V. Diagnostics of HII Regions

A. Motivations

- Primary means of studying the metallicity, SFR, density, extinction, temperature, etc. in star-forming galaxies
- For faint galaxies, emission lines may be the only aspects (beyond photometry) that are observable

B. Primer on Saha Equation and Collisional Strengths (see RadProc notes)

C. Hydrogenic Recombination Lines

- The relative strengths of the Balmer decrement $(H\alpha/H\beta/H\gamma)$ can be calculated theoretically
 - $\diamond\,$ The line ratios are nearly independent of T and n_e
 - ♦ Therefore, they are useful for inferring reddening because they are at widely separated wavelengths
 - $\diamond\,$ Furthermore, the flux of ${\rm H}\beta$ is useful for estimating other diagnostics of the HII Region
- Setup
 - \diamond Let $n_{n'\ell'}$ equal the density of atoms in the $n'\ell'$ level
 - $\diamond\,$ The statistical weights of these levels are

$$g_\ell = 2\ell + 1 \tag{1}$$

$$g_n = \sum_{\ell=0}^{n-1} (2\ell + 1) = n^2 \tag{2}$$

- \diamond Assume $\varepsilon_{n\ell}$ is independent of ℓ
- $\diamond\,$ Selection rule: $\Delta \ell = \pm 1$
- Line emissivity

$$j_{n'n} = \frac{1}{4\pi} \sum_{\ell'=0}^{n'-1} \sum_{\ell=\ell'\pm 1} n_{n'\ell'} A_{n'\ell'n\ell} h\nu_{nn'}$$
(3)

 $\diamond A_{n'\ell'n\ell}$ is the spontaneous emission rate

$$A_{n'\ell'n\ell} = 4\pi^2 \nu_{nn'}^3 \left[\frac{8\pi\alpha a_0^2}{Z^2 3c^2} \right] \frac{max(\ell,\ell')}{2\ell'+1} |P(n'\ell',n\ell)|^2 \tag{4}$$

$$P = \int_{0}^{\infty} R_{n'\ell'}(r) r R_{n\ell}(r) dr$$
(5)

 $\diamond~R=r\Psi$ is the normalized radial function

- $\diamond\,$ See Condon & Shortley or my AY204b notes for more
- Oscillator strength $f_{n\ell n'\ell'}$

$$A_{n'\ell'n\ell} = K_K \varepsilon_{nn'}^2 \frac{2\ell+1}{2\ell'+1} f_{n\ell n'\ell'} \tag{6}$$

$$\varepsilon_{nn'} = \frac{1}{n^2} - \frac{1}{n'^2} \tag{7}$$

$$K_K = \frac{1}{2} \frac{\alpha^5 m c^2}{\hbar} = 8.03 \times 10^9 \, \mathrm{s}^{-1} \tag{8}$$

- \diamond The *f*-values are often tabulated
- ♦ Or emperically determined
- $\diamond~A$ values are also tabulated in Wiese et al., NBS 1966
- Total decay rate from state $n\ell$

$$A_{n\ell} = \sum_{n''=n_0}^{n-1} \sum_{\ell''=\ell \pm 1} A_{n\ell n''\ell''}$$
(9)

- (a) Case A $(n_0 = 1)$: This presumes all line transitions produced in the HII region escape. It is a good assumption for low mass HII regions but these are rare or, at the least, difficult to study.
- (b) Case B $(n_0 = 2)$: Assume all Lyman lines higher than Ly α are trapped and ultimately converted to Ly α and other lines.
 - \diamond Reality generally lies between the two cases
 - \diamond Lyman line cross-section (center of the line; we will derive this later)

$$\sigma(\mathrm{Ly}n) = \frac{3\lambda_{n1}^3}{8\pi} \left(\frac{m_H}{2\pi kT}\right)^{\frac{1}{2}} A_{nP,1S}$$
(10)

