II. HII Regions (Ionization State)

A. Motivations

- Theoretical: HII regions are intamitely linked with past, current and future starforming regions in galaxies. To build theories of star-formation it is vital to have a working knowledge of HII regions.
- Observational: The spectra of emission-line galaxies are dominated by its HII regions. To derive basic properties about the galaxy (e.g. its dynamics, metallicity, age, etc.), one must understand the physical nature of HII regions

B. Ionization balance (Hydrogen)

$$e^{-} + H^{+} \leftrightarrow H^{0} + h\nu \tag{1}$$

- Balance \Rightarrow Equilibrium
 - $\diamond\,$ Photoionization rate equals the recombination rate
 - $\diamond\,$ This balance holds *locally*, i.e. in every cm^{-3} of the gas
- Photionization of H
 - $\diamond\,$ Photoionization rate per H atom :: Γ
 - $\diamond\,$ Therefore, the photoionization rate per $\,{\rm cm}^{-3}$ is $n_{HI}\Gamma$
 - ♦ Define

$$n_{HI}\Gamma = n_{HI} \int \frac{4\pi J_{\nu}}{h\nu} \sigma_{\nu}^{ph} \, d\nu \tag{2}$$

- $\diamond J_{\nu}$:: Mean intensity of ionizing radiation (see radproc notes)
- $\diamond \sigma_{\nu}^{ph}$:: Cross-section of H to ionizing photons

$$\sigma_{\nu}^{ph} = \frac{2^9 \pi^2}{3} \alpha a_0^2 \left(\frac{I_H}{h\nu}\right)^4 f(\eta) \tag{3}$$

$$f(\eta) \equiv \frac{\exp\left[-4\eta \cot^{-1}\eta\right]}{1 - \exp\left[-2\pi\eta\right]} \tag{4}$$

$$\eta \equiv \left(\frac{I_H}{E_f}\right)^{\frac{1}{2}} = \left(\frac{I_H}{\hbar\omega - I_H}\right)^{\frac{1}{2}} \tag{5}$$

- ▲ See http://www.ucolick.org/~xavier/AY204b/ay204b_phtrec.ps
- $\blacktriangle I_H = h\nu_0$

$$\sigma_{\nu}^{ph} \propto \begin{cases} 0 & \hbar\omega < I_H \\ \nu^{-8/3} & \hbar\omega \approx I_H \\ \nu^{-3} & \hbar\omega \gtrsim I_H \\ \nu^{-7/2} & \hbar\omega \gg I_H \end{cases}$$
(6)

- $\bullet \ \sigma^{ph}(\nu_0) = 6 \times 10^{-18} \,\mathrm{cm}^{-2}$
- \blacktriangle Overall,

$$\sigma^{ph}(\nu > \nu_0) \approx \sigma^{ph}(\nu_0) \left(\frac{\nu}{\nu_0}\right)^{-3} \tag{7}$$

- Recombination of H
 - \diamond Total recombination rate $n_e n_p \alpha(T)$
 - \diamond Total recombination rate per proton and per electron :: $\alpha(T)$

$$\alpha(T) = \sum_{n} \alpha_n(T) \quad \text{(n specifies the energy level)} \tag{8}$$

 $\diamond\,$ Recombination rate to a given energy level n :: α_n

$$\alpha_n(T) \equiv <\sigma_n^{rec}(v)v> \tag{9}$$

- ▲ $\sigma_n^{rec}(v)$ is the cross-section for recombination to level *n*. It is convolved with the velocity distribution f(v) of electrons.
- ▲ The functional form of f(v) is generally a Maxwellian described by the electron temperature T.
- ▲ See the radproc notes on Milne's relation to derive:

$$\sigma_n^{rec}(v) = 2\left(\frac{h\nu}{cm_e}\right)^2 \frac{n^2}{v^2} \sigma_n^{ph}(\nu) \tag{10}$$

