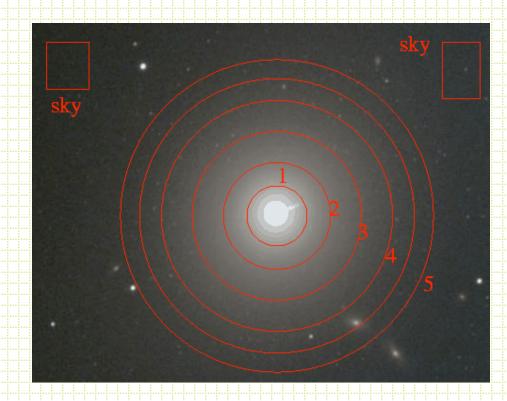
22 April 2004


- Homework 3 due Friday Apr 30
 - Homeworks 1&2 returned Tuesday 27
- DAOPHOT et al. standalone working under Solaris, Linux not yet OS X. IRAF version works although the tools are not in place to combine photometry easily.
- Note, everyone with a UCO/NICS account has access to the public Solaris machine (mambo) and the public Linux machine (mariachi)
- Files on atacama (Bolte's Sun workstation) can be reached from the UCO network via:

cp /net/atacama/a/AY257/Problem3/filename .

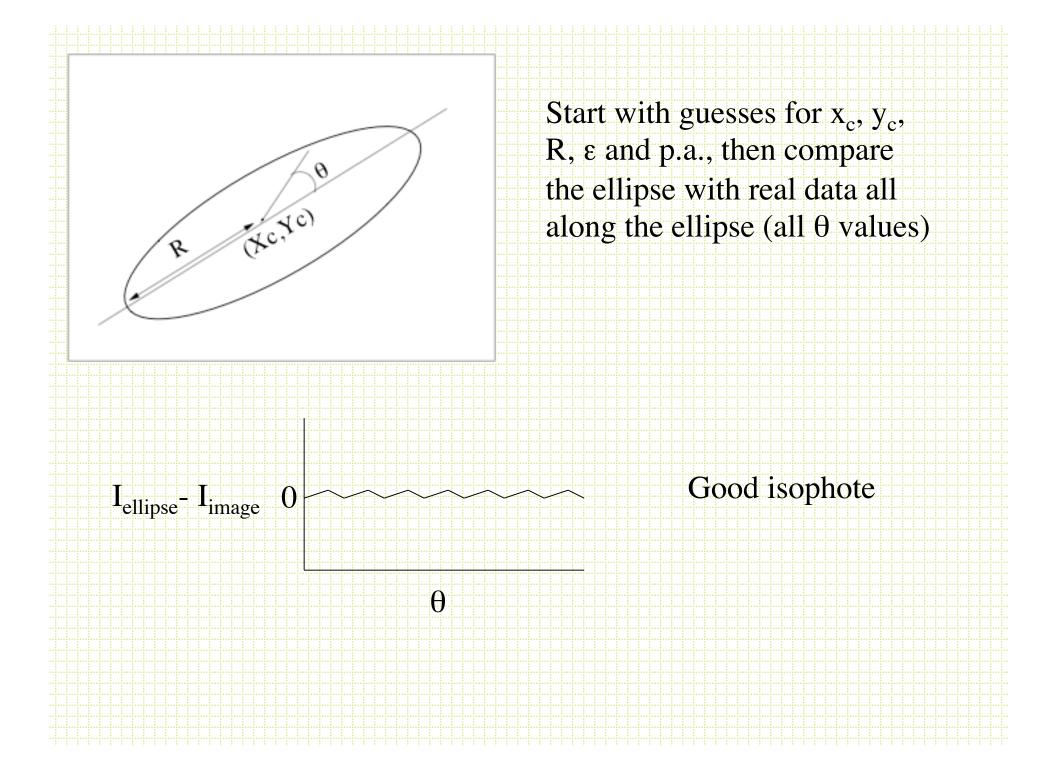
22 April 2004 cont.