- At $T \approx 10000 \,\mathrm{K}, \, \tau(Ly\alpha) \approx 10^4$
- Similarly, $\tau(Ly\beta) \approx 10^3$, $\tau(L8) \approx 10^2$, $\tau(L18) \approx 10^2$
- ▲ The majority of interactions are scatterings
- \blacktriangle Occasionally, however, the photon is converted to H α , H β , etc.
- Cascade Matrix
 - ♦ Means of calculating the population of various levels
 - ♦ Consider steady state conditions (i.e. detailed balancing)
 - ▲ Ignoring g_{ℓ}

$$n_{e}n_{p}\alpha_{n\ell}(T) + \sum_{n' > n; \ell' = \ell \pm 1} n_{n'\ell'} A_{n'\ell'n\ell} = n_{n\ell} A_{n\ell}$$
(11)

▲ Averaging over ℓ

$$n_e n_p \alpha_n + \sum_{n'=n+1}^{\infty} n_{n'} A_{n'n} = n_n A_n \tag{12}$$

▲ Definitions

$$\alpha_n = \sum_{\ell} \alpha_{n\ell} \tag{13}$$

$$A_{n'n} = \sum_{\ell} \sum_{\ell' = \ell \pm 1} \frac{g_{\ell}}{(n')^2} A_{n'\ell'n\ell}$$
(14)

$$A_n = \sum_{n''=n_0}^{n-1} A_{nn''} \tag{15}$$

- ▲ This assumes the population of ℓ -levels is proportional to g_{ℓ}
- ▲ This is a good approximation for high n and ℓ where both e^- and p collisions give $n\ell \to n, \ell \pm 1$
- ♦ Define $P_{n'n}$ = probability that every entry into n' is followed by a direct transition to n < n'

$$P_{n'n} = \frac{A_{n'n}}{A_n} \quad \text{(branching ratio)} \tag{16}$$

♦ Define $C_{n'n}$ = probability that entry into n' is followed by a transition to n < n' by any route.

$$C_{n,n} = 1 \tag{17}$$

$$C_{n+1,n} = P_{n+1,n} (18)$$

$$C_{n+2,n} = P_{n+2,n+1}C_{n+1,n} + P_{n+2,n}$$
(19)

$$\vdots \qquad (20)$$

 \diamond Altogether

$$C_{n'n} = \sum_{p=n'-1}^{n} P_{n'p} C_{pn}$$
(21)

♦ Our equation for detailed balance becomes

$$n_n A_n = n_e n_p \sum_{n'=n}^{\infty} \alpha_{n'} C_{n'n} \tag{22}$$

▲ One generally express the solution in terms of the 'departure coefficient'

$$b_n \equiv \frac{n_n}{n_n^*} \tag{23}$$

- $\circ n_n^*$ is given by the Boltzman equation (i.e. thermodynamic equilibrium)
- Using the Boltzman-Saha equation

$$b_n = \left(\frac{2\pi m kT}{h^3}\right)^{\frac{3}{2}} \frac{e^{-I_n/kT}}{n^2 A_n} \sum_{n'=n}^{\infty} \alpha_{n'} C_{n'n}$$
(24)

- Note, there is no density dependence in the above equation
- $\diamond\,$ An approximate solution to the Cascade matrix comes from Seaton
 - He noted $C_{gn} \to C_{\infty n}$ as $g \to \infty$
 - \blacktriangle He replaced the higher order terms of the sum by an integral

$$\sum_{n'=n}^{\infty} \alpha_{n'} C_{n'n} = \sum_{n'=n}^{g-1} \alpha_{n'} C_{n'n} + \frac{1}{2} \alpha_g C_{gn} + \frac{1}{2} \left(C_{gn} + C_{\infty n} \right) \int_{g}^{\infty} \alpha_{n'} d_{n'}$$
(25)

 $\diamond\,$ Given these results, the emissivity becomes

$$j_{n'n} = n_{n'} A_{n'n} h \nu_{n'n} / 4\pi \tag{26}$$

$$= b_{n'} n_{n'}^* A_{n'n} h \nu_{n'n} / 4\pi \tag{27}$$

 \diamond Table

			,
Case A		Case B	
$T = 10^{4}$	$T = 2 \times 10^4$	$T = 10^{4}$	$T = 2 \times 10^4$
191	199	271 (286)	279
100	100	100(100)	100
58.9	56.9	50.6(47)	49.1
10.4	9.2	7.1(5.4)	6.3
1.6	1.4	1.0 (1.6)	0.8
	Case A $T = 10^4$ 191 100 58.9 10.4 1.6	Case A $T = 10^4$ $T = 2 \times 10^4$ 19119910010058.956.910.49.21.61.4	Case ACase B $T = 10^4$ $T = 2 \times 10^4$ $T = 10^4$ 191199271 (286)100100100 (100)58.956.950.6 (47)10.49.27.1 (5.4)1.61.41.0 (1.6)

