ISM. VII: Dust and the Two-Phase Model

A. ISM Abundances: Oxygen

- Most abundant metal
- Solar abundances (aside)
 - Mainly derived from meteoritic abundances
 - e.g. Anders & Grevesse
 - Table (logarithmic scale ϵ_X with H=12)

<table>
<thead>
<tr>
<th>Element</th>
<th>ϵ_X</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>6.49</td>
<td>13</td>
</tr>
<tr>
<td>Ar</td>
<td>6.52</td>
<td>18</td>
</tr>
<tr>
<td>As</td>
<td>2.37</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>2.79</td>
<td>5</td>
</tr>
<tr>
<td>Ba</td>
<td>2.22</td>
<td>56</td>
</tr>
<tr>
<td>C</td>
<td>8.59</td>
<td>6</td>
</tr>
<tr>
<td>Ca</td>
<td>6.35</td>
<td>20</td>
</tr>
<tr>
<td>Ce</td>
<td>1.61</td>
<td>58</td>
</tr>
<tr>
<td>Cd</td>
<td>1.76</td>
<td>48</td>
</tr>
<tr>
<td>Cl</td>
<td>5.28</td>
<td>17</td>
</tr>
<tr>
<td>Co</td>
<td>4.91</td>
<td>0</td>
</tr>
<tr>
<td>Cr</td>
<td>5.67</td>
<td>24</td>
</tr>
<tr>
<td>Cu</td>
<td>4.29</td>
<td>48</td>
</tr>
<tr>
<td>Eu</td>
<td>0.54</td>
<td>63</td>
</tr>
<tr>
<td>Fe</td>
<td>7.50</td>
<td>26</td>
</tr>
<tr>
<td>Ga</td>
<td>3.13</td>
<td>31</td>
</tr>
<tr>
<td>Ge</td>
<td>3.63</td>
<td>32</td>
</tr>
<tr>
<td>H</td>
<td>12.00</td>
<td>1</td>
</tr>
<tr>
<td>Li</td>
<td>5.13</td>
<td>19</td>
</tr>
<tr>
<td>Kr</td>
<td>3.23</td>
<td>36</td>
</tr>
<tr>
<td>La</td>
<td>1.22</td>
<td>57</td>
</tr>
<tr>
<td>Li</td>
<td>3.31</td>
<td>3</td>
</tr>
<tr>
<td>Mg</td>
<td>7.58</td>
<td>12</td>
</tr>
<tr>
<td>Mn</td>
<td>5.53</td>
<td>25</td>
</tr>
<tr>
<td>Mo</td>
<td>1.97</td>
<td>42</td>
</tr>
<tr>
<td>N</td>
<td>7.93</td>
<td>7</td>
</tr>
</tbody>
</table>

- Observing Oxygen in the ISM
 - OI\(\lambda 1355\)
 - Semi-forbidden line with $f_{1355} = 1.25 \times 10^{-6}$
 - Why such an ‘unusual’ transition?
 - Consider OI\(\lambda 1302\) with $f_{1302} = 0.049$
 - Approximate column density

\[
\log N_O = \log N_H - 12 + \epsilon_O \quad (1)
\]
\[
\approx 21 - 12 + 8.74 \quad (2)
\]
\[
= 17.7 \quad (3)
\]
\[\tau_0 = \frac{1.497 \times 10^{-2}}{b} N_j \lambda f_{jk} \]

\[\approx 9745 \]

\[\tau_{1355} \approx 0.2 \]

- Meyer et al. (1998): GHRS observations of Oxygen
 - High resolution
 - High SNR
 - Fig

![HST GHRS spectra of the interstellar O i λ1355.598 absorption line toward γ Cas, δ Ori, ε Per, τ CMa, and γ Ara at a velocity resolution of 3.5 km s\(^{-1}\) and toward λ Ori and ζ Per at a resolution of 16 km s\(^{-1}\). The spectra are displayed from top to bottom in order of increasing total hydrogen column density in the observed sight lines. The mea-]
Ol

