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ABSTRACT

We report a nonperturbative S-matrix calculation of the triple-a reaction. Our approach is similar to the
calculation of three-body reactions in atomic physics, except that we use experimental values for the widths of
the nuclear states rather than calculating them from first principles. The S-matrix approach has several advan-
tages. First, we are able to define precisely the meaning of the energy-dependent widths I'(E) of the
o + a — ®Be and o + ®Be — '2C reactions in terms of the interaction Hamiltonian for these reactions. Second,
we show that at resonance the width I'(E) is independent of the electron screening. Third, we are able to give an
exact expression for the abundance of (unstable) ®Be compound nuclei for all temperatures and densities (not
just for high temperatures where the Saha approach is valid). Finally, we note that our S-matrix formalism
can be applied to other reactions in which electron screening is important, including three-body reactions and
reactions involving weak interactions.

We obtain an analytical expression for the screened triple-o reaction rate which is accurate for all tem-
peratures and densities. We identify a new nonresonant reaction regime at high (log p > 9.7) densities. We
compare our results with those of Cameron and of Nomoto, Thielemann, and Miyaji, and verify the latter’s
expression for the unscreened reaction rate. However, we show that the reaction rate in the pycnonuclear
regime cannot be obtained from the unscreened rate using a screening factor, and the results of Nomoto,
Thielemann, and Miyaji therefore cannot be used in this regime.

Subject headings: nuclear reactions — nucleosynthesis — stars: abundances — supernovae — X-rays: bursts

I. INTRODUCTION

The triple-a reaction is one of the most famous nuclear reactions in astrophysics. It is central to the idea that the heavy elements
are formed by nuclear processing in stars during their late stages of evolution. This idea initially encountered a stumbling block in
that no stable nuclei exist for atomic numbers A = 5 or 8; thus neither proton-capture nor a-capture reactions on “He can lead to
heavier nuclei. This led to the demonstration by Salpeter (1952, 1953) that *2C could be formed in the collision of three a-particles,
the conjecture by Hoyle (1954) that this process must be enhanced by a hitherto unknown resonance of '*C, and the experimental
discovery by Fowler and coworkers of just such a resonance (Fowler and Greenstein 1956; Cook et al. 1957; see also Salpeter 1957).
Such helium burning is now recognized as one of the major nuclear burning stages in stellar evolution (cf. Clayton 1968). It occurs in
the helium cores of normal stars at temperatures T ~ 10® K and densities p ~ 10>-10° gcm 3.

More recently, the triple-a reaction has become recognized as important in the very late stages of stellar evolution. It is of
particular importance in accretion onto degenerate dwarfs and neutron stars. During such accretion, a helium layer is built up either
by hydrogen shell burning in the accreted material at the surface of the star, or by transfer of material from a companion star which
has evolved to become a helium main-sequence star or a degenerate dwarf. If the accreting star is a degenerate dwarf, the triple-a
reaction determines the conditions under which a helium detonation or carbon deflagration Type I supernova may occur (Nomoto
1982). If it is a neutron star, the triple-a reaction determines the properties of X-ray bursts (see the reviews by Lewin and Joss 1983
and Taam 1985; see also Miyaji and Nomoto 1985) and, possibly, y-ray bursts (see the reviews by Woosley 1984; Hameury et al.
1984). In either case, helium burning takes place at low temperatures (T ~ 10’-10% K) and high densities (p ~ 105-10° gcm %), as a
result of the high surface gravity of the accreting star. Under such conditions, the electron background is highly degenerate and
partially screens the Coulomb forces between the reacting nuclei.

Cameron (1959) carried out the first calculations of the triple-« reaction at low temperatures and high densities. He found that
electron screening dramatically enhances the nuclear reaction rate (see also Clayton 1968; Salpeter and Van Horn 1969). Since then
a controversy has developed about how to treat the electron screening properly, given the three-body nature of the reaction and the
unstable intermediate state consisting of the 8Be compound nucleus. Recently, Nomoto, Thielemann, and Miyaji (1985, hereafter
NTM) have carefully examined the reaction, using a heuristic approach to treat the unstable ®Be intermediate state in the
nonresoriant regime.

