Digital Detectors

* By far the most common detector for
wavelengths 300nm<A<1000nm is the
CCD.




CCDs

1. Quantum efficiency 1s more than an order of
magnitude better than photographic plates.
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These are silicon fab-line

devices and complicated
to produce

Invented 1969 Boyle and
Smith at AT&T Bell Labs

CCDs remain physically
small compared to
photographic plates, but
they took over rapidly
anyway.



CCDs: How do they work?
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To catch Infrared photons, need
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CCDs: How do they work?

e Silicon semiconductors with ““gate”
structure to produce little potential corrals.

Photons
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e Atroom temperature, electrons in high-energy tail
of the silicon spontaneously pop up into the
conduction band: “dark current” . Cooling the
detectors reduced the dark current although at
about -120C the quantum efficiency starts to

decrease.

e Therefore, CCDs usually are put into dewars with
liquid nitrogen cold baths and heaters and the
temperature 1s actively controlled to ~1C.

 Readout speed is typically adjustable--faster
readout gives higher readout noise per pixel.



CCDs cont.

* The potential corrals that define the pixels
of the CCD start to flatten as e collect. This
leads first to saturation, then to e spilling
out along columns.

e The “inverse gain’ is the number of e per
final “count” post the A/D converter.

* One very important possibility for CCDs 1s
to tune the response to be linear.




e “Counts = ADU = DN

/ Digital Number
Analogue-to-digital unit

e DN is not the fundamental unit, the # of detected

electrons is. The *>Gain’  is set by the electronics.

e Most A/D converters use 16 bits.
DN from: |0to (2!°-1)=65535

for unsigned, long integers

e Signed integers are dumb: -32735 to +32735
+/-(215 - 1)



Binary arithmetic

Each bit can be O or 1

Register: 16 15 14 13 12............. 1
8RR E L BARRa R aRR A RRaRB N R AREE R ARE A 20

SO 0000000000010101

1S 2oy

= 16+4+1=21



What gain do you want?

Example: LRIS-R had a SITe 24u-pixel CCD with
pixel “wells’ ~ that hold ~350,000 e-

e ]6-bit unsigned integer A/D saturates at 65535DN

e Would efficiently maximize dynamic range by
matching these saturation levels:

350,000 S
65,535 " DN

e Note, this undersamples the readout noise and
leads to “digitization” noise.




Signal-to-Noise (S/N)

e Signal=R.e® t\

[ time

detected e-/second

e (Consider the case where sky

we count all the detected
e- 1n a circular aperture
with radiusr.



e Noise Sources:

ARt = shot noise from source
\/Rsky teqr = shot noise from sky in aperture
\/ RN’ - v’ = readout noise in aperture

\/ [RN >+ (0.5 x gain)z] : W = more general RN

\/ Dark - ¢ - 7’ => shot noise in dark current in aperture

R. = e /sec from the source
Rsky
RN = read noise (as if RN” e” had been detected)

= ¢"/sec/pixel from the sky

Dark = e-/second/pixel



* Note that each arriving photon is
independent of previous or subsequent
photons so the noise is “statistical” or
“shot” or “Poisson’ . For Poisson
distribution the standard deviation 1s:

o=\N

* Need to apply this to detected e—, not counts



S/N for object measured in aperture with radius r: n;,=# of

pixels in the aperture= mr?

pix

Noise from the dark
current in aperture

Signal < » Rt 4
v
| ain’ %
Noise—|R, - t+ R, (RN + 5 ) n,, +Dark-t-n,
\_Y_} H—/ 2
/ S ~ J
/ Readnoise in aperture

Noise from sky e- in aperture

All the noise terms added in quadrature
Note: always calculate in e-




S/N Calculations

* S0, what do you do with this?
— Demonstrate feasibility
— Justify observing time requests

— Get your observations right



Side Issue: S/N & omag

n =+ (S(m) = Co — 2510g(S & N)
=c,—25log[S(1= )]
=c,-2.5log(S)-25log(1+ ¥)
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o(m) =2.5log(l + -~

SIN
: 2.5 > 3
Note:in log +/- not = —[M = %(%) + %(%) = ]