C. Stromgren Radius (Simplified case)

- Crude estimate of the size for an HII region
- Concept
 - ♦ Globally balance the photoionizing rate by a star with the recombination rate of the gas surrounding it
 - $\diamond\,$ Ignore radiative transfer, dust, etc.
 - $\diamond\,$ Specific assumptions
 - \blacktriangle Single O or B star
 - \blacktriangle Embedded within a 'cloud' of HI gas (no dust)
 - ▲ Constant density

- Ionizing photon luminosity of a star
 - $\diamond\,$ Total number of ionizing photons emitted per second ϕ

$$\phi = \int_{\nu_0}^{\infty} \frac{\pi B_{\nu}}{h\nu} 4\pi R_*^2 d\nu \quad \text{(photons/s)} \tag{11}$$

- \blacktriangle B_{ν} is the blackbody spectrum
- $\blacktriangle h\nu_0 = 1 \, \text{Ryd} = 13.6 \, \text{eV}$
- $\diamond\,$ Recall Astro101

$$F = \int_{0}^{\infty} \pi B_{\nu} d\nu = \sigma T_*^4 \tag{12}$$

 $\blacktriangle~\sigma$ is the Stefan-Boltzman constant

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3} = 5.67 \times 10^{-5} \quad (cgs) \tag{13}$$

▲ Black body

$$B_{\nu}(T) \equiv \frac{2h\nu^3}{c^2} \frac{1}{(e^{h\nu/kT} - 1)}$$
(14)

 \diamond Similarly

$$L = 4\pi R_*^2 F \tag{15}$$

- $\diamond \text{ For } kT_* > h\nu_0,$
 - Expect $\phi \approx L/h\nu_0$
 - ▲ Note $T_0 = h\nu_0/k \approx 150,000 \, {\rm K}$
- \diamond Substituting $x \equiv h\nu/kT_*$

$$\phi = \frac{15}{\pi^4} \frac{L}{h\nu_0} \int_{x_0}^{\infty} \frac{x^2 dx}{(e^x - 1)}$$
(16)

 \diamond Plotting $f(x_0)$ equal to the x integral

- Recombination rate of the surrounding medium
 - ◊ Key: Ignrore recombinations to the ground-state because these will produce an ionizing photon (i.e. no net change)

 \diamond Recombination rate per cm⁻³

$$n_e n_p < \sigma_{n \ge 2} v > \tag{17}$$

▲ Where we have defined

$$\sigma_{n\geq 2} \equiv \sum_{n=2}^{\infty} \sigma_n \tag{18}$$

- ▲ Note $n_p = n_e$ for pure Hydrogen
- ♦ Define Case B recombination coefficient

$$\alpha_B(T) \equiv \langle \sigma_{n \ge 2}(v) | v \rangle \tag{19}$$

- ▲ Integrated over a Maxwellian
- \blacktriangle T is the temperature of the electrons
- ▲ For Hydrogen

$$\alpha_B(T) \approx \frac{2.60 \times 10^{-13}}{(T/10^4 \text{K})^{0.8}} \frac{\text{cm}^3}{\text{s}}$$
(20)

 $\diamond\,$ Recombination rate of a constant density cloud with radius R_S

$$n_e^2 \alpha_B(T) \frac{4}{3} \pi R_S^3 \tag{21}$$

- Stromgren Radius: R_S
 - ♦ Adopt ionization equilibrium: Total number of recombinations equals the total number of ionizations

 \diamond Physics

$$\phi = n_e^2 \alpha_B(T) \frac{4}{3} \pi R_S^3 \qquad (s^{-1})$$
(22)

 \diamond Rearrange

$$R_S = \left(\frac{3\phi}{4\pi n_e^2 \alpha_B(T)}\right)^{1/3} \tag{23}$$

♦ Consider real stars (TABLE)

Table 1:	Stromgren Radii

Spectral type	$T_{*}/10^{4}$	$\log \phi$	$\log(R_S^3 n_e^2)$	$R_S(\mathrm{pc}) \ [n_e = 10]$
B0	3.0	47.67	4.1	4.9
O9	3.2	48.24	4.6	7.3
07	3.5	48.84	5.2	12
O5	4.8	49.67	6.1	23

• What happens at $r \gtrsim R_S$?