In this paper, we report a nonperturbative S-matrix calculation of the triple-o reaction. Our approach is similar to the calculation
of three-body reactions in atomic physics (Heitler 1954; Lamb and ter Haar 1971), except that we use experimental values for the
widths of the nuclear states rather than calculating them from first principles. The S-matrix approach has several advantages. First,
we are able to define precisely the meaning of the energy-dependent widths I'(E) of the « + o — ®Be and « + ®Be — !*C reactions in
terms of the interaction Hamiltonian for these reactions. Second, we show that at resonance the width T'(E) is independent of the
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electron screening. Third, we are able to give an exact expression for the abundance of (unstable) ®Be compound nuclei for all
temperatures and densities (not just for high temperatures where the Saha approach is valid). Finally, we note that our S-matrix
formalism can be applied to other reactions in which electron screening is important, including three-body reactions and reactions
involving weak interactions.

We obtain the following results. We present an analytical expression for the screened triple-o reaction rate which is accurate for all
temperatures and densities. We identify a new nonresonant reaction regime at high (log p > 9.7) densities. We compare our results
with those of Cameron (1959) and NTM, and verify NTM’s expression for the unscreened reaction rate. However, we show that the
reaction rate in the pycnonuclear regime cannot be obtained from the unscreened rate using a screening factor, and that NTM’s
results therefore cannot be used in this regime.

We derive the S-matrix for n-body reactions in § II, and obtain expressions for the energy widths of the intermediate states, the
abundance of the unstable intermediate states, and the cross sections for the reactions involved. We apply our formalism to the
triple-o reaction in § ITI. We discuss our results and derive an analytical expression for the triple-a reaction rate that is accurate for
all temperatures and densities in § IV. In § V we compare our results with those of Cameron (1959) and NTM, and in § VI we
summarize our conclusions. All of the mathematical details are left to Appendices A-E.

II. SCATTERING MATRIX PICTURE

The triple-a reaction is a two-stage process. First, two a-particles collide to form the unstable compound nucleus ®Be. Before the
®Be can decay, a third a-particle collides with it to form an excited state of 12C, which then decays by two successive y-ray
transitions to its ground state. Hence one must be able to treat unstable intermediate states properly in order to obtain the triple-a
reaction rate. Previous work by Cameron (1959) and NTM has used the following heuristic argument to treat the unstable
intermediate state: the width of the unstable ®Be state gives its lifetime, and therefore the formation rate of excited 12C nuclei is
proportional to this lifetime times the Breit-Wigner cross section for the reaction o + 8Be — 12C*. However, it is impossible to
define the lifetime of the unstable intermediate state for different specific energies because of the Heisenberg uncertainty principle.
Thus the validity of the heuristic argument is unclear.

By starting with the Schrodinger equation, we are able to derive rigorously an expression for the reaction rate using the S-matrix,
without assuming the form of the cross sections for the intermediate reactions or that the unstable intermediate state is in
equilibrium.

a) S-Matrix
Suppose that we have (k + 1) stable states when there is no interaction between them. When the interaction is turned on, these
states are no longer stable and they undergo transitions with one another. Let us separate the total Hamiltonian into an unper-
turbed part, Hy, and an interaction part H,,. Let us further assume that the eigenstates |n) (n=0,1,2,..., k) of Hy are complete
and orthogonal, with eigenvalues E, and normalizations .#",, and that both H, and H,, are Hermitian operators. Since the
unperturbed Hamiltonian is Hermitian, the unperturbed energies E, are real numbers. Using the interaction picture, the Schrdd-
inger equation can be written as

N Y250 = T, Ho 55 42, 1), @1

where H,,, = {n|Hp|m>/(AN", N",)"/%. Here b,(t) is the amplitude of the state ¢’#°/*|n), and A", b,(f) corresponds to the S-matrix
element {n|S(t; 0)|0). Thus the S-matrix gives the abundance of each state as a function of time t.