Table

<table>
<thead>
<tr>
<th>Star</th>
<th>N(H) / (cm^-2)</th>
<th>log n_H / (cm^-3)</th>
<th>log f(H_2) / (cm^-2)</th>
<th>W(1356) / (mÅ)</th>
<th>N(O_II) / (cm^-2)</th>
<th>10^6 O/H / (cm^-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ Cas</td>
<td>1.5 (0.2) × 10^{10}</td>
<td>-0.60</td>
<td>< -2.36</td>
<td>1.1 (0.1)</td>
<td>5.4 (0.5) × 10^{16}</td>
<td>367 (62)</td>
</tr>
<tr>
<td>ζ Per</td>
<td>1.6 (0.2) × 10^{11}</td>
<td>0.11</td>
<td>-0.23</td>
<td>8.0 (0.5)</td>
<td>4.8 (0.6) × 10^{17}</td>
<td>306 (49)</td>
</tr>
<tr>
<td>Ε Per</td>
<td>3.3 (0.5) × 10^{10}</td>
<td>-0.46</td>
<td>-0.69</td>
<td>2.1 (0.2)</td>
<td>1.0 (0.1) × 10^{17}</td>
<td>316 (53)</td>
</tr>
<tr>
<td>δ Ori</td>
<td>1.9 (0.2) × 10^{11}</td>
<td>0.18</td>
<td>-0.44</td>
<td>10.8 (1.3)</td>
<td>6.0 (0.8) × 10^{17}</td>
<td>321 (53)</td>
</tr>
<tr>
<td>λ Ori</td>
<td>1.6 (0.2) × 10^{10}</td>
<td>-0.87</td>
<td>-5.21</td>
<td>0.9 (0.1)</td>
<td>4.4 (0.5) × 10^{16}</td>
<td>282 (46)</td>
</tr>
<tr>
<td>τ Ori</td>
<td>6.1 (1.2) × 10^{10}</td>
<td>-0.38</td>
<td>-1.39</td>
<td>4.0 (0.5)</td>
<td>2.0 (0.3) × 10^{17}</td>
<td>316 (71)</td>
</tr>
<tr>
<td>ε Ori</td>
<td>1.5 (0.2) × 10^{10}</td>
<td>-1.02</td>
<td>-5.17</td>
<td>1.1 (0.2)</td>
<td>5.4 (1.0) × 10^{16}</td>
<td>370 (81)</td>
</tr>
<tr>
<td>κ Ori</td>
<td>2.9 (0.4) × 10^{10}</td>
<td>-0.73</td>
<td>-3.59</td>
<td>1.8 (0.2)</td>
<td>8.9 (1.0) × 10^{16}</td>
<td>307 (55)</td>
</tr>
<tr>
<td>15 Mon</td>
<td>3.4 (0.3) × 10^{10}</td>
<td>-0.66</td>
<td>-4.55</td>
<td>2.1 (0.2)</td>
<td>1.0 (0.1) × 10^{17}</td>
<td>303 (40)</td>
</tr>
<tr>
<td>τ CMa</td>
<td>2.3 (0.4) × 10^{10}</td>
<td>-0.97</td>
<td>-4.52</td>
<td>1.3 (0.3)</td>
<td>6.4 (1.5) × 10^{16}</td>
<td>278 (81)</td>
</tr>
<tr>
<td>ζ Oph</td>
<td>5.3 (0.4) × 10^{10}</td>
<td>-0.95</td>
<td>-4.95</td>
<td>4.0 (0.3)</td>
<td>2.0 (0.2) × 10^{17}</td>
<td>372 (40)</td>
</tr>
<tr>
<td>γ Ara</td>
<td>1.4 (0.1) × 10^{11}</td>
<td>0.52</td>
<td>-0.20</td>
<td>6.4 (0.6)</td>
<td>4.0 (0.4) × 10^{17}</td>
<td>284 (32)</td>
</tr>
<tr>
<td>γ Per</td>
<td>5.4 (0.6) × 10^{10}</td>
<td>-0.59</td>
<td>-1.20</td>
<td>3.9 (0.2)</td>
<td>2.0 (0.2) × 10^{17}</td>
<td>378 (51)</td>
</tr>
</tbody>
</table>

- N(H) = 2N(H_2) + N(H_i) is the total hydrogen column density (±1 σ) in the observed sight lines. These values reflect the H_2 column densities measured by Savage et al. 1977 and the weighted means of the Bohlin, Savage, & Drake 1978 and Diplas & Savage 1994 N(H_i) data.
- f(H_2) = 2N(H_2)/N(H) is the fractional abundance of hydrogen nuclei in H_2 in the observed sight lines.
- Measured equivalent widths (±1 σ) of the O i 1355.598 Å absorption line.
- Derived O i column densities (±1 σ) in the observed sight lines. The ζ Per and ζ Oph values are taken from the analyses of Cardelli et al. 1991 and Savage, Cardelli, & Soffia 1992. The ζ Per, ζ Ori, and γ Ara values are corrected for a slight amount of saturation using respective Gaussian b-values (±1 σ) of 2.0 × 10^{-2}, 5.0 × 10^{-2}, and 3.0 × 10^{-2} km s^{-1}. The other sight lines are assumed to be optically thin in the O i 1356 transition.
- Abundance of interstellar gas-phase oxygen (±1 σ) per 10^6 H atoms in the observed sight lines. The uncertainties reflect the propagated N(H) and N(O_i) errors.