 Table 1: SEATON'S RESULTS (MODERN VALUES)

- \blacktriangle Case B values of H α are much higher due to the trapping of Lyman lines
- ▲ Values in () are from Osterbrock (i.e. modern values)
- ▲ Note that all of the lines weaken together as $T \uparrow (\alpha_n \propto T^{-1/2}$ to $T^{-3/2})$
- More accurate Balmer decrements
 - \diamond Treat ℓ explicitly
 - $\diamond\,$ Include collisional terms

$$n_{e}n_{p}\alpha_{n\ell}(T) + \sum_{n'=n+1}^{\infty} \sum_{\ell'=\ell\pm 1} A_{n'\ell'n\ell}n_{n'\ell'} + \sum_{\ell'=\ell\pm 1}^{\infty} n_{e}n_{n\ell'}q_{n\ell'n\ell} + \sum_{n'=n_{0}}^{\infty} \sum_{\ell'=\ell\pm 1}^{\infty} n_{e}n_{n'\ell'}q_{n'\ell'n\ell}$$
$$= n_{n\ell} \left[A_{n\ell} + \sum_{\ell'=\ell\pm 1}^{\infty} n_{e}q_{n\ell n\ell'} + \sum_{n=n_{0}}^{\infty} \sum_{\ell'=\ell\pm 1}^{\infty} n_{e}q_{n\ell n'\ell'} \right]$$

- ▲ $\alpha_{n\ell}(T)$ are determined using Milne's relation
- ▲ Define

$$A_{n\ell} = \sum_{n''=n_0}^{n-1} \sum_{\ell''=\ell \pm 1} A_{n\ell n''\ell''}$$
(28)

- ▲ Collisions
 - $\circ \ q_{n\ell \to n\ell \pm 1}$ collisions are due to impacts by ions (Pengalley & Seaton 1964)
 - $q_{n\ell \to n \pm 1\ell \pm 1}$ collisions are due to electrons (Seraph 1964)
- \blacktriangle See Osterbrock Tables 4.1 to 4.4

D. Effective Recombination Coefficient for H β : $\alpha_{H\beta}$

• Fig

• Define

$$\alpha_{H\beta} = \alpha_B P_{H\beta} \tag{29}$$

- ♦ $P_{H\beta}$ is the probability of H β emission following recombination to higher excited levels
- ♦ Ignoring collisions

$$P_{H\beta} = \sum_{n'=4}^{\infty} \sum_{\ell'=0}^{n'-1} \alpha_{n'\ell'} \sum_{\ell'=\ell\pm 1} C_{n'\ell'n\ell} \sum_{\ell''=\ell\pm 1} \frac{A_{4\ell,2\ell''}}{A_{4\ell}}$$
(30)

$$\approx 0.11$$
 (31)

♦ From Brocklehurst ($\varepsilon_{H\beta} \equiv \alpha_{H\beta} h \nu_{H\beta}$):

Table 2: $H\beta$ recombination coefficient

Т	$\alpha_{H\beta} \ (\mathrm{cm}^3/\mathrm{s})$	$\varepsilon_{H\beta} \; (\mathrm{erg} \; \mathrm{cm}^3 \; / \; \mathrm{s})$
0.5×10^{4}	5.4×10^{-14}	2.2×10^{-25}
1.0×10^4	3.0×10^{-14}	1.24×10^{-25}
2.0×10^4	1.6×10^{-14}	6.5×10^{-26}

 $\diamond\,$ Functional fit

$$\alpha_{H\beta}h\nu_{H\beta} \approx 1.24 \times 10^{-25} \left(\frac{T}{10^4 \text{K}}\right)^{-0.8795} \text{ (erg cm}^3/\text{s)}$$
 (32)