The problem then reduces to solving equation (2.1). We solve it by Fourier-transforming the b,(t) to form the corresponding
Green’s functions (Heitler 1954; Lamb and ter Haar 1971). The transformed equations contain no derivatives of the Green’s
functions, and may therefore be solved simply by algebra. We give the mathematical details of the solution in Apendices A-D.

b) Saha Equation

Let us illustrate our formalism by applying it to the simplest case, in which there is one unstable intermediate state. The physical
situation is as follows. The initial state undergoes transitions between the initial, the intermediate, and the final states. Under some
conditions, thermal equilibrium may be established between two states, and their relative abundances may then be given by the
Saha equation. The final state is produced after passing through the intermediate state. We may also expect that the cross section for
the final state will take the Breit-Wigner form. In this section, we show that our formalism does lead to the Breit-Wigner cross
section for the final state and that the Saha equation for the abundance of the intermediate state is obtained for special initial
conditions. We also treat carefully the scattering of identical particles.

From Appendix B, the equilibrium value of the intermediate state [m) is given by

2 N ol Humol?
|60 “E—E) + T2 (2.2)

where I is the effective width (see below). The phase-space density of the relative momentum of the final state is

4nVp?
o

P(E) = 23)
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The momentum p and velocity v are related to E in the Newtonian way using the reduced mass. All particles are assumed to have
spin zero. I'y(E) is given by 27np,(E) times the absolute square of the matrix element of the interaction Hamiltonian. We call this
definition the standard expression for the energy width. If the channel Q consists of identical particles, the effective width I olE) is
smaller than the standard expression by a factor of 2 because the available phase space is half as large. The total effective width I~ is
the sum of the effective widths of all the possible exit channels. The energy width of the initial state, I'y(E), is defined in the same way.
We choose A", = NyN,, where N, and N, are the total numbers of the particles 1 and 2 in a volume V, respectively. Hence we
obtain

NNy Hypol? = niininy vhlo(E )V, 24)

where the de Broglie wavelength, 1 = #/p, and the number densities ny = N,/V and n, = N,/V are used. The momentum and
velocity are related to the relative energy of the initial state by the reduced mass.

Usually the initial state is not purely monochromatic. We must average over the initial energy distribution f,(E,). The average
{I,(t)1*} is defined in terms of | b,(t)|2, and the initial energy distribution by

{1bn01} = f |bw(®)*fo(Eo)dE, . 2.5)

Since {|b,(1)|*} is the average total number of the intermediate state, its average number density, n,(t), is given by dividing it by the
volume V. The initial energy distribution f,(E,) can be decomposed into the distribution of the center-of-mass energy fi 4 (Eq 45)
and that of the relative energy f;,(E,,). Since we assume that b,(t) does not depend on the center-of-mass energy, the integral over
E, ., gives unity. For the identical initial particles, we must divide by a factor of 2. Using the effective energy widths, we obtain

® f (EIZ)QfIZ(EIZ)dEIZ
n,(t) = nhnyn f 72 o L ) (2.6)
"o T (B — E + [T(E)2D
If we assume Maxwellian distributions for the initial particles, f12(E,,) can be written as
2 _ER?
le(EIZ) = ﬁ (kT)3/2 e ErfkT . (27)
The average number density then becomes
2 27]3/2 1 © I" —E12/kT
", = ,,lnz[M] 1 f oErsle PMdE,, 8
mym, kT 2n Jo (Eip — E,)* + [[(E,,)/2]

If the effective energy width ['(E,,) is sufficiently small and T'o(E,) is the dominant factor in [(E,) at the resonant energy E,,, the
denominator of the integrand behaves as a d-function. The average number density of the intermediate state, which we denote by n},
is then given by

n¥ _ 2n(m, + mz)h2 3/2e—Em/kT 29
nyn, mym, kT ‘ |

This is the Saha equation for the relative densities of the initial and intermediate states. Thus we have demonstrated that our
expression reduces to the Saha equation as a special case.