N S
symmetric 2.3

~1 087(ﬂ)<—> Fractional error
A/v. S

This is the basis of people referring to +/- 0.02mag error as “2%"




S/N <> omag

S/N omag
2 0.44
10 0.10
100 0.01




How do you get values for some
of these parameters’?

e Dark Current: CCD@-120°C < 2e-/pix/hour

HgCdTe: ~30e-/pix/hour
e RN: CCD: 2 - 6 e-/pix
HgCdTe: 3 - 10 e-/pix

e R.: for a given source brightness, this can be calculated for
any telescope and total system efficiency.

e In practice: Go to the facility WWW site for everything!
e Example: MOSFIRE



https://www2.keck.hawaii.edu/inst/mosfire/detector.html

Source Count Rates

Example: LRIS on Keck 1

for a B=V=R=I=20mag object @ airmass=1

1470 e-/sec

1521 e-/sec

1890 e-/sec

— | A <|™

1367 e-/sec

To calculate R for a source of
arbitrary brightness only
requires this table and a bit of
magnitude math.




Source Count Rates

e e et e (1)

AR R e I R e 2)

m, - m, =-2.5[log(1)) - log(1,)]......... D -(2)

m -m,=-2.5 log(%)

II—l = 10_(%) Let I, be the intensity for the fiducial m=20 object
2

m; -20 ) So, plug in magnitude of target

| PG (ml) = 120 : 1()_( i to get estimates source rate of
detected e-
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Signal from the sky background is
present in every pixel of the aperture.
Because each instrument generally
has a different pixel scale, the sky

brightness 1s usually tabulated for a

site in units of mag/arcsecond?.

sky

| | ll

6000
Wavelength (A)

(mag/[7])
Lunar
age U B \Y4 R I
(days)
0 |220 227218209199
3 | 215|224 (217|208 199
7 1199 | 216 | 214|206 | 197
10 | 185|207 | 207 | 203 | 195
14 | 170 ] 195|200 | 199 | 192




Sky: Optical — near IR

e The sky brightness in the
blue is (mostly) Rayleigh
scattered light from the
Sun

e Moving redward of
550nm, sky brightness
increasingly due to
atmospheric emission
(mostly OH) although
there 1s still scattered
sunlight

Sky Brightness (AB mag/arcsec 2 )
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H- and K-band sky

e Much higher than optical,
particularly integrated in a
broad filter

e At MA 2>3000 can
resolve the OH emission
and it can be quite dark
between lines

e There 1s additionally some
blackbody emission from
the earth’s atmosphere and
telescope/instruments
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“thermal” wavelengths

e Become dominated
by the black-body
emission of the
facility and
atmosphere

e JWST has an eight

order of magnitude
advantage...
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Scale =" /pix (LRIS-R :0.218" /pix)
Area of 1 pixel = (Scale)’ (LRIS-R :0.0475"

this 1s the ratio of flux/pix to flux/"

In magnitudes :

I.. =IScale’ [ = Intensity (¢"/sec)

X

-2.51og(l;, ) = -2.5[log(l, ) + log(Scale®)]

m; =m, —2.5 log(Scale?) (for LRIS-R : add 3.303mag)
and
R, (m;)=R(m=20)x10"""" To calculate sky in
Example, LRIS in the R - band : fi(r)rlllélts per pixel per

R, =1890x 10°4*#20 2 39 1 ¢ /pix/sec

VR & =0.35¢ /pix/sec =RN in just 1 second



S/N - some limiting cases. Let’ s assume CCD with Dark=0,
well sampled read noise.

R.t
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Bright Sources: (R.t)"> dominates noise term

R.t i 1
S/Nz\/RTt—\/RTtOCt

Sky Limited (/R 4t > 3xRN): S/N o ot

\/nplx sky

Note: seeing comes in with n;, term

pix




What 1s 1ignored 1n this S/N eqn?

Bias level/structure correction

Flat-fielding errors

Charge Transfer Efficiency (CTE)
0.99999/pixel transter

Non-linearity when approaching full well
Scale changes in focal plane

A zillion other potential problems