- Diagnostic of n_e or M_{HII}
 - \diamond Measure $F_{H\beta}$

$$L_{H\beta} \approx F_{H\beta} 4\pi d^2 = \varepsilon_{H\beta} \frac{4}{3} \pi R^3 n_e^2$$
(33)

- $\diamond\,$ If R/d is known, n_e can be estimated
- ♦ If n_e is known (e.g. [OII]), then M_{HII} is inferred

$$M_{HII} \approx \frac{F_{H\beta} 4\pi d^2 m_p}{\varepsilon_{H\beta} n_e} \tag{34}$$

- Zanstra's Method for finding T_* of the ionizing star (or the ionizing luminosity, ϕ) in an HII region
 - (a) Observe the size of the HII region r_{HII} . Global ionization equilibrium (e.g. the Stromgren radius) implies:

$$\phi = \int_{0}^{r_{HII}} \alpha_B n_e^2 4\pi r^2 dr \tag{35}$$

- \diamond For an ionization bounded HII region, $r_{HII} = R_S$
- \diamond For $r_{HII} < R_S$, this is a density bounded region and ϕ is greater than the RHS of Equation 35.
- (b) Observe $F_{H\beta}$

$$F_{H\beta} = \frac{1}{4\pi d^2} \left\{ h\nu_{H\beta} \int_{0}^{r_{HII}} \alpha_{H\beta} n_e^2 4\pi r^2 dr \right\}$$
(36)

- ♦ If the nebula is nearly isothermal, then $\alpha_{H\beta} = \text{constant}$ and $\alpha_B = \text{constant}$ with radius
- \diamond In this case, the integral is trivial
- (c) Rearranging

$$\phi \ge \frac{4\pi d^2 F_{H\beta}}{h\nu_{H\beta}} \left(\frac{\alpha_B}{\alpha_{H\beta}}\right) \tag{37}$$

(d) For a star (blackbody)

$$\phi(T_*) = \frac{15}{\pi^4} \frac{L}{h\nu_0} f\left(\frac{h\nu_0}{kT_*}\right) \quad s^{-1}$$
(38)

- $\diamond \ L = 4\pi R_*^2 \sigma T_*^4$
- $\diamond\,$ Note, ϕ is a double-valued function of T_*
- (e) If the visible (V-band) flux is also known

$$F_V = \frac{4\pi R_*^2}{4\pi d^2} \int_0^\infty \pi B_\nu(T_*) V_\nu d\nu$$
(39)

$$= \frac{L}{\sigma T_*^4} \frac{1}{4\pi d^2} \int_0^\infty \pi B_\nu V_\nu d\nu$$
 (40)

- $\diamond V_{\nu}$ is the V-band filter
- (f) Rearrange the 3rd step

$$F_{H\beta} \le \frac{\alpha_{H\beta}}{\alpha_B} \frac{h\nu_{H\beta}\phi}{4\pi d^2} = \frac{\alpha_{H\beta}}{\alpha_B} \frac{h\nu_{H\beta}}{4\pi d^2} \frac{15}{\pi^4} \frac{L}{h\nu_0} f \tag{41}$$

(g) Divide step 5 by 6

$$\frac{F_{H\beta}}{F_V} \le \frac{\alpha_{H\beta}}{\alpha_B} h\nu_{H\beta} \frac{15}{\pi^4} \frac{f}{h\nu_0} \frac{\sigma T_*^4}{\int\limits_0^\infty \pi B_\nu(T_*) V_\nu d\nu}$$
(42)

- $\diamond\,$ Gives a known function of T and T_*
- \diamond Solve for T_* , independent of L and d