- N(H) is evaluated from 21cm emission and H_2 data
- < n(H) >= N_H / d with d measured from parallax
- Results

- Oxygen is uniformly distributed throughout the ISM
 - i.e. the ISM is well mixed
 - Presumably, the same is true for all elements
Complete Ionization Potentials for the First 10 Elements (eV)

<table>
<thead>
<tr>
<th>Element</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>18.2</td>
<td>154.1</td>
<td>218.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25.2</td>
<td>179.2</td>
<td>299.2</td>
<td>400.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>24.9</td>
<td>47.5</td>
<td>71.5</td>
<td>97.9</td>
<td>552.0</td>
<td>667.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>18.9</td>
<td>28.0</td>
<td>34.0</td>
<td>71.4</td>
<td>198.7</td>
<td>219.1</td>
<td>138.7</td>
<td>739.0</td>
<td>871.0</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>27.4</td>
<td>50.0</td>
<td>62.7</td>
<td>81.1</td>
<td>118.5</td>
<td>153.0</td>
<td>103.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>21.6</td>
<td>41.0</td>
<td>63.5</td>
<td>97.1</td>
<td>326.0</td>
<td>158.0</td>
<td>230.0</td>
<td>3196.0</td>
<td>3362.0</td>
<td></td>
</tr>
</tbody>
</table>

First 5 Ionization Potentials (eV) only, for other "A" group elements

<table>
<thead>
<tr>
<th>Element</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>3.1</td>
<td>7.16</td>
<td>9.89</td>
<td>338.0</td>
<td>5.7</td>
<td>11.0</td>
<td>43.6</td>
<td>87.1</td>
<td>71.6</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>2.6</td>
<td>30.1</td>
<td>109.4</td>
<td>49.9</td>
<td>5.8</td>
<td>18.9</td>
<td>28.0</td>
<td>54.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>6.3</td>
<td>8.84</td>
<td>12.0</td>
<td>154.4</td>
<td>9.5</td>
<td>14.0</td>
<td>105.5</td>
<td>103.9</td>
<td>72.4</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>8.2</td>
<td>16.5</td>
<td>25.5</td>
<td>56.7</td>
<td>9.6</td>
<td>15.6</td>
<td>25.3</td>
<td>34.2</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>10.5</td>
<td>39.7</td>
<td>50.2</td>
<td>81.4</td>
<td>65.6</td>
<td>52.0</td>
<td>18.6</td>
<td>28.0</td>
<td>57.4</td>
<td>58.8</td>
</tr>
<tr>
<td>S</td>
<td>10.4</td>
<td>45.8</td>
<td>47.3</td>
<td>82.7</td>
<td>53.0</td>
<td>10.5</td>
<td>19.1</td>
<td>55.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>13.0</td>
<td>49.6</td>
<td>53.5</td>
<td>57.8</td>
<td>34.0</td>
<td>32.1</td>
<td>51.2</td>
<td>55.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>15.8</td>
<td>60.7</td>
<td>59.8</td>
<td>75.0</td>
<td>55.0</td>
<td>3.9</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>8.8</td>
<td>45.7</td>
<td>60.7</td>
<td>82.7</td>
<td>56.0</td>
<td>5.2</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>6.1</td>
<td>56.7</td>
<td>61.7</td>
<td>84.4</td>
<td>81.0</td>
<td>6.1</td>
<td>50.4</td>
<td>28.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>6.0</td>
<td>20.3</td>
<td>30.7</td>
<td>84.7</td>
<td>82.0</td>
<td>5.4</td>
<td>15.0</td>
<td>32.0</td>
<td>68.8</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>7.9</td>
<td>35.9</td>
<td>54.2</td>
<td>85.7</td>
<td>93.5</td>
<td>83.0</td>
<td>16.7</td>
<td>25.6</td>
<td>45.3</td>
<td>56.0</td>
</tr>
<tr>
<td>As</td>
<td>9.8</td>
<td>38.6</td>
<td>49.4</td>
<td>80.1</td>
<td>62.0</td>
<td>84.0</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>9.8</td>
<td>21.2</td>
<td>30.8</td>
<td>62.9</td>
<td>68.3</td>
<td>85.0</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>11.8</td>
<td>21.8</td>
<td>56.7</td>
<td>97.3</td>
<td>97.7</td>
<td>86.0</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>14.0</td>
<td>24.4</td>
<td>71.0</td>
<td>125.4</td>
<td>87.0</td>
<td>87.0</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>8.2</td>
<td>47.7</td>
<td>60.2</td>
<td>61.3</td>
<td>84.0</td>
<td>9.3</td>
<td>101.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel for future star formation
- Modest offset between the ISM and the Sun
- Error in the Solar determination? (it has dropped by 2 × in the past decade)
- Dust depletion?