 \diamond Consider the mean free path of a photon λ

$$\lambda_{mfp} \sim \frac{1}{\sigma^{ph}(\nu_0) \ n_H} \tag{24}$$

 $\diamond\,$ From equation 7 and with $\nu\approx\nu_0$

$$\lambda_{mfp} \sim \frac{1}{\sigma^{ph}(\nu_0)n_H} \sim 0.1 \left(\frac{n_H}{\mathrm{cm}^{-3}}\right)^{-1} \quad \mathrm{pc} \tag{25}$$

- ♦ Therefore, the transition from HII to HI is very sharp!
- \diamond For harder spectra, $\bar{\sigma} < \sigma(\nu_0)$ and λ_{mfp} is larger

D. Ionization structure:: "On the spot"

- Next simplest model is to approximate the radiative transfer and emissivity within the HII region
- Assumptions
 - ♦ Pure Hydrogen
 - ♦ Allow for partial ionization, radiative transfer
 - \diamond On-the-spot approximation
- Radiative transfer (see radproc notes)
- Ionization equilibrium
 - \diamond In steady state, ionizations balance recombinations

$$n_{HI} \int \frac{4\pi J_{\nu}}{h\nu} \sigma_{\nu}^{ph} d\nu = n_p n_e < \sigma_{n\geq 1}^{rec} v >$$

$$\tag{26}$$

 \diamond Define: Case A recombination coefficient

$$\alpha_A(T) = \langle \sigma_{n \ge 1}^{rec}(v)v \rangle_{maxwellian}$$
(27)

• Equation of transfer (for ionizing photons $\nu \geq \nu_0$)

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}I_{\nu} + j_{\nu} \tag{28}$$

♦ Opacity: Ionization of Hydrogen

$$\kappa_{\nu} = n_{HI} \sigma_{\nu}^{ph} \tag{29}$$

- ♦ Emissivity: Reemission of photons with $\nu \ge \nu_0$ due to recombinations to n = 1. We will refer to this as the 'diffuse' radiation field
- Express the intensity as two terms

$$I_{\nu} = I_{\nu*} + I_{\nu d} \tag{30}$$

- $\diamond I_{\nu*}$: Stellar radiation field
- $\diamond I_{\nu d}$: Diffuse radiation field
- Stellar radiation field

$$I_{\nu*}(r) = I_{\nu*}(R) \frac{R^2 e^{-\tau_{\nu}}}{r^2}$$
(31)

- $\diamond 1/r^2$ term is standard dilution
- $\diamond~\tau_{\nu}$ is the optical depth due to the HI atoms in the HII region

$$\tau_{\nu}(r) = \int_{0}^{r} n_{HI}(r') \, \sigma_{\nu}^{ph} dr'$$
(32)

• Diffuse radiation field

$$\frac{dI_{\nu d}}{ds} = -n_{HI}\sigma_{\nu}^{ph}I_{\nu d} + j_{\nu} \tag{33}$$

- $\diamond\,$ Recombinations give j_{ν}
- \diamond We will discuss an exact expression later
- \diamond Consider the total number of photons generated per cm⁻³

$$4\pi \int_{\nu_0}^{\infty} \frac{j_{\nu}}{h\nu} d\nu = n_p n_e < \sigma_{n=1} v > \tag{34}$$

$$= n_p n_e \left[\alpha_A(T) - \alpha_B(T) \right]$$
(35)

 $\diamond~{\rm Text}$ books frequently define

$$\alpha_1(T) \equiv \alpha_A - \alpha_B = \langle \sigma_{n=1}^{rec}(v)v \rangle_{max}$$
(36)

- 'On-the-spot' (OTS) approximation
 - ◊ In an optically thick 'cloud' where no ionizing photon escapes, every diffuse photon generated is absorbed somewhere in the cloud

$$4\pi \int \frac{j_{\nu}}{h\nu} dV = 4\pi \int n_{HI} \frac{J_{\nu d}}{h\nu} \sigma_{\nu}^{ph} dV$$
(37)