E. Forbidden Lines (Densty, Temperature)

- These states are generally excited by collisions
 - ♦ Gas is optically thin to forbidden lines (no radiative transfer)
 - ♦ Excited levels of forbidden lines are populated by collisions \Rightarrow sensitive to n_e or T
 - $\diamond\,$ Important diagnostics of density and temperature
 - \diamond e.g. [OIII], [OII]
- [OIII]
 - \diamond Configuration: $1s^22s^22p^2$
 - $\diamond\,$ Two equivalent p electrons
 - ▲ Allowed states: ${}^{1}S_{0}$; ${}^{3}P_{0,1,2}$; ${}^{1}D_{2}$
 - \blacktriangle Other states are excluded by Pauli
 - ♦ Relative energies: Hund's Rules (See RadProc notes)
 - (a) Higher $S \Rightarrow$ Lower energy ${}^{3}P_{J}$ has lowest energy
 - (b) Higher $L \Rightarrow$ Lower energy ${}^{1}D_{2}$ has lower energy than ${}^{1}S_{0}$
 - (c) Higher $J \Rightarrow$ Higher energy for less than half filled ${}^{3}P_{0}$ has lower energy than ${}^{3}P_{1}$, etc.
 - $\diamond\,$ Energy level diagram

 \diamond Wavelengths

$${}^{1}S_{0} \rightarrow {}^{1}D_{2} \quad \lambda = 4363 \text{\AA}$$

$${}^{1}D_{2} \rightarrow {}^{3}P_{2} \quad \lambda = 5007 \text{\AA}$$

$${}^{1}D_{2} \rightarrow {}^{3}P_{1} \quad \lambda = 4959 \text{\AA}$$

$${}^{1}D_{2} \rightarrow {}^{3}P_{0} \quad \lambda = 4931 \text{\AA}$$

- $\diamond\,$ Transitions between any two of these states is forbidden
 - ▲ No change in parity
 - \blacktriangle Parity of two p electrons is always even
- [OIII]: Temperature diagnostic
 - \diamond Low density limit $(n_e < 10^5 \,\mathrm{cm}^{-3})$
 - ♦ The low lying ${}^{3}\!P$ states have very nearly the same energy and are populated according to their statistical weights $g_J = (2J + 1)$
 - $\diamond\,$ Keys:
 - ▲ Relative excitation of the upper levels is a function of T and not n_e
 - \blacktriangle Every excitation is followed by spontaneous emission of a photon
 - ♦ Excitation of ^{1}D level
 - ▲ Followed by emission of λ_{5007} or λ_{4959} photon
 - ▲ Relative probabilities $\rightarrow A_{1D,3P_2} : A_{1D,3P_1} \approx 3$

- \diamond Excitation of ¹S level
 - Emission of $\lambda_{4363}({}^{1}\!D_2)$ or $\lambda_{2321}({}^{3}\!P_1)$ photon
 - ▲ Relative probabilities $\rightarrow A_{1S,1D}: A_{1S,3P_1} \approx 10$
 - Emission of λ_{4363} is followed by λ_{5007} or λ_{4959} photon (small contribution)
- \diamond Emission line strength (energy/s/volume)
 - $\blacktriangle \text{ Consider } {}^1\!S \to {}^1\!D$

$$j_{4363} = \left[\text{rate}\,^{1}S \text{ is populated} \right] \times \left[h\nu(4363) \right] \times \left[\text{rate}\,^{1}S \to \,^{1}D \right] \tag{43}$$

• Collisional excitation rate

$$n_{^{3}P} q_{^{3}P,^{1}S} = \frac{n_{^{3}P} 8.629 \times 10^{-6} \Omega(^{^{3}}P,^{^{1}}S) e^{-h\nu(^{^{1}}S,^{^{3}}P)/kT}}{T^{\frac{1}{2}}g_{^{3}P}}$$
(44)

• Rate ${}^{1}S \rightarrow {}^{1}D_{2}$: Ratio of spontaneous emission coefficient

$$\frac{A_{1S,1D}}{A_{1S,1D} + A_{1S,3P_1}} \tag{45}$$

• Altogether

$$j_{4363} \propto \frac{n_{3P} \Omega({}^{3}P, {}^{1}S) e^{-h\nu({}^{1}S, {}^{3}P)/kT}}{T^{\frac{1}{2}} g_{3P}} \frac{\nu({}^{1}S, {}^{1}D) A_{{}^{1}S, {}^{1}D}}{A_{{}^{1}S, {}^{1}D} + A_{{}^{1}S, {}^{3}P_{1}}}$$
(46)

