Quantum Mechanics and
Stellar Spectroscopy
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The Electrical Force

Recall the electric force. Like gravity it is
a “1/r¢” force/ That is:
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where Z, and Z, are the (integer) numbers of
electronic charges. Similarly, the electric potential
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Protons in nucleus. Electrons
orbit like planets. The neutron

was not discovered until 1932
(Chadwick)

Rutherford Atom (1911)
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Z=1,23,...
H, He, Li, etc

classically, any value of
v or ris allowed. Much
like planets.
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Protons in nucleus. Electrons
orbit like planets. The neutron

was not discovered until 1932
(Chadwick)
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i.e.,|2KE = -PE |(if PE is negative)

Virial theorem still works for the electric

force.



Rutherford Atom (1911)
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BUT,

As the electron moves in its classical orbit it is accelerated, and
therefore emits radiation. Because energy is being radiated, the
total energy of the system must decrease — become more
negative. This means r must get smaller and v must increase.

But smaller r and larger v also imply greater acceleration
and radiation.

In approximately 10 s the electron spirals into the nucleus.
Goodbye universe...



The solution lies in the wave-like property of
the electron — and of all matter,

acig = D;t
oy ) _ Spac#ig = d
. '# ‘ esultant wave
For wavelike phenomena| g restent
e.g., light, “interference” [~ g2 waet ALY RAAAGAS
. - Wave 2 \VARVARVARVERV/ \VARVARVARV/
IS expeCted B Constructive interference Destructive interference
Thomas Young
<« D —~> early 1800’s for
light.
Young's Double Slit Experiment

gl S
o Laser
- Light

Barrier with
&?ffr:r?:.:z Double Slits

__Constructive
Interference

Screen

Figure 4 Intensity Distribution of Fringes

http://en.wikipedia.org/wiki/Interference (wave propagation)




http://en.wikipedia.org/wiki/Double-slit experiment
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Same basic result obtained using electrons!

A h=6.626x10"" erg sec
A=—

2
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where p is the momentum of the electron, m_,v which
has units gm cm/sec
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In 1924, Louis-Victor de Broglie formulated
the DeBroglie hypothesis, claiming that all
matter, not just light, has a wavelike nature.
He related the wavelength (denoted as A1) and

the momentum (denoted as p)

P

P

A property of our universe



This is a little like the relation Planck had for photons

=hv_h
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http://en.wikipedia.org/wiki/\Wave—particle duality

Light and particles like the electron (and neutron and proton)
all have wavelengths, and the shorter the wavelength,

the higher the momentum p

This is also known as the Heisenberg Uncertainty Principle.
The more accurately you locate a particle (1), the more
unbounded is its momentum



HEISENBERG UNCERTAINTY RELATION

The condition that a particle cannot
be localized to a region Ax smaller
than its wavelength 4 = h/p implies

h
A< Ax =2 pAx>h=p>—
P P Ax

One cannot confine a particle to a
region Ax without making its momentum
Increase

pzi is the "degenerate” limit
Ax



Consider one electron in a contracting box

/\rﬁ/\v/ mg/

A

As you squeeze on the box, the particle
in the box has to move faster. This is in addition
to any thermal motion the particle may have

h
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The squeezing provides the energy to increase v



A little thought will show how this is going to solve
our problem with the stability of matter (and also,
later, the existence of white dwarfs)

As the electron is forced into a smaller and smaller
volume, it must move faster. Ultimately this kinetic
energy can support it against the electrical attraction
of the nucleus.

. h 1 11

Since p=— = KE=-m =L o -
=7 2 2m, A
2

but PE = — Zi oc l

r r
The kinetic energy increases quadratically with 1/r,

the electrical potential, only linearly.

There comes a minimum radius where the electron
cannot radiate because the sum of its potential
and kinetic energies has reached a minimum.




Energy

At large distance electrical attraction
dominates. At short distances the
quantum mechanical kinetic energy
Is larger.

1
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Ground state of the hydrogen atom — Neils Bohr (1913)

(lowest possible energy state)

Must fit the wavelength of the electron inside a circle of radius r,

the average distance between the electron and the proton.
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Note that PE goes as 1/r and KE goes as 1/r?

The 27 here is rather
arbitrary but gives the
right answer and omits
deeper discussion of
“‘wave functions”

Assuming Z, =Z, =1



For a single electron
Energy bound to a single proton,
—PEe” i.e., hydrogen.
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B2 A2y’ Energy would have to be provided
o= 0 to the electron to make it move
2m, Ze 2r, any closer to the proton (because it

would have to move faster), more
energy than e?/r can give.
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For Z=1 (hydrogen) r =0.5291 89379 A=5.29189379x10" cm



This is the (average) radius of the “ground
state” of the hydrogen atom, 0.529189... A.
It is permanently stable. There is no state
with lower energy to make a transition to.

