e2v

e2v technologies

FEATURES

- 2048 x 4608 x 13.5 μm pixels
- Back Illuminated Operation High QE
- Low Noise Output Amplifiers
- 3-Side Buttable Package
- 100% Active Area
- Flatness better than 15 μm peak-to-valley
- Gated Dump Drain on Output Register
- Optimised for Increased Red Response

INTRODUCTION

This version of the CCD42 family of CCD Sensors has full frame architecture. Back illumination technology, in combination with an extremely low noise amplifier, make the device well suited to the most demanding applications such as astronomy. This variant is manufactured in high resistivity silicon of increased depth, which gives exceptional red wavelength sensitivity.

The output amplifier is designed to give excellent noise levels at low pixel rates and can match the noise performance of most conventional science CCDs at pixel rates as high as 1 MHz. The low output impedance of approx. 350 Ω simplifies the interface with external electronics, and a resistor and U309 JFET are also included in the package for each amplifier to give the option of an additional source follower buffer stage.

The readout register has a gate controlled dump drain to allow fast dumping of unwanted data. The register is designed to accommodate 4 image pixels of charge and a summing well is provided capable of holding 6 image pixels. The output amplifier has a feature (switchable OG2 gate) to enable the responsivity to be reduced to allow the reading of such large charge packets.

The device is supplied in a package designed to facilitate the construction of large close-butted mosaics and is designed to be used cryogenically. The design of the package will ensure that the flatness is maintained at the working temperature.

The device is shipped in a protective container, but no permanent window is fitted.

This short-form data sheet details the performance of the deep depleted versions of CCD42-90. Refer to the full CCD42-90 Back Illuminated data sheet for more detailed information on driving the device and for interface details.

CCD42-90 Back Illuminated Deep Depletion 2048 x 4608 pixel Scientific CCD Sensor

GENERAL DATA

Format

Image area Active pixels:	27.6 x 62.2 mm
horizontal	
Pixel size	
50 additional pixels are provided for	or overscanning purposes.
Number of output amplifiers	2

The device has a 100% fill factor for maximum sensitivity.

PACKAGE

Format	metal pack with 40-pin F	PGA connector
Size		8.2 x 67.3 mm
	bove base (shim pads)	
Inactive edge spacing) (nominal; 50 μm toleran	nce)
sides		260 μm
top		120 μm
	ections)	

TYPICAL PERFORMANCE

Output amplifier responsivity	4.5 μm/e ⁻
Peak signal	
Register charge capacity	
Summing well charge capacity	
Charge transfer efficiency:	
parallel	
serial	

Quantum Efficiency – See table overleaf

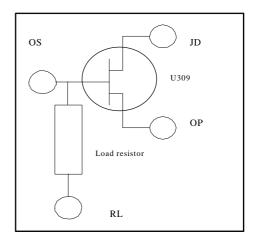
Minimum spectral range	
Readout noise (140 - 230 K)	
Dark current (173 K)	1 e ⁻ /pixel/hr

Note: All values quoted using typical operating conditions at a readout frequency of 20 kHz and at a temperature of 173 K (approx).

e2v technologies limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU United Kingdom Telephone: +44 (0) 1245 493493 Facsimile: +44 (0) 1245 492492 e-mail: enquiries@e2vtechnologies.com Internet: www.e2vtechnologies.com Holding Company: e2v holdings limited e2v technologies inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies.us

Typical Operating Conditions

Ref Vss	Pin No A1, A8, C1, C8, F2, F7	Typ.Voltage 9 ∨
IØ1	D8	10 V
IØ2	E8	10 V
IØ3	F8	10 V
RØ1(L)	D4	11 V
RØ2(L)	E4	11 V
$R\emptyset1(R)$	D5	11 V
RØ2(R)	E5	11 V
RØ3	F6	11 V
ØR(L)	E3	12 V
ØR(R)	E6	12 V
ØSW(L)	E2	11 V
ØSW(R)	E7	11 V
DG	F3	0 V; see note 3
OG1(L)	D3	3 V
OG1(R)	D6	3 V
DD(L)	B2	24 V
DD(R)	B7	24 V
OG2(L)	D2	see note 1
OG2(R)	D7	see note 1
OD(L)	B1	29 V
OD(R)	B8	29 V
OS(L)	A2	see note 2
OS(R)	A7	see note 2
RD(L)	C2	17 V
RD(R)	C7	17 V


Optional connections for U309 JFET

RL (L)	A3	AGND (0 V)
RL(R)	A6	AGND (0 V)
OP (L)	B3	See note 4
OP(R)	B6	See note 4
JD (L)	C3	OD (L) + 2 V
JD(R)	C6	OD(R) + 2 V

- Connections to the package are made by a pin grid array.
- Pins D1, E1, F1 are not connected to the CCD.
- Pins D1, F1 are used for a temperature sensor (some versions).
- Clock pulse low levels = 0 V (<u>+</u> 0.5 V); except RØ low + 1 V.
- The CCD is not electrically connected to the metal package.