- $\blacktriangle \text{ Consider } {}^1\!\!D \to {}^3\!\!P$
 - Convenient to consider the two channels together

$$j_{4959} + j_{5007} \propto \frac{n_{3P} \Omega({}^{3}P, {}^{1}D) e^{-h\nu({}^{1}D, {}^{3}P)/kT}}{T^{\frac{1}{2}}g_{3P}} \bar{\nu}({}^{1}D, {}^{3}P)$$
 (47)

 \circ where

$$\bar{\nu}({}^{1}\!D,{}^{3}\!P) = \frac{\nu({}^{1}\!D,{}^{3}\!P_{2})A_{{}^{1}\!D,{}^{3}\!P_{2}} + \nu({}^{1}\!D,{}^{3}\!P_{1})A_{{}^{1}\!D,{}^{3}\!P_{1}}}{A_{{}^{1}\!D,{}^{3}\!P_{2}} + A_{{}^{1}\!D,{}^{3}\!P_{1}}}$$
(48)

- $\circ\,$ For higher accuracy, we should include the contribution of de-excitations from the $^1\!S\to\,^1\!D$ transition
- $\circ\,$ But, these are small for $T < 30000 {\rm K}$
- $\diamond\,$ Emission-line ratio

$$\frac{j_{4959} + j_{5007}}{j_{4363}} = \frac{\Omega({}^{3}\!P,{}^{1}\!D)}{\Omega({}^{3}\!P,{}^{1}\!S)} \frac{A_{{}^{1}\!S,{}^{1}\!D} + A_{{}^{1}\!S,{}^{3}\!P}}{A_{{}^{1}\!S,{}^{1}\!D}} \frac{\bar{\nu}({}^{3}\!P,{}^{1}\!D)}{\nu({}^{1}\!S,{}^{1}\!D)} \mathrm{e}^{\Delta E/kT}$$
(49)

- $\Delta E = h\nu({}^{1}\!S,{}^{1}\!D)$
- \blacktriangle The only physical dependence of the line ratio is temperature
- \blacktriangle Excellent T diagnostic for low density regimes
- ▲ At higher n_e , collisional de-excitation is important and ¹D is preferentially weakened.

 \blacktriangle Can correct equation (49) by a factor

$$f = [\text{See AGN2}] \tag{50}$$

 \diamond Useful expression (not quite exact)

$$\frac{j_{4959} + j_{5007}}{j_{4363}} = \frac{6.91 \times \exp\left[\left(2.5 \times 10^4\right)/T\right]}{1 + 2.5 \times 10^{-3} (n_e/T^{\frac{1}{2}})}$$
(51)

- ♦ A similar relation holds for [NII] lines, but these lines are less luminous than oxygen
- ♦ Since [OIII] is a major coolant of HII regions, we expect higher temperatures when the O abundance is lower.
 - ▲ Indeed, T_e is observed to increase with the distance from the center of the Galaxy
 - ▲ Fig (Shaver et al. 1983)

Figure 16. Electron temperatures plotted against galactocentric radius. The horizontal arrows at the upper right represent N66 and 30 Doradus in the Magellanic Clouds.

- [OII] Configuration
 - \diamond Ground state: $1s^22s^22p^3$
 - \diamond Three equivalent *p* electrons
 - ▲ Add 1 equivalent p electron to the $2p^2$ states
 - ▲ Allowed states: ${}^{4}S_{\frac{3}{2}}; {}^{2}P_{\frac{1}{2},\frac{3}{2}}; {}^{2}D_{\frac{3}{2},\frac{5}{2}}$
 - ♦ Relative energies: Hund's Rules
 - (a) Higher $S \Rightarrow$ Lower energy ${}^{4}S_{\frac{3}{2}}$ has lowest energy
 - (b) Higher $L \Rightarrow$ Lower energy ${}^{2}D_{\frac{3}{2},\frac{5}{2}}$ are second
 - (c) Half full \Rightarrow All bets are off ${}^{2}P_{\frac{1}{2}}$ is higher than ${}^{3}P_{\frac{3}{2}}$ ${}^{2}D_{\frac{3}{2}}$ is higher than ${}^{2}D_{\frac{5}{2}}$

- \diamond Energy level diagram

FIGURE 5.2 Energy-level diagrams of the $2p^3$ ground configuration of [O II] and $3p^3$ ground configuration of [S II].