However, there also exist “excited states” of
atoms that have a transitory existence.



For atoms with a single

Bohr’ s First Postulate

electron — H, He™, etc.

n=3
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of the electron are
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Solve as before:
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For atoms with only a s

For hydrogen Z =1

n =1 is the "ground state"

ingle electron.



n=2

n=3

*

In the full quantum mechanical
solution the electron 1s described
by a “wave function” that gives
its probability for being found

at any particular distance from
the nucleus.

In the simplest case these
distributions are spherical.

The radius 1n the Bohr model
1s the average radius but the
energy 1S precise.



Bohr’ s Second Postulate

n=3

n=2 '/—e

n=1 NV >
°.. AE = hv

Only the “ground state”, n = 1, is permanently stable



Bohr’ s Second Postulate

Radiation in the form of a single quantum (photon) is
Emitted (or absorbed) as the electron makes a transition
From one state to another. The energy in the photon is the
Difference between the energies of the two states.
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(for atoms with only one electron)
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Lines that start or
end on n=1 are
called the “Lyman”
series. All are
between 911.6 and
1216 A.

Lines that start or
end on n=2 are
called the “Balmer”
series. All are
between 3646 and
6564 A.



BALMER SERIES
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Hydrogen emission line spectrum
Balmer series



lonizing energies
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Adjusting the energy of each state in hydrogen by adding 13.6 eV (so that the
ground state becomes zero), one gets a diagram where the energies of the
transitions can be read off easily.



Emission line

photon with Energy =
electron in higher energy orbit electron in lower energy orbit (B - EI)'
Tirae -
Energy Energy E,
Ao was hit/burped by another stora and Hinisson inemzoduced!

gained sore energy = (E, - E, ). Electron
n hagher energy orbit (E, ).
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How are excited states populated?
® Absorb a photon of the right energy
® Collisions

® Tonization - recombination



http://spiff.rit.edu/classes/phys301/lectures/spec lines/Atoms Nav.swf
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When we examine the spectra of stars, with a few
exceptions to be discussed later, we see blackbody
spectra with a superposition of absorption lines.

The identity and intensity of the “spectral lines” that
are present reflect the temperature, density and
composition of the stellar photosphere.

_ Emission line spectrum

-l- - Absorption line spectrum




The sun through a low
resolution spectrograph
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C = Balmer alpha

The solar spectrum F = Balmer beta
f = Balmer gamma
B = oxygen
D = sodium
E =iron

H, K = singly ionized calcium
others = Fe, Mg, Na, etc.
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Wollaton (1802) discovered dark lines in the solar spectrum. Fraunhaufer
rediscovered them (1817) and studied the systematics



(Part of) the high resolution solar spectrum

Solar Spectrum 4300 - 4400 Angstroms
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Almost every element has been observed
spectroscopically in the sun and has an accurate
abundance determination. The rest, except for
noble gases and “volatile” elements, have an
accurate determination from primitive meteorites
(carbonaceous chondrites)



Table 1:
Also given are the corresponding values for CI carbonaceous chondrites
(Lodders, Palme & Gail ’2009). Indirect photospheric estimates have been used

Element abundances

for the noble gases (Sect. :

in the present-day solar

photosphere.

Elem. Photosphere  Meteorites Elem. Photosphere Meteorites
1 H 12.00 8.22+0.04 | 44 Ru 1.75 £0.08 1.76 £0.03
2 He [10.93 + 0.01] 1.29 45 Rh 091 +£0.10 1.06 +0.04
3 Li 1.056 +£0.10 3.264+0.05 | 46 Pd 1.57+£0.10 1.65 %+ 0.02
4 Be 1.38£0.09 1.30+0.03 | 47 Ag 0.944+0.10 1.2040.02
5 B 2710 +£0.20 2.79+0.04 | 48 Cd 1.71 £ 0.03
6 C 843 +£0.06 7394004 |49 In 0.804+0.20 0.76 +0.03
7 N 7.83+0.05 6.264+0.06 | 50 Sn 2.04 +£0.10 2.07+0.06
8 O 8.69+005 840+0.04 |51 Sb 1.01 £ 0.06
9 F 4.56 =0.30 4.42+0.06 | 52 Te 2.18 £0.03
10 Ne [7.93 + 0.10] —1.12 53 I 1.55 £ 0.08
11 Na 6.24 +0.04 6.27+0.02 | 54 Xe [2.24 £ 0.06] —1.95
12 Mg 760 +004 7.53+£0.01 |55 Cs 1.08 £ 0.02
13 Al 6.45 £0.03 6.434+0.01 | 56 Ba 2.18+0.09 2.18£0.03
14 Si 7.51+0.03 7.51+0.01 | 57 La 1.10£0.04 1.17+£0.02
15 P 541 £0.03 5.434+0.04 | 58 Ce 1.58 £0.04 1.58 £0.02
16 S 7124003 7.15+0.02 | 59 Pr 0.724+0.04 0.76 = 0.03
17 Cl 550 £0.30 5.234+0.06 | 60 Nd 1.42+0.04 1.45+0.02
18 Ar 6.40 £ 0.13] —0.50 62 Sm 0.96 £0.04 0.94 +0.02
19 K 5.03£0.09 5.0840.02 | 63 Eu 0.524+0.04 0.51 +0.02
20 Ca 6.34 £0.04 6.29+0.02 |64 Gd 1.07£0.04 1.05+0.02