B. ISM Abundances: Other metals
- Dominant ions in an HI region
 - Consider the radiation field
 ▶ Very high opacity to radiation with \(h\nu > 1\text{Ryd} \)
 ▶ Optically thin to radiation with \(h\nu < 1\text{Ryd} \)
- Ionization potential
 ▶ \(\text{IP(HI)} = 13.6 \text{eV} \)
 ▶ Majority of abundant elements have \(\text{IP} < 1\text{Ryd} \) for the first ionization state
 ▶ Majority of abundant elements have \(\text{IP} > 1\text{Ryd} \) for the second ionization state
 ▶ OI, NI, ArI are obvious exceptions
 ▶ Table

Low-ion: Dominant species of an element in an HI region
- e.g. FeII, CII, SII, HI, OI
- High-ions: SiIV, CIV
- Observations
 - Majority of resonance lines have \(\lambda < 3000\text{Å} \)
UV spectroscopy is required ⇒ Space observatory
HST: FOS, GHRS, STIS (COS?)

- Example: μCol (Howk et al. 1999)

Absorption lines are significantly offset from the stellar velocity → ISM

Analysis
- Apparent optical depth method
A Line profile fitting

• Column densities

A Table

<table>
<thead>
<tr>
<th>Sources</th>
<th>N_v (cm$^{-2}$)</th>
<th>Comp 1 (1 km s$^{-1}$)</th>
<th>Comp 2 (20 km s$^{-1}$)</th>
<th>Comp 3 (51 km s$^{-1}$)</th>
<th>Comp 4 (60 km s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H i</td>
<td>19.88 ± 0.015</td>
<td>12.27 ± 0.003</td>
<td>12.21 ± 0.009</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>C i</td>
<td>12.26 ± 0.10</td>
<td>12.50 ± 0.003</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>C ii</td>
<td><12.13</td>
<td><12.16</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ca</td>
<td>...</td>
<td>12.75 ± 0.005</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Si i</td>
<td>15.14 ± 0.02</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
</tr>
<tr>
<td>Mg i</td>
<td>15.14 ± 0.02</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
</tr>
<tr>
<td>Ca ii</td>
<td>15.14 ± 0.02</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
<td>15.08 ± 0.002</td>
<td>15.06 ± 0.002</td>
</tr>
<tr>
<td>Si ii</td>
<td>14.17 ± 0.002</td>
</tr>
<tr>
<td>P i</td>
<td>15.08 ± 0.002</td>
</tr>
<tr>
<td>S i</td>
<td>15.08 ± 0.002</td>
</tr>
<tr>
<td>Ca ii</td>
<td>15.08 ± 0.002</td>
</tr>
<tr>
<td>Ti ii</td>
<td>11.94 ± 0.008</td>
</tr>
<tr>
<td>Cr ii</td>
<td>12.62 ± 0.005</td>
</tr>
<tr>
<td>Mn i</td>
<td>12.55 ± 0.002</td>
</tr>
<tr>
<td>Fe i</td>
<td>14.33 ± 0.004</td>
</tr>
<tr>
<td>Fe ii</td>
<td>13.97 ± 0.007</td>
</tr>
<tr>
<td>Ni ii</td>
<td>14.33 ± 0.004</td>
</tr>
<tr>
<td>Cu ii</td>
<td><11.5</td>
<td>12.55 ± 0.008</td>
<td>11.16 ± 0.008</td>
<td>11.16 ± 0.008</td>
<td>11.16 ± 0.008</td>
</tr>
</tbody>
</table>

* Total sightline column densities derived from integrations of $N(v)$ profiles; unless otherwise noted.
+ Adopted column densities for the components considered here with ± 1σ errors, given in atoms cm$^{-2}$
+ Column densities for components 2-5 are derived from our component fitting analysis. Values for component 1 were derived through integrations of $N(v)$ profiles, unless otherwise noted.
+ Derived using the continuum reconstruction method (see Appendix A).
+ A 2σ upper limit derived from the 1351.6 Å line.
+ Based on the Mg i 1250 Å line.
+ Based on the Na i 589 Å line.
+ The Ca ii data given here are from the profile-fitting results of Smith, York, & Witt (1977) (see their Table 1).
+ The Ti ii data given here are from the profile-fitting results of Walsh et al. 1997 (see their Table 3).
+ They have estimated the errors in the column density values to be ±10%–20%. The errors we have adopted in this table are slightly higher than this estimate.
+ We have excluded the Fe i 2344 Å line and those lines with λ < 0.9 Å in deriving this value because of possible oscillator strength uncertainties.
+ The adopted column density given is derived from our component fitting measurements (see text).