- \diamond Transitions between any two of these states is forbidden
 - ▲ No change in parity
 - \blacktriangle Parity of three *p* electrons is always odd
- [OII]: Density diagnostic
 - $\diamond\,$ Pair of emission lines with very nearly the same energy
 - $\blacktriangle \ \Rightarrow \ \mathrm{e}^{\Delta E/kT} \approx 1$
 - ▲ No significant T dependence, only n_e
 - ◊ Low density limit: Every collisional excitation is followed by a spontaneous emission

$$\frac{j_{3729}}{j_{3726}} \propto \frac{\Omega({}^{4}\!S,{}^{2}\!D_{\frac{5}{2}}) \nu({}^{4}\!S,{}^{2}\!D_{\frac{5}{2}})}{\Omega({}^{4}\!S,{}^{2}\!D_{\frac{3}{2}}) \nu({}^{4}\!S,{}^{2}\!D_{\frac{3}{2}})} \mathrm{e}^{-\Delta E/kT}$$
(52)

- $\blacktriangle \Delta E \ll kT \text{ for reasonable } T \Rightarrow e^{-\Delta E/kT} \approx 1$
- $\, \bullet \, \nu({}^{4}\!S,{}^{2}\!D_{\frac{5}{2}})/\nu({}^{4}\!S,{}^{2}\!D_{\frac{3}{2}}) \approx 1$
- ▲ Useful relation:

$$\Omega(S'L'J', SLJ) = \frac{(2J+1)}{(2S+1)(2L+1)} \,\Omega(S'L', SL)$$
(53)

▲ Therefore

$$\Omega({}^{4}S,{}^{2}D_{\frac{5}{2}}) = \frac{3}{2}\Omega({}^{4}S,{}^{2}D_{\frac{3}{2}})$$
(54)

▲ And

$$\frac{j_{3729}}{j_{3726}} \propto 1.5 \qquad (n_e \ll 10^3 \,\mathrm{cm}^{-3})$$
 (55)

 \diamond High density limit: Levels are Boltzmann populated

$$\frac{j_{3729}}{j_{3726}} = \frac{g_{3729}}{g_{3726}} \frac{A_{3729}}{A_{3726}} = 0.3$$
(56)

 \diamond Transition between these two regimes occurs at the critical density

$$n_e = \frac{A}{q} \approx \begin{cases} 3 \times 10^3 \,\mathrm{cm}^{-3} & {}^{2}\!D_{\frac{5}{2}} \\ 1.6 \times 10^4 \,\mathrm{cm}^{-3} & {}^{2}\!D_{\frac{3}{2}} \end{cases}$$
(57)

- \diamond AGN² Fig 5.8
- Real World
 - \diamond Often the observations of n_e and T from different forbidden lines or other methods do not always agree
 - ▲ Could be due to incorrect assumptions in the relative abundances
 - ▲ More likely, the problem is that there are variations in the temperature that are not considered in 'one-zone' models
 - \diamond Piembert fluctuation method

F. Metallicity

- Definition and Notation
 - ♦ Fraction of a gas/star/galaxy (by number or mass) that is made of metals
 - \blacktriangle Often assessed with a single element (e.g. O, Fe, C)
 - \blacktriangle And scaled against the Sun
 - \diamond HII formalism: 12 + log (O/H)
 - \blacktriangle O/H is the number density of the particles
 - ▲ $(O/H)_{\odot} \approx 10^{-3.4}$, but this keeps changing!
 - ♦ 'Square-bracket' notation: $[O/H] = \log(O/H) \log(O/H)_{\odot}$
 - ▲ Stellar dominated
 - ▲ IGM, ISM
- Observations
 - \diamond Local HII regions: Wealth of diagnostics we have been discussing and more
 - ♦ Extragalactic: Often limited to the strongest lines observed at optical wavelengths
 - ▲ Sensitivity of detectors and sky lines limit IR observations (improving)
 - \blacktriangle Things are progressing to the IR, however
 - $\diamond~{\rm Lines}$

