiral arms and can occur in elliptical galaxies where the star formation rate is very low.

- While the progenitor stars of about 10 Type II supernovae have been seen before they exploded (e.g. 1987A), no progenitor of a SN Ia has ever been identified. They must be faint.

- Type Ia supernovae are brighter than any other class. Type I supernovae in general are bright a shorter time than SN IIp (weeks rather than months).

- Neutron stars and black holes may be produced by Type Ib and Ic supernovae, but never by Type Ia.

In practice, theorists have struggled for 45 years to get the model just described to work. Sometimes the neutrinos turn around the imploding matter and the star blows up. Sometimes they don’t and a black hole is born.

In a Type II or Ibc supernova most of the energy comes out in the neutrino burst – 3×10^{53} erg. 300 times less is in the kinetic energy of the explosion – 10^{51} erg – and 100 times less than that, 10^{49} erg, is in the light. Bright as they are the electromagnetic radiation emitted by a supernova is a small part of its energy budget.

In practice, theorists have struggled for 45 years to get the model just described to work. Sometimes the neutrinos turn around the imploding matter and the star blows up. Sometimes they don’t and a black hole is born.

Supernovae - General

- The kinetic energy and total light output of SN II and SN I of all subtypes are comparable (though SN Ia are brighter), but a SN Ia emits no neutrino burst.

- The velocities of supernovae typically range from 2000 to 20,000 km s$^{-1}$. The highest velocities are seen early on. Type I supernovae expand faster than Type II.
February 23, 1987
(+160,000 years)

Brightest supernova in over 400 years.

In the 30 Doradus H II region in the Large Magellanic Cloud.

Progenitor star was a previously catalogued blue supergiant Sk 202-69. Mass = 18 solar masses.

Supernovae - General

- There have been 6 supernovae visible to the unaided eye in the last 1000 years. The last one before SN 1987A was Kepler’s supernova in 1604. This was about 2.5 kpc away and reached a magnitude of -2.5. The brightest supernova in history was SN 1006 which reached magnitude -8 to -10, as bright as a quarter moon.

- About two Type II supernovae are thought to occur in our galaxy every century and about one Type Ia every other century. Most have gone undetected.

- We see many more supernovae – hundreds each year – in other galaxies

- Supernovae have produced most of the elements heavier than nitrogen
Supernova
(Death of a star)

Type Ia (TBD)
- No hydrogen
- Thermonuclear explosion of a white dwarf star
- No bound remnant
- ~10^{51} erg kinetic energy
- $v \approx 5,000 - 30,000$ km s$^{-1}$
- No neutrino burst
- $E_{\text{optical}} \approx 10^{49}$ erg
- $L_{\text{peak}} \approx 10^{51}$ erg s$^{-1}$ for 2 weeks
- Radioactive peak and tail (^{56}Ni, ^{56}Co)
- 1/200 yr in our Galaxy
- Makes about 2/3 of the iron in the Galaxy

Type II
- Hydrogen in spectrum
- $M > 8$ solar masses
- Iron core collapses to a neutron star or black hole
- ~10^{51} erg kinetic energy
- $v \approx 2,000 - 30,000$ km s$^{-1}$
- Neutrino burst ~ 3×10^{53} erg
- $E_{\text{optical}} \approx 10^{50}$ erg
- $L_{\text{peak}} \approx 3 \times 10^{42}$ erg s$^{-1}$ for about 3 months (varies from event to event)
- Radioactive tail (^{56}Co)
- 2/100 yr in our Galaxy
- Makes about 1/3 iron and all the oxygen plus many other elements

There are also Type Ib and Ic supernovae that share many of the properties of Type II but have no hydrogen in their spectra

1680 Casseopeia-A

Supernova Discovery History
Asiago Catalog (all supernova types)
Supernova Discovery Future

Rough predictions and promises...

The “First” Supernovae

Oldest recorded supernova, RCW 86, first documented by the Chinese in December, 185 A.D. (WISE telescope – infrared)

RCW 86 – X-rays
Probably Type Ia
No neutron star
2.8 kpc / Circinus-Centaurus

Supernova Remnants.