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

6.34 + 0.04
3.15 £ 0.04
4.95 = 0.05
3.93 = 0.08
5.64 + 0.04
5.43 £ 0.05
7.50 £ 0.04
4.99 + 0.07
6.22 + 0.04
4.19 +0.04
4.56 = 0.05
3.04 = 0.09
3.65 = 0.10

[3.25 = 0.06]
2.52 & 0.10
2.87 & 0.07
2.21 + 0.05
2.58 + 0.04
1.46 =+ 0.04
1.88 + 0.08

6.29 = 0.02
3.05 = 0.02
4.91 +£0.03
3.96 = 0.02
5.64 = 0.01
5.48 = 0.01
7.45 +0.01
4.87 +0.01
6.20 = 0.01
4.25 + 0.04
4.63 = 0.04
3.08 = 0.02
3.58 = 0.04
2.30 £ 0.04
3.34 = 0.03
2.54 = 0.06
—2.27
2.36 = 0.03
2.88 =0.03
2.17 £ 0.04
2.53 £ 0.04
1.41 £0.04
1.94 £ 0.04

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
90
92

1.07 £0.04
0.30 £0.10
1.10 £0.04
0.48 =0.11
0.92 =0.05
0.10 £ 0.04
0.84 +£0.11
0.10 = 0.09
0.85 = 0.04

0.85 =0.12

1.40 = 0.08
1.38 £0.07

0.92 £0.10

0.90 £0.20
1.75 = 0.10

0.02 =0.10

1.05 = 0.02
0.32 £0.03
1.13 = 0.02
0.47 +0.03
0.92 £+ 0.02
0.12 £0.03
0.92 +£0.02
0.09 £ 0.02
0.71 & 0.02
-0.12 £0.04
0.65 = 0.04
0.26 = 0.04
1.35 = 0.03
1.32 £ 0.02
1.62 +=0.03
0.80 = 0.04
1.17 = 0.08
0.77 = 0.03
2.04 £0.03
0.65 = 0.04
0.06 =0.03
-0.54 £0.03
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Figure 7: Difference between the logarithmic abundances determined from the
solar photosphere and the CI carbonaceous chondrites as a function of atomic
number. With a few exceptions the agreement is excellent. Note that due to
depletion in the Sun and meteorites, the data points for Li, C, N and the noble
gases fall outside the range of the figure.

Asplund et al
(2009; ARAA)
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lonization

As the temperature in a gas is raised,
electrons will be removed by collisions
and interactions with light. The gas
comes ionized.

The degree of ionization depends on the
atom considered and the temperature.



Notation: lonization stages

HI  neutral hydrogen Ilp 1le
HII  1onized hydrogen Ilp Oe
Hel neutral helium 2p 2¢

He Il singly ionized hellum  2p 1le
He III doubly 1onized helum 2p Oe

Cl neutral carbon 6p ©6¢
CII C* 6p Se
Clr c+ 6p 4e

etc.



The ionization energy is the energy required to remove a
single electron from a given ion. The excitation energy is the

energy required to excite an electron from the ground state to the
first excited state.