- ▲ $J_{\nu d}$ is the mean intensity of the diffuse radiation field
- $\blacktriangle J_{\nu d} n_{HI} \sigma_{\nu}^{ph}$ is the rate of absorption by HI atoms in the HII region
- \diamond If this relation holds locally, we have the on-the-spot approximation

$$J_{\nu d} = \frac{j_{\nu}}{n_{HI} \sigma_{\nu}^{ph}} \tag{38}$$

- \blacktriangle This implies a very small mean free path
- ▲ Only valid in regions with large n_{HI}
- ▲ This is *not* the case for most of the HII region, yet the approximation still works well!

- Ionization structure assuming OTS Approx
 - \diamond Original equation

$$n_{HI} \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} \sigma_{\nu}^{ph} d\nu = n_p n_e \alpha_A \tag{39}$$

 $\diamond~{\rm Substitute}$

$$J_{\nu} = J_{\nu*} + J_{\nu d} \tag{40}$$

$$=J_{\nu*} + \frac{j_{\nu}}{n_{HI}\sigma_{\nu}^{ph}} \tag{41}$$

 \diamond Rearrange

$$n_{HI} \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu*}}{h\nu} \sigma_{\nu}^{ph} d\nu = n_p n_e \alpha_B \tag{42}$$

 $\diamond\,$ Substituting for $J_{\nu*}$ from Equation 31

$$\frac{n_{HI}R^2}{r^2} \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu*}(R)}{h\nu} \sigma_{\nu}^{ph} \mathrm{e}^{-\tau_{\nu}} d\nu = n_p n_e \alpha_B(T)$$
(43)

- Solving for the ionization structure
 - \diamond Adopt a density profile

$$n_H(r) = n_{HI}(r) + n_p(r)$$
 (44)

- \diamond Assume a temperature profile T(r)
- $\diamond\,$ Can integrate Equation 43 and the optical depth (Equation 32) to find $n_{HI}(r)$ and $n_p(r)$
- Rough calculation
 - $\diamond~{\rm Recall}$

$$\phi(R_*) = 4\pi \int_{\nu_0}^{\infty} \frac{J_{\nu*}(R) 4\pi R^2}{h\nu} d\nu$$
(45)

 \diamond Introduce the intensity weighted ionization cross-section

$$\bar{\sigma} \equiv \frac{\int\limits_{\nu_0}^{\infty} \frac{J_{\nu*} \sigma_{\nu}^{ph}}{h\nu} d\nu}{\int\limits_{\nu_0}^{\infty} \frac{J_{\nu*}}{h\nu} d\nu}$$
(46)

 $\diamond\,$ Using our on-the-spot approximation, we rewrite

$$n_{HI}\bar{\sigma}\frac{\phi}{4\pi r^2} = n_e n_p \alpha_B \tag{47}$$

 $\diamond\,$ Ionization fraction x

$$x \equiv \frac{n_{HII}}{n_{HII} + n_{HI}} = \frac{n_{HII}}{n_H} \tag{48}$$

- ▲ $n_e = x n_H$ for Hydrogen gas
- ▲ $n_{HI} = (1 x)n_H$ for Hydrogen gas
- \diamond Ionization fraction in the on-the-spot approximation

$$\frac{x^2}{1-x} = \frac{\bar{\sigma}}{\alpha_B} \frac{\phi}{4\pi r^2} \frac{1}{n_H} \tag{49}$$

▲ At radii $r \ll R_S$, the gas is highly ionized: $x \approx 1$

$$\frac{1}{1-x} = \frac{\bar{\sigma}}{\alpha_B} \frac{\phi}{4\pi r^2} \frac{1}{n_H} \tag{50}$$

$$1 - x \approx \frac{\alpha_B}{\bar{\sigma}} \frac{4\pi r^2}{\phi} n_H \tag{51}$$