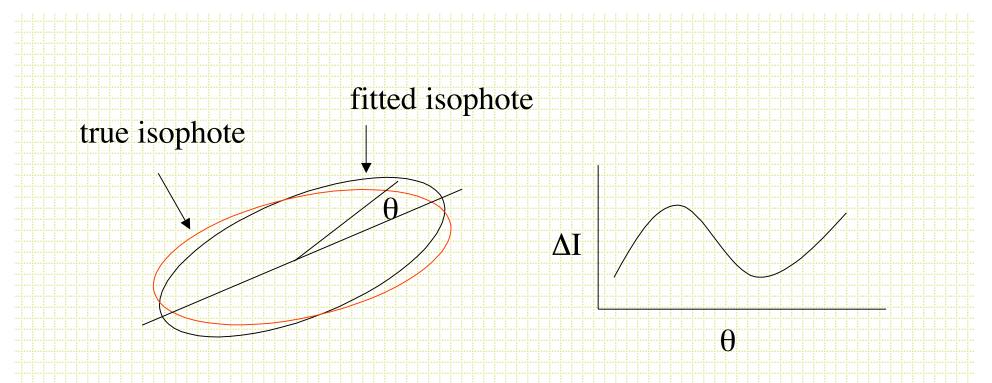
- DS9 save as option -- jpg. Convert or xv can be used to convert jpg -> .eps for inclusion into latex document.
 - Note sample .tex document at class www site
- In IRAF graphics window: :.snap eps will output a postscript file of whatever you have displayed

Surface Photometry

Simple approach of aperture photometry works OK for some purposes.

mag=
$$c_0 - 2.5(\text{cnts}_{\text{aper}} - \pi r^2 \text{sky})$$


Typically working with much larger apertures


- prone to contamination

- sky determination even more critical

- often want to know more than total brightness

- There is a long history of surface photometry with CCDs:
 - GASP Davis et al., AJ, 90, 1985
 - Jedrzejewski, MNRAS, 226, 747, 1987
- Could fit (or find) *isophotes*, and the most common procedure is to fit elliptical isophotes.
- Parameters are: x_{center}, y_{center}, ellipticity (e),
 R (semi-major axis) and position angle.

Fit the **DI** - **q** plot and iterate on x_c , y_c , p.a., and **e** to minimize the coefficients in an expression like:

 $I(\mathbf{q}) = I_0 + A_1 \sin(\mathbf{q}) + B_1 \cos(\mathbf{q}) + A_2 \sin(2\mathbf{q}) + B_2 \cos(2\mathbf{q})$

		÷																										0	0								-																		
		· · · ·	1.0									<u> </u>			e i e c		~	- <u>-</u>	<u>.</u>			. i 12		~ 4	w ja	- 10	-			i	~ 4	<u></u>	- 1					·																	
÷ .	- 1		n		\mathbf{r}	16	5 6	7 C		tc	1	X		<u>و</u>	łY	17			/	1	n	17	16	2	V		9		I 6	74		1.1	\boldsymbol{L}	1	- 8		к		1.1	- 81		8 8	- 81			10	1.	1.1	- 81	8 8	- 81	 - 11		- 11	
		~	12.11	I C		1 Z	- · · ·	20	1111	L C	1			··· C	t t	1.		·····•••••••••••••••••••••••••••••••••				I A.	7 1	71	••••		u	1.11		~	\sim		1	N 1			1111	11																	
÷		—	T 7			$\neg C$. L.	F . T			\mathbf{C}			Τ.		7	С	. T					1			Τ.	τ. Τ				Τ.,		7			. A. I.	7		. I	1			ii.					 1			1.1		
						-							-					-	-						- H					- T.			100		- T															 					
												1		_ 1								- : ("'				14.0	"'					: /																						
												10	S 3	G .																			- /					- j																	
														а.																			Γ	\ /	า																				
												\sim		~~																				-	/																				
												+																						- 2	_																				
																							۲ ۲					44					. Т																						
													2															••						2																					
																																	. i. i	•																					
÷ .	- 8	1.1	÷	8 8	- 81		8 8	- 81	4.1	8 8	- 11			- 8	10	8.1		1.1	4.1		- 8	181	÷.		- 8	- 81	181	÷.		- 8	- 8	10.0	-	- 1		- 81	100	÷.,	1.1	14	1	8 8	- 81	1.1	8 8	1.1	1.1	1.1	14	8 8	1.1	 	1.1	1.1	
																						- i-					- i-								<u></u>			÷																	
i				1			ii			1.1			ii																			. i	. I									1			ii.					 ii			1.1		
	- T								100					- T	111				100		- T							111					100					111												 					

• More specifically:

 $\Delta(\text{major axis center}) = \frac{-B_1}{I'}$ $\Delta(\text{minor axis center}) = \frac{-A_1(1-\varepsilon)}{I'}$ $\Delta(\varepsilon) = \frac{-2B_2(1-\varepsilon)}{a_0I'}$ $\Delta(\text{p.a}) = \frac{2A_2(1-\varepsilon)}{a_0I'[(1-\varepsilon)^2-1]}$

