AY5 Homework for Quiz 5: Spring 2015

1.	In the spectrum of a distant galaxy the absorption line of hydrogen that in the lab is at a wavelength of 656.3 nm is measured at 690.3 nm.			
	a.	What is the redshift, z, of this galaxy?		
	b.	What is the recession velocity, v, of the galaxy?		
	c.	By what factor has the size of the Universe changed since the light left the galaxy?		
	d.	For a Hubble Constant of 72 (km/sec)/Mpc, what is the distance to the galaxy?		
2.	and so	any years, the value of the Hubble Constant was the subject of many studies ome controversy. The values from different studies clustered around two s: 50 km·s ⁻¹ ·Mpc ⁻¹ and 100 km·s ⁻¹ ·Mpc ⁻¹ . For each of these values calculate spansion age of the Universe assuming no acceleration or deceleration.		

3. Dark matter has been invoked to explain three observations on very different spatial scales. What are these observations?

4.	A period of rapid inflation in the size of the Universe at very early times can be used to resolve four problems associated with non-inflation cosmologies. What are these four problems?
5.	What is the evidence for an acceleration of the expansion of the Universe?
6.	Based on our current data and models, what is the most likely long-term fate of the Universe?
	Eventual slowing of the expansion and a recollapse and "Big Crunch"
	_ Ever-increasing expansion rate and cold, dark Universe
	Radioactive decay of matter will light up the Universe for as long as we can predict
ne:	$_$ Star formation in galaxies will keep the Universe heated and light for at least the $^{\rm xt}$ $10^{\rm 20}$ years

7.	Which of the following best describes the large-scale distribution of galaxies in the Universe?
	_ Uniform in all directions
	_ Clusters of galaxies, filaments and voids
	_ Uniform except for small density variations at the level of \sim 1 in 100,000
	_ completely random
8.	Which of the following are thought to be properties of or true of Dark Matter?
	_ it is "cold" (i.e. moves slowly compared to the speed of light)
	_ it does not readily interact directly with photons or other matter (i.e. it has a nall cross-section for interations)
	_ it does not emit or absorb electromagnetic radiation
	_ it is primarily inferred by its gravitational effect on other matter
9.	Which of the following are true (T), which false (F)?
ab	_ the total star formation rate in the Universe has been relatively steady since out 1 billion years after the Big Bang
aft	Quasars were much more common in the period between 1 and 3 billion years ter the Big Bang than they were before or after that time
	_ the merger rate of galaxies has been steadily increasing over time as the liverse expands
	_ Dark Matter is much more common than the type of matter that makes up stars, anets and humans
10	. Which of the following is true of the Cosmic Microwave Background?
nu	_ It originates from radiation during the Big Bang immediately after the era of cleosynthesis
	_ It shows the redshifted spectrum of a 3000K hot plasma
	_ It is uniform over the entire sky
	_ it shows variations at the level of one part in 100,000

11. The observed distribution of galaxies in the universe can be matched to models that include which of the following ingredients?
significant amounts of cold dark matter
"hot" dark matter in the form of neutrinos
initial density fluctuations imprinted on the Universe at the time of decoupling
quark-gluon interactions
12. What is the current thinking about the origin of temperature fluctuations in the cosmic microwave background?
$\underline{\hspace{1cm}}$ variations in the He 4 to Hydrogen abundance at the time of decoupling
quantum fluctuations that grew in size during the period of inflation
uncertainty in the measurements
the presence of protogalaxies