The State of CANDELS

Henry Ferguson 4 August 2017

Productivity

- 102 Papers published by the team* (10 in past year)
 - 6421 citations
- ~112 papers using CANDELS by other groups+
 - 4475 citations
- 10896 citations for CANDELS in title or abstract
- h-index = 56
- 157 published blog articles (inactive)
- * CANDELS in abstract; Author contains at least one of the various builders
- + CANDELS in abstract; Author does not include any of the various builders

Data products

Product	Team	World
WFC3/IR, ACS images	12345	12345
WFC3/UV images	5	1 5
Photometry, photz, SED fitting, rest-frame photometry	12345	12345
Galfit sersic fits (F160W)	12345	12345
CAS/Gini/M20/MID	12345	
CANDELS Visual classifications	123	1
GalaxyZoo classifications	123	
Mock catalogs from Semi-analytical models	12345	
Photo-z probability distributions	12345	
Bulge/disk decompositions	12345	
Clump Catalogs	1	
Mock data from hydro simulations		GOODS-EGS COSMOS

GOODS-S

Science Goals: Supernovae

Supernovae	Obtain a direct, explosion-model-independent measure of the evolution of Type Ia		
	supernovae as distance indicators at $z > 1.5$, independent of dark energy.		
Supernovae	Refine the only constraints we have on the time variation of the cosmic-equation of		
	state parameter w, on a path to more than doubling the strength of this crucial test		
	of a cosmological constant by the end of HST's life.		
Supernovae	Provide the first measurement of the SN Ia rate at z ≈ 2 to distinguish between		
	prompt and delayed SN Ia production and their corresponding progenitor models.		

Figure 2. Detection images for 14 SN from the CANDELS fields with redshifts z > 1.5. Each image triplet shows H band (F160W) images with the template image on the left, the discovery epoch image in the middle, and the difference image on the right. All images have a width of about 6 arcsec, with north up and east to the left. The position of the SN is marked by (red) crosshairs in every frame. Discovery images for the other 51 SN with z < 1.5 are provided in Appendix B.

Building the Modern SN Ia Hubble Diagram; to the limit

Established: SNe Ia to z=2.1, dw/dz~0 +/-1 still tracking model, but SN Ia at z~2 are rare → long progenitor fuse

Science Goals: Cosmic Dawn

Cosmic	Constrain star-formation rates, ages, metallicities, stellar-masses, and dust content		
Dawn	of galaxies at the end of the reionization era $z \sim 6 - 10$.		
Cosmic	Improve the constraints on the bright end of the luminosity function at z ~ 7 and 8,		
Dawn	and make z ~ 6 measurements robust using proper 2-color Lyman break selection.		
Cosmic	Measure fluctuations in the near-IR background light, at sensitivities sufficiently faint		
Dawn	and angular scales sufficiently large to constrain reionization models.		
Cosmic	Greatly improve the estimates of the evolution of stellar mass, dust and metallicity		
Dawn	at $z = 4 - 8$ by combining WFC3 data with very deep Spitzer IRAC photometry.		
Cosmic	Identify very high-redshift AGN by cross-correlating optical dropouts with deep		
Dawn	Chandra observations. Constrain fainter AGN contributions via X-ray stacking.		
Cosmic	Use clustering statistics to estimate the dark-halo masses of high-redshift galaxies		
Dawn	with triple the area and double the maximum lag of prior HST surveys.		

Finkelstein+ 12a,b,13,15a,b, Duncan+14, Grazian+12,15 Yan+12, Curtis-Lake+13,14, Tilvi+13,14, Rogers+14 Salmon+15, Nayyeri+14, Castellano+14, Caputi+12 Mitchell-Wynne+15, Giallongo+15 Song+16, Salmon+16, White+....in preparation

Emission lines

Castellano+17

- $^{\circ}$ Z~6.8 Ly α and non-Ly α emitters
- Evidence for strong [OIII]
- f_{esc} likely to be low in Ly α emitters

Emission lines

Castellano+17

- $^{\circ}$ Z~6.8 Ly α and non-Ly α emitters
- Evidence for strong [OIII]
- f_{esc} likely to be low in Ly α emitters

Radial stellar-population gradients

At z=4 there is evidence that high-mass galaxies are quenching in their centers

Jung+17

Science Goals: Ultraviolet campaign

UV	Constrain the Lyman-continuum escape-fraction for galaxies at $z \sim 2.5$.
UV	Identify Lyman-break galaxies at $z \sim 2.5$ and compare their properties to higher-z
	LBG samples.
UV	Estimate the star-formation rate in dwarf galaxies to $z > 1$ to test whether dwarf
	galaxies are "turning on" as the UV background declines at low redshift.