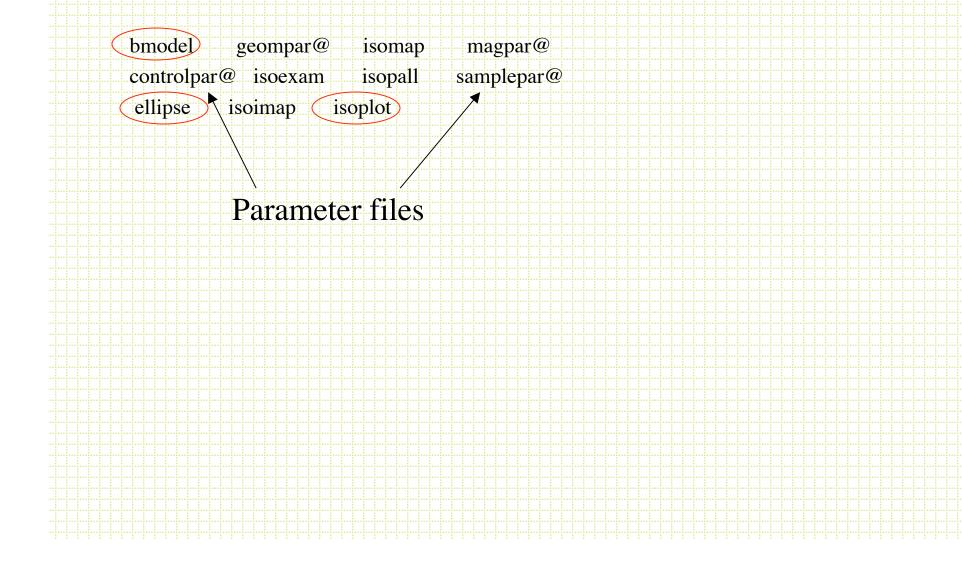
where :

$$' = \frac{\partial \mathbf{I}}{\partial \mathbf{R}} \Big|_{\mathbf{a}_0} \mathbf{\bullet}$$

Position along the semi-major axis

 After finding the best-fitting elliptical isophotes, the residuals are often interesting. Fit:

 $\mathbf{I} = \mathbf{I}_0 + \mathbf{A}_n \sin(n\theta) + \mathbf{B}_n \cos(n\theta)$


already minimized n=1 and n=2, n=3 is usually not significant, but:

B₄ is negative for ``Boxy'' isophotesB₄ positive for ``disky'' isophotes

Surface Photometry Tools

- How do YOU carry out surface photometry measurements?
- For the class will use a Jedrxxxx-based set of algorithms available via IRAF in the STScI STSDAS set of packages.
- stsdas.analysis.isophote

Stsdas isophote tasks

Controlpar

PACKAGE = isophote TASK = controlpar

(conver =	0.05) convergency criterion (maximum harmonic amplitud
(minit =	10) minimun no. of iterations at each sma
(maxit =	50) maximun no. of iterations at each sma
(hcenter=	no) hold center fixed ?
(hellip =	no) hold ellipticity fixed ?
(hpa =	no) hold position angle fixed ?
(wander =	INDEF) maximum wander in successive isophote centers
(maxgerr=	0.5) maximum acceptable gradient relative error
(olthres=	1.) object locator's k-sigma threshold
(soft =	no) soft stop ?
(mode =	al)

