IR Astronomy

- Eye response goes to 0 at 7500Å
- Silicon bandgap energy of 1.1eV means a hard cutoff in CCD response at 1.1µ
- `near-IR': $1\mu 2.5\mu$
- `mid-IR': 2.5µ 25µ
- `far-IR': 25µ 350µ

Backgrounds

Note vertical scales on plots!

Why IR?

• Galactic dust extinction law:

 $k_{2.2\mu} \sim 0.1 k_{0.5\mu}$

- Cool stuff: $\lambda_{\text{peak}}(\text{planck}) = 2898/T (\mu)$
 - Cool stars emitted energy peak ~ 1μ
 - Giant planets $\sim 6-15\mu$
 - Dust re-radiation $\sim 20-200\mu$

High-z Universe

- $\lambda = \lambda_0 (1+z)$
- @z=1.8 Ca H&K `break' redshifted to J band

Detectors

• Original IR detectors were lead-sulfide, then germanium *bolometers*.

Photoconductive: resistance a very sensitive function of T. Ran at liquid helium temperatures (4K).

 1980's the first photo-diode (CCD-like) detectors became available with semicondutors that had smaller bandgaps than silicon
larger dark currents!

Material	wavelength(µ)	Toperate
Si	<1.1µ	160K
HgCdTe	0.8 - 5µ	65K
InSb	1 - 5.6µ	35K
SiAs	6 - 27µ	10K

Special considerations for IR observing

- Hardly any!
- Chopping (highly variable background)
- Backgrounds are enormous
- Don't ignore detector dark/readout noise
- Telescope designers be careful
 - Baffling
 - Cold pupils
 - Underfilled secondaries