Combination of IR data from the Spitzer telescope and x-ray data from the Chandra x-ray observatory shows the Tycho supernova remnant. Seen by the astronomer Tycho Brahe over 4 centuries ago (1572). Type Ia; in Cassiopeia
2.3 kpc. Peak magnitude -4.
Remnant of Kepler’s supernova (1604). Also thought to be Type Ia. In Ophiuchus. 6 kpc. Magnitude -2.5. Chandra x-ray photograph.

Chandra x-ray photograph.

Kepler’s supernova remnant in the optical (HST yellow), IR (Spitzer (red), and x-ray (Chandra, blue and green). Blue and yellow are shocked gas, green is hot gas, red is dust.

http://chandra.harvard.edu/photo/

Cassiopeia A (aka Cas A) is the remnant of an optically faint supernova (about m = 6) perhaps observed by John Flamsteed in 1680. It is 3.4 kpc away and 10 ly in diameter. This is a color coded x-ray photo by the Chandra X-Ray Astronomy Observatory taken in 1999. Red is about 20 million K; blue about 30 million K. Spectroscopy shows prominent lines of Fe, Si, O, S. Fe knots are found near the left outer boundary despite having been synthesized near the center. Brightest knots are Si, S.

Last SN seen(?) in our galaxy

Cas A (Type II or Ib) has a neutron star

Spitzer (red), HST (yellow) and Chandra (blue and green) data (false color)
Supernova remnant N132D in the Large Magellanic Cloud
Chandra x-ray image. Gas temperature is millions of K.
Image is 100 arc sec on an edge. $d = 180,000$ ly

Young oxygen-rich SNR with a pulsar in its center (lower left of center)
surrounded by outflowing material 36 light years across. Estimated age
1600 years. In our galaxy. O, Mg, Ne, Si, S clearly present. Type II or Ib.

The Crab Nebula in Taurus (Type II)

HST 6 light years
across. SN 1054
2.0 kpc distant
SN 1054 (The Crab)

- Well observed by Chinese astronomers
- Bright enough to be seen in daylight for 23 days. Bright enough to cast a shadow.
- Visible in the night sky for 653 days
- 6300 ly distant
- May also have been seen by Anasazi and Irish. No conclusive European sightings (“Dark Ages”). Maybe records were lost.

Crab SNR - optical (red) superimposed on x-ray (blue). Higher energy equatorial “wind” emitted by pulsar slams into rest of nebula. The entire picture is 4 ly across

Pulsars and Neutron Stars

![Lightcurve of Crab Pulsar](image)
• Are rotating magnetic neutron stars with their rotational and magnetic axes not aligned. $B \sim \text{few } \times 10^{12} \text{ Gauss (average sun } 100 \text{ Gauss; sunspot } \sim 1000 \text{ Gauss; Earth } \sim 1 \text{ Gauss)}$

• Over 1000 now known. Periods range from about 1 ms to over 5 seconds. Accurate clocks (16 decimal places). Concentrated towards Galactic disk. Gradually slowing.

• Evidence for high “peculiar” velocities of typically several hundred km s$^{-1}$. May get “kicked” in the explosion. Many leave the galaxy.

• Some evidence they turn off after $\sim 10^7$ years due to magnetic field decay and spin down. Total number of neutron stars in the galaxy is about 10^8

PULSARS

discovered in radio by Jocelyn Bell and Antony Hewish in 1967. Nobel Prize 1974

SYNCHROTRON RADIATION

The radiation is not emitted to all angles in the sky but is “beamed” along a cone.
The Crab Nebula is powered by the pulsar. Its total luminosity is about $2 \times 10^{38} \text{ erg s}^{-1}$

The neutron star has a dipole field strength of 5×10^{12} Gauss and it has a period of 33 ms so our formula gives

$$L \approx 10^{35} B_{12}^2 P_{100 \text{ms}}^{-4} \text{ erg s}^{-1}$$

$$= 10^{35} \cdot 5^2 \cdot (0.33)^{-4} = 2 \times 10^{38} \text{ erg s}^{-1}$$

PULSARS (continued)

- Occasionally experience abrupt changes in period due to “starquakes”

- Emit pulsed radiation at all wavelengths. Not blackbody emitters.