Geompar

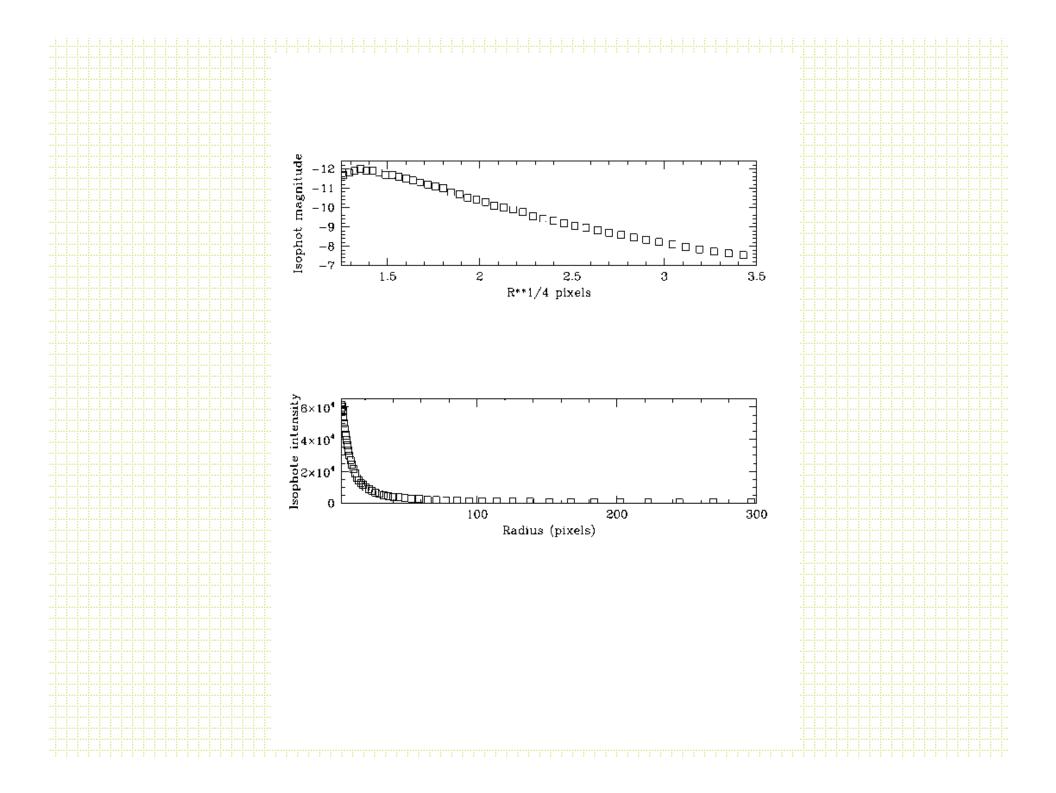
PACKAGE = isophote TASK = geompar

(x0 =	INDEF) initial isophote center X Often it is a good
(y0 =	INDEF) initial isophote center Y idea to put in
(ellip0 =	0.2) initial ellipticity starting values
(pa0 =	20.) initial position angle (degrees)
(sma0 =	10.) initial semi-major axis lenght
(minsma =	0.) minimum semi-major axis lenght
(maxsma =	INDEF) maximum semi-major axis lenght
(step =	0.1) sma step between successive ellipses
(linear =	no) linear sma step ?
(maxrit =	INDEF) maximum sma lenght for iterative mode
(recente=	yes) allows finding routine to re-center x0-y0 ?
(xylearn=	yes) updates pset with new x0-y0 ?
(physica=	yes) physical coordinate system ?

Samplepar

PACKAGE = isophote TASK = samplepar

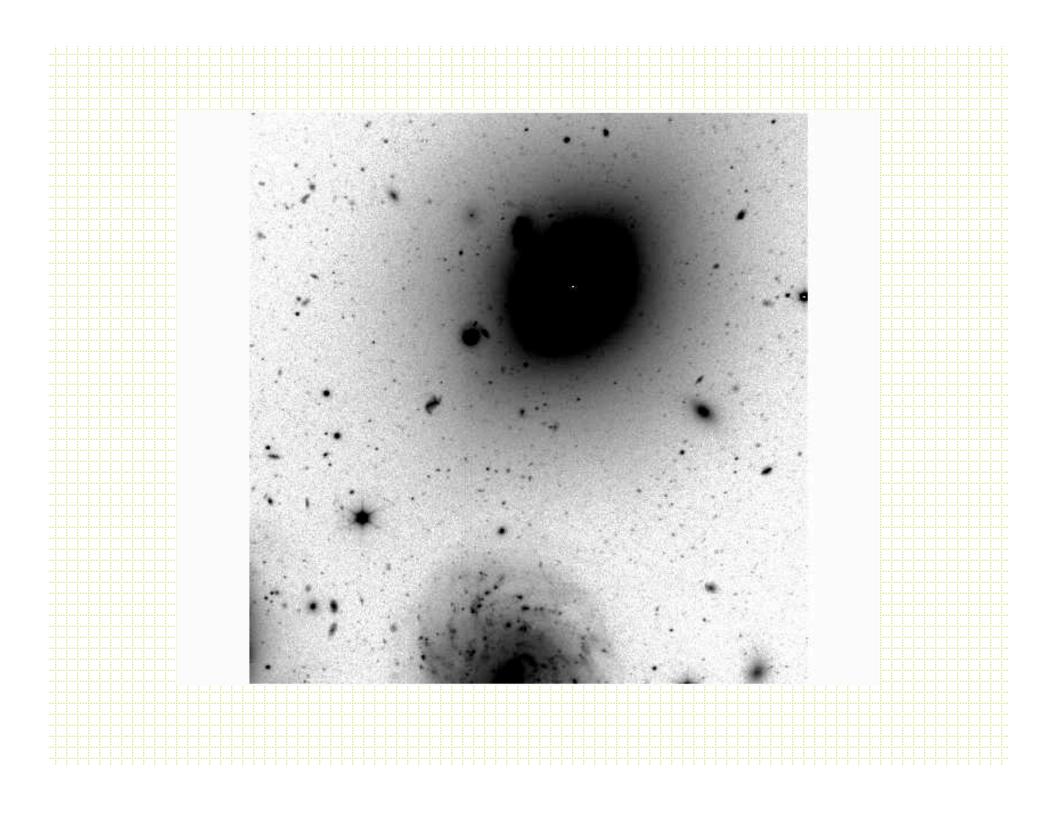
(integrm=	bi-linear) area integration mode
(usclip =	3.) sigma-clip criterion for upper deviant points
(lsclip =	3.) sigma-clip criterion for lower deviant points
(nclip =	0) number of sigma-clip iterations
(fflag =	0.5) acceptable fraction of flagged data points
(sdevice=	none) graphics device for ploting intensity samples
(tsample=	none) tables with intensity samples
(absangl=	yes) sample angles refer to image coord. system ?
(harmoni=	none) optional harmonic numbers to fit
(mode =	al)