Relatively low f_{esc} even for strong [OIII] emitters at z~2.5

Figure 3. The stacked rest-frame LyC images for the (a) [OII] and (b) strong $(O_{32}>5)$ emitters. A linear greyscale

Selection	N_{objs}	f_{esc}^{LyC}
[OII]	208	<5.6%
All O_{32}	41	< 6.7%
$O_{32} > 5$	13	<14.0%

Rutkowski+17

Science Goals: Cosmic "High Noon"

Cosmic	Improve by an order of magnitude the census of passively-evolving galaxies at 1.5	
Noon	< z < 4. Measure mass functions and size distributions in the rest-frame optical,	
	measure the trend in clustering with luminosity, and quantify evolution with redshift.	
Cosmic	Use rest-frame optical observations at $1 < z < 3$ to provide solid estimates of bulge	
Noon	and disk growth, and the evolution spiral arms, bars, and disk instabilities.	
Cosmic	Test models for the co-evolution of black holes and bulges via the most detailed	
Noon	HST census of interacting pairs, mergers, AGN, and bulges, aided by the most	
	complete and unbiased census of AGN from Herschel, improved Chandra	
	observations, and optical variability.	
Cosmic	Detect individual galaxy subclumps and measure their stellar mass, constraining	
Noon	the timescale for their dynamical-friction migration to the center leading to bulge	
	formation.	
Cosmic	Measure the effective radius and Sersic index in the rest-frame optical of passive	
Noon	galaxies up to $z \sim 2$ and beyond and combine with ACS data to quantify envelope	
	growth and UV-optical color (age) gradients.	
Cosmic	Determine the rest-frame optical structure of AGN hosts at $z \sim 2$.	
Noon		
Cosmic	Identify Compton-thick, optically obscured AGN at $z \sim 2$ and determine their	
Noon	structure.	

Too many papers to list here...

Galaxy sizes track halo sizes

Huang+17

Galaxies track halo size growth out to z=3

- Mild evolution for late-types at z<1
- Roughly constant offset for early types

Radius vs. stellar mass

Huang+17
A bit unclear whether r-M* or r-Mh is more linear

Radius vs. stellar mass

A bit unclear whether r-M* or r-Mh is more linear

Merger rate evolution

Pair counts favor a declining merger rate at z>1

Departs from simple power-law evolution seen at lower redshift

Details are sensitive to how you select pairs

Merger rate evolution

Tension with theoretical expectations:

⇒ Revisions to pair observability predictions during the pre-merger phase?

Mantha+17

AGN prefer compact star-forming hosts

Fig. 5.— (left) Surface mass density (Σ_e) versus rest-frame color for galaxies with $M_* > 10^{10} M_{\odot}$ in the redshift range 1.4 < z < 3.0. Points are color coded by their best-fit Sersic index and symbol sizes are scaled to the physical size of each galaxy. (right) AGN fraction in regions of Σ_e -color space. We find the AGN fraction peaks among the compact, star-forming population.

Kocevski+17

Environmental Quenching

- Spatial distributions relative to a massive neighbor differ for quenched & starforming galaxies
- Constrains environmentalquenching timescales

Environmental quenching

LogM* > 10.5:

 Mass & environmental quenching efficiencies comparable at all z

Lower mass:

 Environmental quenching kicks in at z<1

Kawinwanichakij+17

Quenched galaxy morphologies vs. environment

Morphologies of lowermass quiescent galaxies are inconsistent with simply shutting off starformation

Process that transforms morphology must be concurrent

Kawinwanichakij+17

Environmental quenching z=2

Quiescent galaxies prefer quiescent neighbors

Ji+17

Environmental quenching z=2

Environmental quenching z=2

Transition galaxies are transition in most properties

Models suggest a mix of processes

Relatively long transition times

Pandya+17

Clumps near galaxy centers are less vigorously forming stars

Conclusions...

- CANDELS is well established as one of the most productive science programs in the history of Hubble.
- But...there is still a lot of work to do!