• Relative abundances
Define: \[[X/H] = \log \frac{N(X)}{N(H)} - (\epsilon_X - 12) \]

Tab

<table>
<thead>
<tr>
<th>Element</th>
<th>([X/H]^a)</th>
<th>Comp 1 ((3 \text{ km s}^{-1}))</th>
<th>Comp 2 ((20 \text{ km s}^{-1}))</th>
<th>Comp 3 ((35 \text{ km s}^{-1}))</th>
<th>Comp 4 ((41 \text{ km s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.56</td>
<td>8.50 ± 0.04</td>
<td>8.55 ± 0.03</td>
<td>8.57 ± 0.03</td>
<td>8.59 ± 0.03</td>
</tr>
<tr>
<td>N</td>
<td>7.97</td>
<td>7.99 ± 0.04</td>
<td>7.98 ± 0.03</td>
<td>7.99 ± 0.03</td>
<td>7.98 ± 0.03</td>
</tr>
<tr>
<td>O</td>
<td>8.07</td>
<td>8.07 ± 0.04</td>
<td>8.05 ± 0.03</td>
<td>8.05 ± 0.03</td>
<td>8.05 ± 0.03</td>
</tr>
<tr>
<td>Mg</td>
<td>7.56</td>
<td>7.52 ± 0.04</td>
<td>7.54 ± 0.03</td>
<td>7.54 ± 0.03</td>
<td>7.54 ± 0.03</td>
</tr>
<tr>
<td>Al</td>
<td>6.56</td>
<td>6.59 ± 0.04</td>
<td>6.58 ± 0.03</td>
<td>6.58 ± 0.03</td>
<td>6.58 ± 0.03</td>
</tr>
<tr>
<td>Si</td>
<td>7.54</td>
<td>7.57 ± 0.04</td>
<td>7.55 ± 0.03</td>
<td>7.56 ± 0.03</td>
<td>7.56 ± 0.03</td>
</tr>
<tr>
<td>P</td>
<td>5.87</td>
<td>5.87 ± 0.04</td>
<td>5.87 ± 0.03</td>
<td>5.87 ± 0.03</td>
<td>5.87 ± 0.03</td>
</tr>
<tr>
<td>S</td>
<td>7.27</td>
<td>7.27 ± 0.04</td>
<td>7.26 ± 0.03</td>
<td>7.26 ± 0.03</td>
<td>7.26 ± 0.03</td>
</tr>
<tr>
<td>Ti</td>
<td>4.99</td>
<td>4.99 ± 0.04</td>
<td>4.98 ± 0.03</td>
<td>4.98 ± 0.03</td>
<td>4.98 ± 0.03</td>
</tr>
<tr>
<td>Cr</td>
<td>5.68</td>
<td>5.69 ± 0.04</td>
<td>5.68 ± 0.03</td>
<td>5.68 ± 0.03</td>
<td>5.68 ± 0.03</td>
</tr>
<tr>
<td>Mn</td>
<td>5.53</td>
<td>5.53 ± 0.04</td>
<td>5.53 ± 0.03</td>
<td>5.53 ± 0.03</td>
<td>5.53 ± 0.03</td>
</tr>
<tr>
<td>Fe</td>
<td>7.17</td>
<td>7.19 ± 0.04</td>
<td>7.18 ± 0.03</td>
<td>7.18 ± 0.03</td>
<td>7.18 ± 0.03</td>
</tr>
<tr>
<td>Ni</td>
<td>6.28</td>
<td>6.30 ± 0.04</td>
<td>6.29 ± 0.03</td>
<td>6.29 ± 0.03</td>
<td>6.29 ± 0.03</td>
</tr>
<tr>
<td>Zn</td>
<td>4.65</td>
<td>4.67 ± 0.04</td>
<td>4.67 ± 0.03</td>
<td>4.67 ± 0.03</td>
<td>4.67 ± 0.03</td>
</tr>
</tbody>
</table>

\(a \) The logarithmic "solar" abundances of the elements, \([X/H]_{\odot} \), are used in deriving the normalized gas phase abundances. We have adopted the solar system meteoritic abundance from Anders & Grevesse 1993 except for C, N, and O, which are photospheric values from Grevesse & Noels 1993.

\(b \) We present the sightline integrated values of \([X/H] \) in this column. Thus \([X/H] = \log \frac{N(X)}{N(H)} - \log \frac{N(H)}{N_{\odot}} \).

\(c \) Here we have used the value of \(N_{\odot} = 13.68 \pm 0.05 \) (see Appendix in Savage 1993). This treatment has neglected contributions from He. However, our photosynthesis model (see i) implies the corrections are relatively small (\(-0.04 \) to \(-0.05 \) due to the counted values).

\(d \) For the components 1 and 2 we have referenced the gas phase abundances to solar by comparing the column densities to that of silicon. Thus \([X/H] = \log \frac{N(X)/N_{\odot}}{N(Si)/N_{\odot}} \).

\(e \) For components 3 and 4 we have referenced the gas phase abundances to solar by comparing the column densities to that of silicon. Thus \([X/H] = \log \frac{N(X)/N_{\odot}}{N(Si)/N_{\odot}} \).