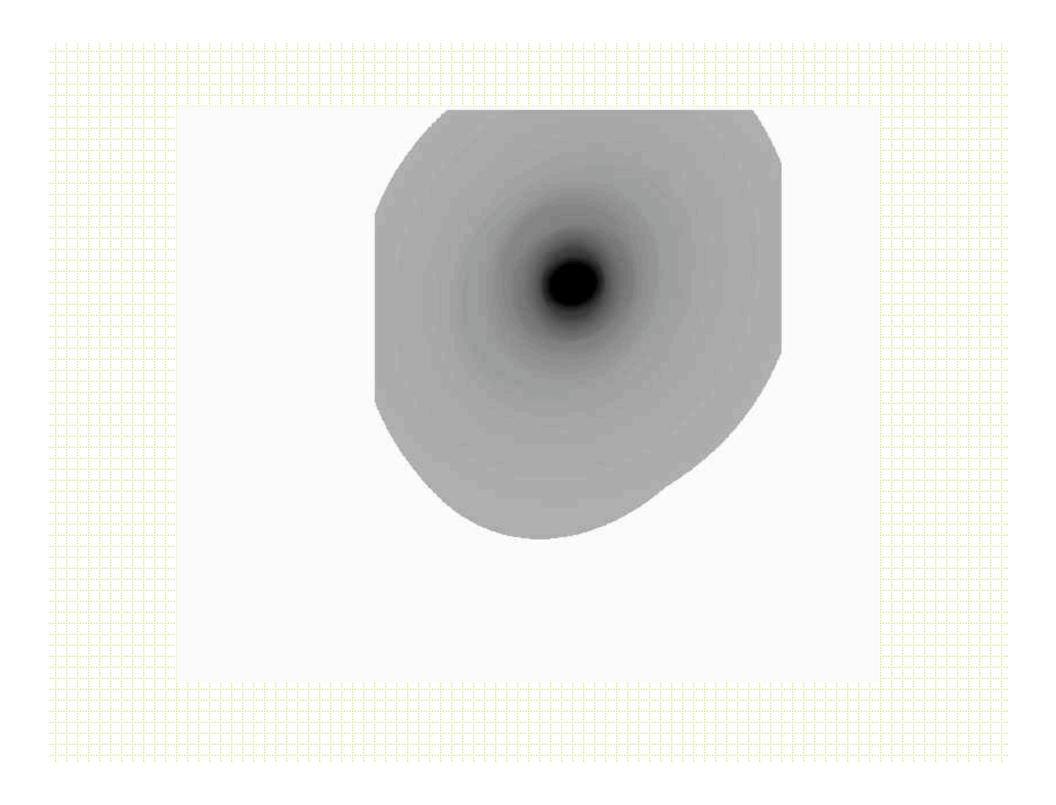

ellipse

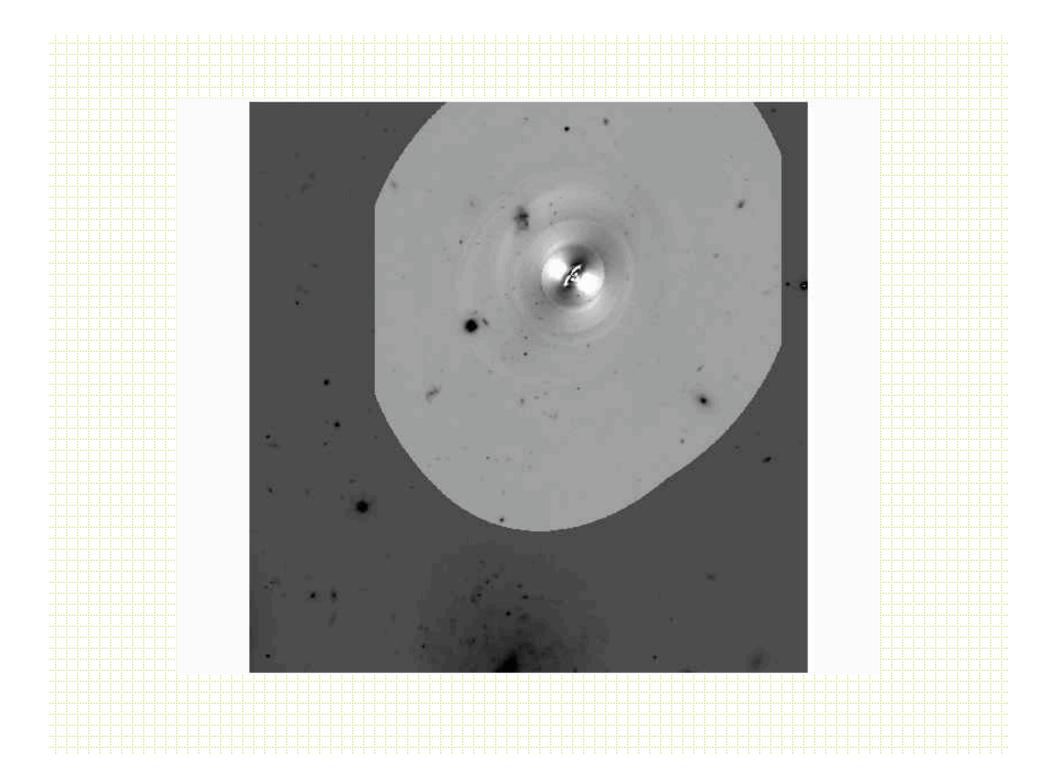
- Use the σ-clipping option
 - Very common to pre-clean frames:
 - Subtract point sources with DAOPHOT
 - Mask saturated stars and CCD flaws