- Spin down rates for solitary neutron stars in supernova remnants are thousands of years, consistent with the ages of the remnants in which they are found

- Most rapid rotators in mass exchanging binaries – probably spun up.

- Sometimes in binaries with other pulsars, white dwarfs or black holes - and even a planet

[PULSARS (continued)](http://www.astro.psu.edu/users/alex/pulsar_planets_text.html)
The Pulsar B 1257+12 planetary system

<table>
<thead>
<tr>
<th>Companion</th>
<th>Mass (Earths)</th>
<th>semimajor axis (AU)</th>
<th>Orbital period (d)</th>
<th>Eccentricity</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.02+-.002</td>
<td>.19</td>
<td>25</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>4.3 + .2</td>
<td>.36</td>
<td>66</td>
<td>0.0186</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>3.9+-.2</td>
<td>.46</td>
<td>98</td>
<td>0.0252</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>.0004</td>
<td>2.6</td>
<td>1250</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Thorsett and Chakrabarty, (1999)

Vertical line is at 1.35 ± 0.04 M

Note that the iron core that collapsed had ~20% more mass

More recently (Oct 28, 2010 Nature) Demorest et al find a 1.97 solar mass neutron star in a binary system where the mass could be accurately determined.

Unusually Bright Supernovae from Massive Stars
Pair-instability Supernovae

A simple way to make a supernova, without neutrinos, neutron star formation, etc, but it requires a very massive star

Consider a helium core of 100 M_\odot or so. This might require a main sequence star of 150 - 200 M_\odot.

More massive stars have higher temperatures and lower densities which favor radiation pressure and, as it turns out, the formation of electron positron pairs after carbon ignites.

$$\gamma \rightleftharpoons e^+ + e^- \quad T > 10^9 \text{ K}$$

but it takes energy to create the rest masses of the electron and a positron, so for awhile, contraction doesn't lead to as much pressure increase as it would have. In fact $P \propto \rho^n$ with $n < 4/3$. The star is unstable.

Pair-instability Supernovae

The star's core collapses and gets hotter and then burns oxygen and, in some cases silicon explosively. The energy release from the implosion can - for a range of masses - turn the collapse into a thermonuclear explosion, a *pair-instability supernova*.

So much burning goes on that these can be very energetic.

<table>
<thead>
<tr>
<th>Helium core mass (M_{\odot})</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35</td>
<td>Stable</td>
</tr>
<tr>
<td>35 to 65</td>
<td>Pulses violently, colliding shells may make multiple supernovae</td>
</tr>
<tr>
<td>65 to 133</td>
<td>Complete explosion of the star. Nothing left. Can be very bright</td>
</tr>
<tr>
<td>> 133</td>
<td>Collapses directly to a black hole</td>
</tr>
</tbody>
</table>

Heger and Woosley (2002)
“Colliding shells” are also an efficient way of making a very luminous supernova.

If a supernova explodes after having recently ejected a lot of mater, then the shock wave where the two set of ejecta collide can be very luminous.

Up to 10^{44} erg s$^{-1}$ and maybe more.

A magnetar is a neutron star with an unusually strong magnetic field.

Woosley (2010)

$$dE \over dt = \frac{2}{3} \left(B R^3 \sin \alpha \right)^2 \left(\frac{2 \pi}{P} \right)^4 \approx 10^{49} B_{15}^2 P_{ms}^{-4} \text{ erg s}^{-1}.$$

$$B_{15} = \frac{B}{10^{15} \text{ Gauss}}$$

Brightest SN ever!! Model by Sukhbold and Woosley (2016)