. Excitation energy Ionization energy
. (V) (V)

HI 10.2 13.6

Hel 20.9 24.5

He II 40.8 54.4

rare Lil 1.8 5.4

Nel 16.6 21.5

Nal 2.1 5.1

Mg I 2.7 7.6

Cal 1.9 6.1

Li is He plus one proton, Na is Ne plus 1 proton, Ca is Ar plus 2 protons.
The noble gases have closed electron shells and are very stable.
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Some of the stronger lines in stars

<— Surface temperature (K)
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Spectral Sequence
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The Henry Draper Spectral Sequence

Spectral
Type

Principal
Characteristics

Sp'eCtnl Criteria

Hottest blue stars
Relatively few lines
He Il dominates

Hot blue stars
More hines
He [ dominates

Blue stars
Ionized metal lines
Hvdrogen dominates

Strong He 11 lines—in absorption, somectimes
emission. He I lines weak, but increasing in
strength from O35 to O9, Hyvdrogen Balmer lines
prominent, but weak compared to later tvpes.
Lines of Si IV, O 111, N III, and C 111

He 1 lines dominate, with maximum strength at
B2; He II lines virtually absent. Hvdrogen
lines strengthening from BO to B9. Also Mg 11
and Si 11 lines.

The hvdrogen lines reach maximum strength at
A0, Lines of ionized metals (Fe I1, Si I, Mg II)
at maximum strength near A5. Ca Il lines
strengthening. The lines of ncutral metals are
appearing weakly.



\White stars
Hvdrogen lines declining
Neutral metal lines increasing

Yellow stars
Many metal lines
Ca 1] lines dominate

Reddish stars
Molecular bands appear
Neutral metal lines dominate

Coolest red stars
Neutral metal lines strong
Molecular bands dominate

The hvdrogen lines are weakening rapidly, while
the H and K lines of Ca Il strengthen. Neutral
metal (Fe I and Cr I lines gaining on ionized
metal lines by late F.

The hvdrogen lines are very weak. The Ca 11 H
and K lines reach maximum strength near G2.
Neutral metal (Fe 1, Mn I, Ca I) lines strength-
ening, while jonized metal lines diminish. The
molecular G-band of CH becomes strong.

The hydrogen lines are almost gone. The Ca
lines are strong. Neutral metal lines are very
prominent. By late K the molecular bands of»
TiO begin to appear.

- The neutral metal lines are very strong. Molecular

bands are prominent, with the TiO bands
dominating the spectrum by M), Vanadium
oxide (VO) bands appear.



« Cannon further refined the spectral
classification system by dividing the
classes into numbered subclasses:

* For example, A was divided into
A0 A1 A2 A3 .. A9

AO is hotter than A9
B9 comes before AO OBAFGKM

F1 comes after A9
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> 25,000 K
11,000 — 25,000
7500 — 11,000
6000 — 7500
5000 — 6000
3500 — 5000
<3500

Main sequence stars
would look like this to
the human eye

Fraction MS stars
solar neighborhood

Delta Orionis 1/3,000,000
Pleiades brightest ~ 1/800
Sirius 1/160
Canopus 1/133

Sun 1/13
Arcturus 1/8
Proxima Centauri 3/4

http://en.wikipedia.orqg/wiki/Stellar classification




Main Sequence 04 — 09

from O4 to O9
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10—4 inHe Il
has same wavelength as
5> 2 inHI



Transition

Name

Wavelength

Color

Balmer Series

3->2 4 ->2
HOC HIB
6563 4861
Red Blue-

green

5->2

4341

Violet

6->2

4102

Violet

7-> 2

3970

Ultra-
violet



Main Sequence B5 — A5
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DISTINGUISHING MAIN SEQUENCE STARS
FROM RED GIANTS OF THE SAME COLOR

The surface gravity GM

g_ R2

of a star is clearly larger for a smaller radius (if M is constant)

To support itself against this higher gravity, a the stellar photosphere

must have a larger pressure. As we shall see later for an ideal gas
P=nkT

where n is the number density and T is the temperature. If two stars

have the same temperature, T, the one with the higher pressure

(smaller radius) will have the larger n, i.e., its atoms will be more

closely crowded together. This has two effects:

1) At a greater density (and the same T) a gas is less ionized

2) If the density is high, the electrons in one atom “feel” the
presence of other nearby nuclei. This makes their binding
energy less certain. This spreading of the energy level is
called “Stark broadening”



A31 Comparison of Spectral Lines for Supergiant
& Main Sequence Stars
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Hydrogen Balmer lines: ¢
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* The supergiants have the narrowest absorption lines
« Small Main-Sequence stars have the broadest lines
« Giants are intermediate in line width and radius



* In 1943, Morgan & Keenan added the
Luminosity Class as a second
classification parameter:

—Ia = Bright Supergiants

—Ib = Supergiants

—1II = Bright Giants

—III = Giants

—IV = Subgiants

—V = Main sequence

And so the sun is a G2-V star
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