 - Mask other galaxies
- Sometimes it is useful to input starting values

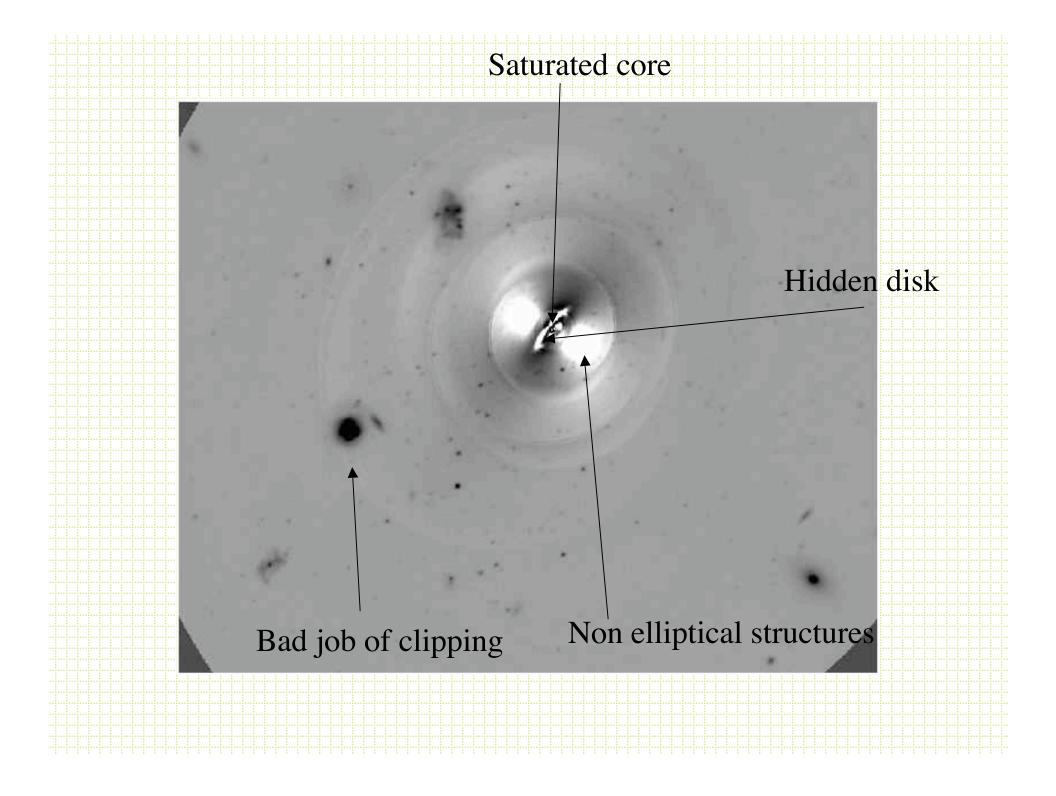
Calculate mean and RMS pixel intensity for annulus, toss any values above $\underline{\text{mean} + n\text{RMS}}$