- Example: O7 star (see Table 1)
- Evaluate at $r = R_S/2 = 6 \,\mathrm{pc}$

$$1 - x = \frac{2.6 \times 10^{-13}}{6 \times 10^{-18}} \frac{4\pi (6\text{pc})^2}{10^{48.8}} \cdot 10 = 2.7 \times 10^{-4} \ll 1$$
 (52)

▲ HI density profile

$$n_{HI} = (1-x)n_H \propto r^2 \tag{53}$$

▲ If $x \approx 1$, $n_{HI} \ll n_H \Rightarrow$ small optical depth

$$\tau = \int_{0}^{r} n_{HI} \bar{\sigma} dr' \tag{54}$$

$$= n_H \int_{0}^{r} (1-x)\bar{\sigma}dr'$$
 (55)

 \blacktriangle Example: O7 star again

$$\tau = n_H \int_0^r \frac{r'^2}{(R_S/2)^2} 1.6 \times 10^{-21} dr'$$
(56)

▲ This plot breaks down at $r \gtrsim R_S$ where x is no longer very close to 1 ▲ At $r < R_S/2$, the ionizing spectrum is largely unattenuated

$$J_{\nu*}(r) = R^2 \frac{J_{\nu*}}{r^2} e^{-\tau_{\nu}} \approx \frac{R^2}{r^2} J_{\nu*}(R)$$
(57)

$$\phi(r) \approx \phi(R) e^{-\tau} \approx \phi(R) \tag{58}$$

• Consider the mean free path at $R_S/2$

$$\lambda \approx \frac{1}{n_{HI}\bar{\sigma}} \approx \frac{1}{n_H(1-x)\bar{\sigma}} \sim 20\,\mathrm{pc} \tag{59}$$

- \diamond This is greater than $R_S!!$
- $\diamond\,$ Ionizing radiation is not absorbed on-the-spot
- $\diamond\,$ Need to include an extra term for diffuse $n \rightarrow 1$ ionizing radiation
- $\diamond\,$ On the other hand, in most conditions $J_{\nu d} \ll J_{\nu *}$
- Interesting aside: Life cycle of an electron in an HII region
 - $\diamond~{\rm Time~scales}$
 - (a) Recombination time

$$t_{rec} = \frac{1}{n_H \alpha_B} = \frac{10^5}{n_H} \text{ yrs}$$
(60)

(b) Cascade time (spontaneous emission)

$$t_{cascade} = 1/A_{n'\ell' \to n=1} \approx 10^{-7}$$
s (61)

(c) Time in ground state

$$t_{n=1} = \frac{4\pi r^2}{\phi\bar{\sigma}} \approx 3\text{yrs}\left(\frac{r}{R_S/2}\right)^2 \tag{62}$$

 $\diamond\,$ Electrons spend the majority of their time as free particles

E. Ionization structure:: Helium, heavy elements and dust

- Helium
 - \diamond Physics
 - Extra opacity for $h\nu > 24.6 \,\mathrm{eV}$
 - ▲ Extra source of electrons
 - $\diamond~{\rm He^+}$ region
 - ▲ Follows HII region for stars with $h\bar{\nu} > 24.6 \,\mathrm{eV}$
 - ▲ Much smaller region for $h\bar{\nu} < 24.6 \,\mathrm{eV}$
- Heavy elements
 - $\diamond\,$ Mainly contribute electrons
 - ♦ Important for cooling in the HII region
 - $\diamond\,$ Offer useful observational diagnostics of HII regions
- Dust
 - \diamond Optical depth

$$d\tau_d = -\kappa_d ds \tag{63}$$

 \diamond Rough estimate

$$\tau_d = \kappa_d N_d \approx 2 \times 10^{-21} \,\mathrm{cm}^2 \cdot N_H \tag{64}$$

- $\blacktriangle \ N_H = n_H R_S$
- ▲ Evaluating with Equation 23 for R_S

$$\tau_d = 0.19 \left(\frac{n_H}{\mathrm{cm}^{-3}}\right)^{1/3} T_4^{0.26} \left(\frac{\phi}{10^{48}}\right)^{1/3} \tag{65}$$

♦ Therefore, dust can be very important for dense HII regions