Fig

S/H, Zn/H, P/H have roughly solar values
Why are Fe, Ni, Si, and Mn sub-solar?
Does the ISM have a different nucleosynthetic pattern than the Sun?

C. Dust Depletion

- In the Galactic ISM, the majority of Fe, Si, Ni, Cr, and Ti are ‘locked up’ in dust grains
 - We observe gas-phase abundances
Therefore, $[\text{Fe}/\text{H}]_{\text{gas}} < 0$

Consider a cloud with $[\text{Fe}/\text{H}]_{\text{gas}} = -1$

\[f_{\text{gas}} = \frac{M_{\text{gas}}}{M_{\text{tot}}} = 10^{[\text{Fe}/\text{H}]_{s}} = 0.1 \] \hfill (7)

- How do we know it is dust?
 - Reddening is observed
 - Obscuration is observed

- Condensation Temperature
 - G. Field: Observed winds for Red Giants
 - Observed Silicate absorption features
 - Concluded → Material contains dust grains
 - Grain forms as winds push gas off the Red Giant
 - This is the dominant mechanism for forming dust cores
 - T_C: Temperature at which 50% of the gas condenses into the solid phase
 - Expect smaller f_{gas} for higher T_C because it will have had a longer time to form dust
 - Plot $[X/\text{H}]$ vs. T_C

- Strong evidence that the observed gas-phase pattern of the ISM is due to dust, not nucleosynthesis
• Depletion/density relation
 ◦ Jenkins (1986, 2003): Noted a correlation between n_H and depletion
 ◦ Measure n_H
 ▲ Observe 21cm emission
 ▲ Determine the distance to the star
 ▲ $< n_H > = \frac{N_{HI}}{d}$ (ignoring H_2)
 ◦ Examine the correlations

Figure 1: Observed element depletions as a function of the generalized line-of-sight depletion multiplier F_*
declined in [5]. In each case, the dashed line represents the best linear fit to Eq. 1 which ultimately defined
the constants A_X (slopes) and A_{0X} (intercepts) listed by Jenkins (2003). Cases excluded in the best-fit

◊ $F_* \propto n_H$, the volume density
◊ Correlation indicates the environment (volume density) also influences grain formation
 ▲ Dense clouds ⇒ More two body interactions
 ▲ Less dense clouds ⇒ More susceptible to SN shocks which destroys grains
 ▲ Environment affects the dust ‘mantle’ as append to the core
D. Dust Properties

- General
 - Dust scatters and absorbs light in the ISM
 - Remits light at much longer wavelengths (IR)

- Extinction
 - Ignore remission by dust
 - Radiative transfer
 \[I_{\nu} = I_{\nu}(0)e^{-\tau_{\nu}} \]
 (8)
 - Define extinction (in magnitudes)
 \[A_{\lambda} = 1.086\tau_{\lambda} = 1.086N_{d}Q_{e}(\lambda)\sigma_{d} \]
 (9)
 ▲ \(N_{d} \) = Column density of dust
 ▲ \(\sigma_{d} \) = Mean physical grain cross-section
 ▲ \(Q_{e} \) = Efficiency coefficient for extinction
 - In this case
 \[A_{\lambda} = -2.5\log\frac{F_{\nu}}{F_{\nu}(0)} \]
 (10)
 \[m_{\lambda} - M_{\lambda} = -5 + 5\log d_{pc} + A_{\lambda} \]
 (11)
 - Extinction efficiency factor
 \[Q_{e} \equiv \frac{s_{\nu}}{\sigma_{d}} \]
 (12)
 ▲ \(s_{\nu} \) = The optical cross-section

- Mie theory
 - See Bohrem & Huffman (1983)
 - Consider a spherical dust grain with radius \(a \) and an incident wave with wavelength \(\lambda \)
 - Fig
Wave will be scattered and diffracted

Define \(x \equiv \frac{2\pi a}{\lambda} \)

Index of refraction

\[m = n - ik \quad (13) \]

Imaginary part is for absorption

For small \(x \) \((a \gg \lambda)\)

\[
Q_a = \frac{\sigma_{abs}(x)}{\pi a^2} = -4xIm\left(\frac{m^2 - 1}{m^2 + 2}\right) \quad (14)
\]

\[
Q_s = \frac{\sigma_{scatt}(x)}{\pi a^2} = \frac{8}{3}x^4\text{Real}\left[\frac{m^2 - 1}{m^2 + 2}\right] \quad (15)
\]

\[
Q_e = Q_a + Q_s \quad (16)
\]

Wavelength dependence

\[\Delta Q_a \propto \lambda^{-1} \] which is as observed

\[\Delta Q_s \propto \lambda^{-4}, \text{i.e. the Rayleigh scattering expression} \]

Fig (Spitzer 7.1)