- Ellipse produces a Table (in STSDAS table format, ttools.tprint allows you to view this) with the parameters of the best fitting ellipses along the semi-major axis.
- Plotting I_{ellipse} vs r gives the *surface* brightness profile


Photometry is the usual: $m=c_0 - 2.5\log(\sum(pixels in r+\Delta r) - (npix \cdot sky))$



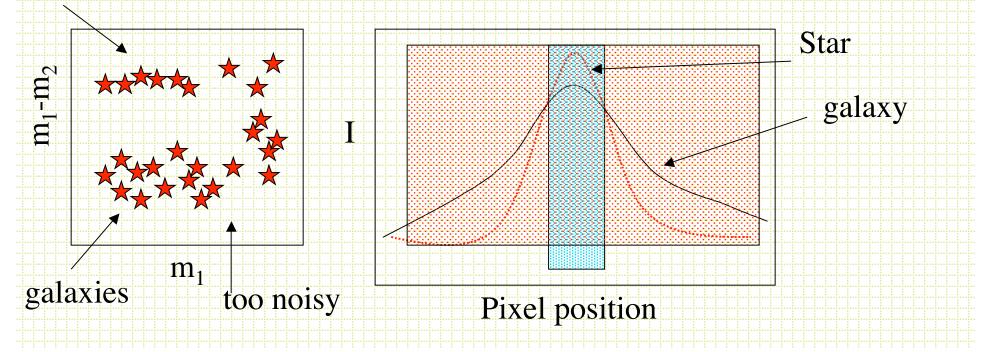

	nage name (te											
	able name (te											
Runnin	g object locat	or Done.										
#												
# Semi-		lipticity Pos			Iter. Sto	р						
# major	mean	Angle	rel.	code								
# axis #(pixel)	ntensity	er (degree)	ror									
#(pixei) #		(degree)										
	219.62(527.26)	0.123(0.002) -	70.00(0.54	0.125 23	4 0 50	2						
44.00 3	773.10(481.03)	0.123(0.002) -	70.00(0.59	0.122 25	8 0 50	2						
	384.59(426.91)											
	038.81(384.52)											
	725.05(344.36) 431.91(297.83)	· · · · · · · · · · · · · · · · · · ·						 	 			
0-1.12 2	151.51(257.05)	0.125(0.002)	/0.00(0.50	, 0.091 57	0.0.50							
634.52	556.57(7.44) 0	.273(0.009) -18	8.68(1.03) (0.101 2602	760 17	1						
	728.37(566.24)											
33.06 5	287.32(620.80)	0.123(0.005) -	70.00(1.36) 0.129 19	3 0 50) 2						
0.73 51	976.14(8482.2)	0.269(INDEF)) -45.76(INI	DEF) 1.460	13 0	14						
0.66 53	679.33(7585.3)	0.269(INDEF) -45.76(INI	DEF) 1.853	13 0	14						
	147.36(7006.2)											
0.55 56	150.06(6355.0)	0.269(INDEF)) -45.76(INI	DEF) 2.616	13 0	1 4						


bmodel

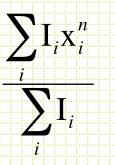
After you have run ellipse and produced a table. The task called *bmodel* will build a smooth image of the family of ellipses.
 Subtracting this from the original frame will tell you how good the fit is and will reveal non-axially symetric structures.

- Last surface brightness note, in the near Universe, surface brightness is distant independent.
 - S.B. \propto I/(area of galaxy)

Brightness drop off with distance is exactly compensated by larger surface area of galaxy contributing