- ▲ Strong: [OII], $H\beta$, [OIII] λ 4959, 5007, $H\alpha$, [NII]
- ▲ Weak: [OIII] λ 4363, [SII]
- $\diamond\,$ Key systematic observational error: Reddening
 - ▲ Often use $H\alpha/H\beta$ ratio and Case B assumption to estimate the reddening
 - \blacktriangle One generally has to assume an extinction law
- T_e -Method
 - ♦ Often considered the 'gold-standard' of abundance estimates
 - ♦ Literature (Lots)
 - \blacktriangle Shaver et al. 1983, MNRAS, 204, 53
 - ▲ Skillman 1998 http://nedwww.ipac.caltech.edu/level5/Skillman/frames.html
 - ▲ Dopita et al. 2006, ApJS, 167, 177
 - $\diamond\,$ Basic procedure
 - (a) Use specific lines to estimate T_e and n_e for the HII region
 - (b) Construct an HII model based on these parameters
 - (c) Solve for the metallicity based on the line fluxes of other lines
 - (d) Iterate steps (a-c) as necessary
 - $\diamond~$ Challenges
 - ▲ Difficult to estimate T_e : [OIII] λ 4363 is very weak, especially in higher metallicity systems
 - ▲ One must still make many simplifying assumptions about the HII region(s)
 - ▲ How does one model a full galaxy of HII regions?!
 - \diamond More advanced efforts
 - ▲ Include extinction
 - ▲ Include variable T_e
 - ▲ Include a range of stellar temperatures or a synthesis of multiple HII regions
 - \blacktriangle Fit for all lines together
- Empirical techniques
 - $\diamond\,$ Basic approach
 - ▲ Measure O/H for a set of HII regions using the T_e -method
 - \blacktriangle Search for correlations between O/H and strong emission lines
 - ▲ Derive fitting formulas and proceed
 - $\diamond R_{23}$ method :: Historical favorite
 - \blacktriangle Pagel et al. 1979, MNRAS, 189, 95
 - ▲ Definition

$$R_{23} = \frac{I_{[\text{OII}]\,\lambda\,3727+3729} + I_{[\text{OIII}]\lambda4259+\lambda5009}}{I_{\text{H}\beta}} \tag{58}$$

▲ Empirical result (Pilyugin 2000, A& A, 362, 325)

Fig. 1. The OH – $\log R_{23}$ diagram. The positions of H II regions in spiral galaxies (circles) (the H II regions in our Galaxy from Shaver et al. 1983 (S83) are indicated by plusses) and in irregular galaxies (triangles) are shown together with OH – R_{23} calibrations of different authors: Edmunds & Pagel 1984 (EP), McCall et al. 1985 (MRS), Dopita & Evans 1986 (DE), and Zaritsky et al. 1994 (ZKH).

• Note: The results are double-valued!!!

• One must have additional knowledge to break the degeneracy

▲ Functional form for low metallicity

Fig. 4. The oxygen abundances $(O/H)_{Te}$ versus observed X_{23} and

$$12 + \log(O/H)_{R23} = 6.53 + 1.40 \log R_{23}$$
(59)

Fig. 8. The oxygen abundances $(O/H)_{Te}$ versus observed X_{23} (plusses)

$$12 + \log(O/H)_{R23} = 9.50 - 1.40 \log R_{23}$$
(60)

- \diamond [NII], H α , [OIII] methods
 - ▲ Literature
 - Alloin et al. 1979, A& A 78, 200
 - Pettini & Pagel 2004, MNRAS, 348, L59
 - \blacktriangle Motivations
 - \circ Break the R_{23} degeneracy
 - $\circ~$ Still simpler than the T_e method
 - $\circ~{\rm Push}$ to higher z
 - \blacktriangle N2 index
 - $\circ~$ Definition

$$N2 = \log([\text{NII}]\lambda 6583/\text{H}\alpha) \tag{61}$$

 \circ Empirical

G. Star Formation Rate (SFR)

• Because HII emission lines are produced by short-lived, massive stars, their integrated intensity should scale with the star-formation rate in a galaxy

- I will leave a proper treatment/discussion of this topic to other classes.
- Allow me to point you to Kennicutt 1998, ARA& A, 36, 189 as a starter