Note: \(Q_e \rightarrow 2 \) as \(x \rightarrow \infty \)

\[\Delta \text{The particle absorbs an area } \pi a^2 \]

\[\Delta \text{The particle diffracts an equal amount!} \]

Integral over \(Q_e \): Kramers-Kronig

\[
\int_0^\infty Q_e d\lambda = 4\pi a^2 \left(\frac{\epsilon_0 - 1}{\epsilon_0 + 2}\right) \equiv 4\pi a^2 F_K \quad (17)
\]

\[\Delta \epsilon_0 \text{ is the dielectric constant of the grain in the low frequency limit } \epsilon_0 = m^2 \]

\[\Delta F_K \text{ is as defined} \]
• Grain temperature

 ◦ Heating
 ▲ Absorption of starlight (dominant)
 ▲ Collisions with gas particles
 ▲ Exothermic chemical reactions on the grain surface

 \[
 H_{\text{rad}} = \int Q_a(\lambda) \frac{1}{4} u_{\lambda} c 4\pi a^2 d\lambda
 \]

 (18)

 ◦ Cooling
 ▲ Emission of IR radiation
 ▲ In thermal equilibrium

 \[
 \kappa_{\lambda} = \frac{\lambda^2}{2\pi^2} \frac{\lambda^2}{2\pi^2} \frac{\lambda^2}{2\pi^2} = j_{\lambda}
 \]

 (19)

 \[
 n_d Q_a \pi a^2 B_{\lambda} = n_d \frac{\varepsilon_{\lambda}}{4\pi}
 \]

 (20)

 \[
 \varepsilon_{\lambda} = Q_a \pi a^2 \cdot \pi B_{\lambda}
 \]

 (21)

 ▲ Radiative losses

 \[
 L_{\text{rad}} = \int Q_a(\lambda) \pi B_{\lambda}(T_d) 4\pi a^2 d\lambda
 \]

 (22)

 ◦ Evaluate the temperature

 \[
 \pi a^2 c \int Q_a(\lambda) u_{\lambda} d\lambda = 4\pi a^2 \int Q_a(\lambda) \pi B_{\lambda}(T_d) d\lambda
 \]

 (23)

 ▲ Let \(u_{\lambda} = \) optical and near-UV energy density \((\approx 7 \times 10^{-13} \text{ erg/cm}^{-3})\)

 ▲ Assume (first), that \(Q_a(\lambda) \approx 1 \)

 ▲ Blackbody

 \[
 B = \int B_{\lambda} d\lambda = \frac{\sigma T_d^4}{\pi}
 \]

 (24)

 ▲ Reduce..

 \[
 cu = \pi B(T_d)
 \]

 (25)

 \[
 T_d = \left(\frac{cu}{4\sigma} \right)^{1/4} = 3.1 \text{ K}
 \]

 (26)

 ▲ But, the IR excess from the Galactic plane implies \(T_d = 20 \text{ K} !! \)

 ◦ Recall that Mie theory indicates \(Q_a \propto \lambda^{-1} \)

 ▲ Therefore \(Q_a(\text{UV}) > Q_a(\text{IR}) \)

 ▲ Approximate the ISM diffuse starlight as a dilute blackbody with \(T_R = 10^4 \text{ K} \)

 ▲ Express

 \[
 u_{\nu} = \frac{\nu^3}{e^{\hbar \nu/kT_R} - 1}
 \]

 (27)
Our equilibrium equation becomes

\[u_0 \int_0^\infty \frac{\nu^3 Q_\alpha(\nu)}{e^{h\nu/kT} - 1} d\nu = \int_0^\infty \frac{\nu^3 Q_\alpha(\nu)}{e^{h\nu/kT_d} - 1} d\nu \quad (28) \]

Let \(x \equiv h\nu/kT \)

Evaluate

\[u_0 T_R^5 I_4 = T_d^5 I_4 \quad (29) \]

\[I_4 = \int_0^\infty \frac{xdx}{e^x - 1} \quad (30) \]

Therefore

\[T_d = \tilde{u}^{1/5} T_R \quad (31) \]

\(\tilde{u} \) is related to the geometric dilution of starlight

\(\tilde{u} \approx 10^{-14} \)

Therefore, \(T_d \approx 16K \)

Grains are also somewhat hotter than this because they are less efficient at emitting at UV and optical wavelengths

E. Interstellar Dust: Observations

- First evidence for dust:
 Robert Trumpler (1930), Lick Obs. Bull. 14, 154
 - Trumpler examined open clusters in the Galactic plane
 - Chose a subset with similar richness and assumed they had similar physical origin
 - Observed
 ▲ Apparent magnitude \(m \) of B and A stars
 ▲ Angular size \(\theta \) of the cluster
 - Determined
 ▲ Distance by adopting the absolute magnitude \(M \) for these stars according to their spectral type
 \[5 \log d'_{pc} = m - M + 5 \quad (32) \]
 ▲ Physical size
 \[\delta' = \theta d' \quad (33) \]
 - Plotted the two quantities
Observed a rising δ' with increasing d'.