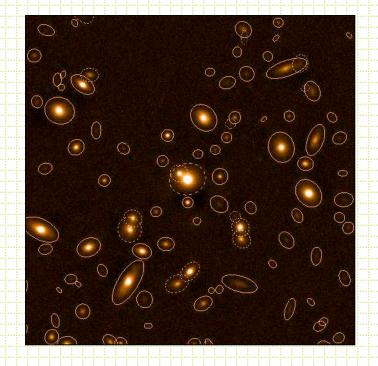

Fixed angle on the sky

Small galaxies and classification

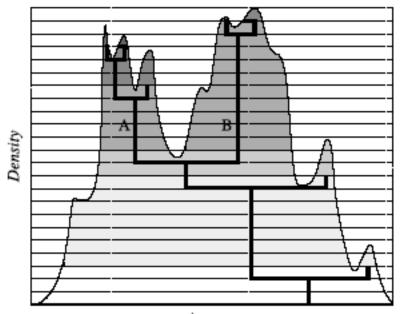

- Originally (starting with Kron in 1979) simple star-galaxy separation was the goal.
- These days packages do a lot more:
 - Deblending
 - Filtering
 - Photometry shape decomposition
 - FOCAS Jarvis & Tyson, 1981, AJ 86, 476
 - PPP Yee, 1991, PASP, 103 396
 - Sextractor Bertin & Arnouts, 1996, A&A Sup. Ser. 117,393

Star-Galaxy separation

- Galaxies are resolved, stars are not
- All methods use various approaches to comparing the amount of light at large and small radii.



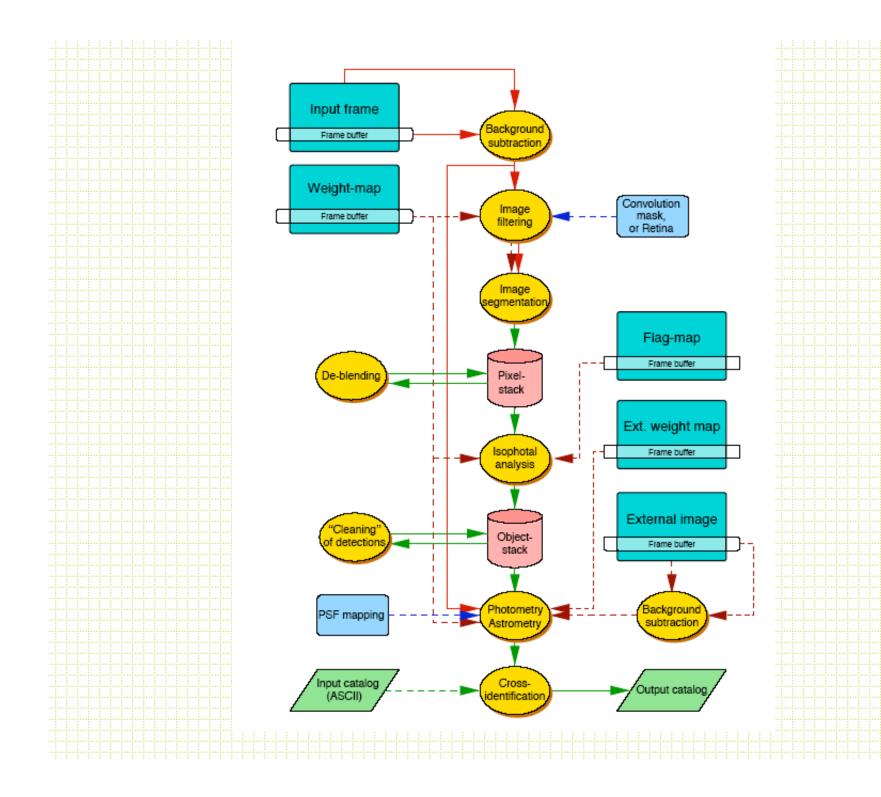
- m_{small r}/m_{large r}
- Total mag/peak count
- Mag/average surface brightness
- DAOPHOT CHI (PSF fit/predicted PSF fit)
- Often talk about moment analysis.


Same thing in y. n=1 is centroid, n=2 is variance etc.

Sextractor

 Most commonly used package these days is Sextractor (although for pure star-galaxy separation it is hard to beat using the difference of two apertures).

- Bertin & Arnouts, 1996, A&AS, 117, 393
- User's Manual
- Sextractor for Dummies v4
- Not for good surface photometry, but good for classification and rough photometric and structural parameter derivation for large fields.
 - 1. Background map (sky determination)
 - 2. Identification of objects (thresholding)
 - 3. Deblending
 - 4. Photometry
 - 5. Shape analysis


Area

Thresholding is an alternative to *peak finding*. Look for contiguous pixels above a threshold value.

- User sets area, threshold value.
- Sometimes combine with a smoothing filter *Deblending* based on multiple-pass thresholding

Sextractor Star/Galaxy Separation

- Lots of talk about neural-net algorithms, but in the end it is a moment analysis.
- ``stellarity''. Typically test it with artificial stars and find it is very good to some limiting magnitude.