Nomenclature

Detail of FET buffer

NOTES

1. OG2 = OG1 + 1 V	= 4 V (typ) - normal low noise mode.
or	= 20 V - Low responsivity / increased charge handling mode.

- 2. OS = 3 to 5 V below OD typically. Use 3 5 mA current source, or 5 10 k Ω load.
- 3. Non-charge dumping level is shown. For charge dumping DG should be pulsed to 12 ± 2 V.
- 4. The JFET is floating, with its gate connected to OS. A floating 10 k Ω load resistor is also connected to OS. The FET may be used to buffer the chip output (OS) if desired; in this case, connect FET output to AGND via a 5 mA load, and RL directly to AGND.

BLEMISH SPECIFICATION

Maximum allowed defect levels are indicated below.

Grade	0	1	2	5
Column defects - black or white	6	12	20	NS
White spots	450	800	1500	NS
Traps > 200e ⁻	30	50	80	NS
Total spots (black & white)	1350	2000	3500	NS

NS: Not specified.

Black spots are counted if the response is less than 50% of the local mean.

White spots are counted if they have a generation rate equivalent to 300 e/pixel/min at -100 °C.

(This is equivalent to a previously used definition of 100 e^{-1} /pixel/hr at -120 °C).

Note: This deep-depletion variant has a different cosmetic specification to the standard silicon device.

PERFORMANCE LIMITS (at 173 K unless stated)

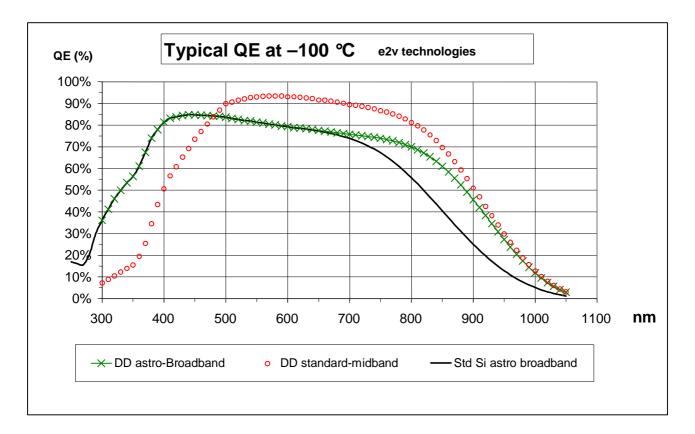
Parameter	Min	Typical	Max	Units	Notes
Peak charge storage	100k	150k	-	e ⁻ /pixel	5
Peak output voltage (unbinned)	-	675	-	mV	
Register charge capacity	-	600k	-	e ⁻ /pixel	
Summing well capacity	-	900,000	-	e	
Dark signal at 153 K	-	0.01	2	e ⁻ /pixel/hr	6
Charge transfer efficiency: parallel serial	99.999 99.999	99.9995 99.9995	-	% %	7
Output amplifier responsivity	3.0	4.5	6	μV/e ⁻	
Readout noise at 173 K	-	3.0	5.0	rms e	8
Readout frequency	-	50	3000	kHz	9
Output node capacity	-	900,000	-	e	10

NOTES

General – **Grade 5** devices are fully functional devices for setup purposes only. Image quality is below that of grade-3, and all other performance parameters may not be met.

- 5. Signal level at which resolution begins to degrade.
- 6. The typical average (background) dark signal at any temperature T (kelvin) between 150 K and 300 K is given by: $Q_d/Q_{do} = 122T^3 e^{-6400/T}$, where Q_{do} is the dark current at 293 K. Note that this is typical performance and some variation may be seen between devices.
- 7. CTE is measured for a complete 3-phase clock triplet.
- 8. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 10 µs integration period.
- 9. Readout above 3000 kHz can be achieved but performance to the parameters given cannot be guaranteed.
- 10. With output circuit configured in low responsivity/increased charge handling mode.

Part reference:


CCD42-90-*-A20 * = grade	A20 = variant type:	non-IMO, standard process, deep-depletion, midband coating.
CCD42-90-*-B32 * = grade	B32 = variant type:	non-IMO, astronomy process, deep-depletion, broadband coating.

SPECTRAL RESPONSE (at 173 K)

Wavelength (nm)	QE	QE (%) QE (%)		QE (%)		
	Standard	Deep depletion siliconDeep depletion siliconStandard sStandard processAstronomy ProcessAstronomy FMidband coatingBroadband CoatingBroadband coating		Astronomy Process		y Process
	Min.	Тур.	Min.	Тур.	Min	Тур.
350	10	17	40	50	40	50
400	30	52	70	80	70	80
500	80	92	75	85	80	85
650	85	93	70	80	75	80
900	50	55	45	50	25	30
Device type	CCD42-90-x-A20		CCD42-90-x-B32		CCD42-	90-x-B40

TYPICAL SPECTRAL RESPONSE CURVES

The two primary deep depletion devices are indicated by symbols. For comparison, the standard silicon, astro-broadband response is shown as a solid line. Other variants can be supplied; contact e2v technologies for details.

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.