But the assumptions was that all of these clusters had the same δ'!

Introduced dust:

$$5 \log d = m + M + 5 - ad$$ \hspace{1cm} (34)

- a is an extinction (photographic magnitudes/kpc)
- Trumpler adjusted a until δ' was constant
- Determined $a = 0.8$ photomag/kpc \hspace{1cm} (35)

- Other evidence for dust:
 (a) dark clouds with a relative absence of stars
 (b) reflection nebula (Rayleigh scattering)
 (c) reddening of starlight and extinction
 (d) polarization of starlight by aligned, non-spherical dust grains
 (e) IR continuum emission
 (f) diffuse galactic light – scattered from stars
 (g) depletion of Fe, Si, Ca, etc. from the gas phase
 (h) existence of large masses of H_2 – formed on grains
(i) X-ray halos around point sources behind dust

- Differential extinction
 - Observe two stars with identical spectral type

\[
\Delta m(\lambda) \equiv m_2(\lambda) - m_1(\lambda) = 5 \log d_2 - 5 \log d_1 + M_2 - M_1 + A_2(\lambda) - A_1(\lambda)
\]

\[
\Delta (A(\lambda_a) - A(\lambda_b)) = \Delta E(\lambda_a - \lambda_b)
\]

OB stars are best as they vary less with T

- Also, they are very bright
- Observe the stars at two wavelengths

\[
\Delta m(\lambda_a) - \Delta m(\lambda_b) = [A_2(\lambda_a) - A_1(\lambda_a)] - [A_2(\lambda_b) - A_1(\lambda_b)]
\]

\[
= \Delta (A(\lambda_a) - A(\lambda_b))
\]

\[
\equiv E(\lambda_a - \lambda_b)
\]

E(\lambda_a - \lambda_b) is referred to as the color excess

- Generally, one defines the color excess in the B and V bands

\[
E_{B-V} = A(\lambda_B) - A(\lambda_V) = A_B - A_V
\]

\[
\lambda_B \approx 4350\,\text{Å} \\
\lambda_V \approx 5550\,\text{Å}
\]

- Extinction curves
 - Define the selective extinction by normalizing relative to \(E_{B-V}\)

\[
e(\lambda) = \frac{E_{\lambda-V}}{E_{B-V}} = \frac{A_\lambda - A_V}{A_B - A_V}
\]

- Define the ratio of total to selective extinction

\[
R_V \equiv \frac{A_V}{E_{B-V}}
\]

\(R_V \approx 3.1 - 3.3\) in the Milky Way

\(R_V = 3.1\) is generally assumed but not well measured

Larger \(R_V\) implies larger dust grains

- Milky Way extinction curve
 - Empirically measured
 - Fitted by Cardelli et al. (1989)
 - Fig (assumes \(R_V = 3.1\))
Other extinction curves
- Empirically measured for LMC, SMC
- Synthesis curve for starbursts (Calzetti)
• Dust density
 ◦ Recall
 \[A_V = 1.086 \tau_V = 1.086 n_d \ell Q_e(V) \pi a_d^2 \] (46)
 ◦ Adopt \(A_V = 2, \ell = 1, Q_e = 2 \)
 \[n_d \approx 1.0 \times 10^{-12} \left(\frac{a_d}{10^{-5}\text{cm}} \right)^2 \text{cm}^{-3} \] (47)
 ◦ Mass density
 \[m_d n_d = \frac{4}{3} \pi a_d^3 \rho_d n_d = 4.3 \times 10^{-27} \rho_d \left(\frac{a_d}{10^{-5}\text{cm}} \right) \text{g/cm}^3 \] (48)

▲ For ice grains
 \[\rho_D \sim 1 \text{g/cm}^3 \] (49)
 \[a_D \sim 0.3\mu \] (50)

▲ Therefore
 \[m_d n_d = 10^{-26} \text{g/cm}^3 \] (51)

▲ Comparing against the gas density (\(\bar{n} \sim 1 \text{cm}^{-3} \))
 \[\frac{\rho_d}{\rho_g} = \frac{10^{-26}\text{g/cm}^3}{(1\text{cm}^{-3})2 \times 10^{-24}\text{g}} \approx 10^{-2} \] (52)

▲ Compare this against the value you get by assuming 100% of the Fe, Si, and Mg is in dust and also 2/3 of the C

• Some useful relations (Milky Way)
 \[A_V = 2\text{mag/kpc} \quad (R_V = 3.1) \] (53)
 \[E_{B-V} = 0.61\text{mag/kpc} \] (54)
 \[N_H = 5.9 \times 10^{21} E_{B-V} = 2 \times 10^{21} A_V \quad \text{cm}^{-2} \] (55)