¢) Breit-Wigner Cross Section

The quantity d|b(t)|*/dt is the formation rate of Q-channel particles in volume V. When the Q-channel consists of two identical
particles, one creation of the Q-channel corresponds to two creations of the formed particle. The observed creation rate should
therefore be multiplied by a factor of 2. The formation rate per unit volume is then given by ro(t) = (1 + 691, 02)by(t)]%. Using the
effective and standard energy widths, we obtain

rQ(Elz)r ol Erp)v
(Ey2 — E,)* + [[(E,,)/27
The reason why the energy width for the initial state in the numerator retains the standard value rather than the effective value is

simply that we have not averaged over the energy distribution of the initial state. Equating ry(t) = nyn, 6(E,,)v with expression
(2.10), we obtain

rolt) = ni’nin, (2.10)

Uo(E12)To(E; )
(Evz — E,)* + [T(E )21

When the Q-channel does not consist of identical particles, the above cross section coincides with the Breit-Wigner formula given in
Fowler, Caughlan, and Zimmerman (1967). Our definition of the cross section is consistent with the following derivation. When rolt)
is averaged over the relative energy distribution of the initial state, which we denote by {ro(?)}, we must consider the identities of the
particles in the initial state when calculating its energy width. Equating {ry(t)} with n;n,{av>/(1 + 8,,), where the angle brackets

o(Ey,) = ni?

2.11)
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denote the average over the relative energy distribution of the initial state, we obtain the same definition for the cross section. We
can write down {ry(t)} explicitly as

® .k (E )T (E12)vf12(E 2)dE 5
rod) = (1 +6 n et L 2.12
R N veer o R
Under the same condition for which we derived the Saha equation, the creation rate of the channel Q can be written as
To(E
{ro@®} = Loy nk . (2.13)

h

The physical interpretation of this equation is as follows. The intermediate state is formed according to the Saha equation. The
final-state particles are produced by the decay of the intermediate state, which has a lifetime h/T o(E,,). The standard thermonuclear
triple-o reaction rate (Clayton 1968) is derived from the product of expressions like that in equation (2.13) for each stage in the
reaction. Thus we have demonstrated that our expression reduces to the standard expression as a special case.

III. TRIPLE-ALPHA REACTION

a) Parameter Regimes in the (p, T)-Plane

The ground state of the compound nucleus ®Be lies 91.78 keV above the energy of the “He + “He system. This state has an
a-particle decay width of 6.8 €V, and therefore usually decays quickly back into two a-particles. However, occasionally the collision
of another a-particle with the *Be compound nucleus forms an excited state of 12C, 12C*(0*), which lies 287.5 keV above the energy
of the ®Be + *He system. This state almost always decays quickly back into ®Be + “He or 3 “He, since the partial widths for these
decays are 8.9 and 6.8 eV, respectively. However, very rarely it decays to the ground state of 12C by the successive y-ray transitions
0% —>2* and 2* — 0", with energy widths of 3.7 and 10.8 meV, respectively. We have taken the values of the energies and decay
widths for the states of ®Be from Ajzenberg-Selove (1984) and for the states of 2C from Ajzenberg-Selove and Busch (1980); these
states are shown schematically in Figure 1.

Figure 2 illustrates the resulting parameter regimes for the reaction “He + “He — %Be [the regimes for the reaction

8Be
4He +4He
12c*0") |
A
Em
2
8Be + 4He

Ey,

2c* (2" '

A
E),z

'2¢ (0*) '

FiG. 1—Energy level diagrams for the reactions “He + “He — ®Be and “He + ®Be — !2C*(0*). The quantities I mi» Umy» Ty, and T in Table 2 are the energy
widths associated with the states E,, , E,, , E, , and E, , respectively.

my> 71

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987ApJ...317..368F

J. - C317.-368F

]

rTI87A

372 FUSHIKI AND LAMB Vol. 317

<
~ 7 WEAK/STRONG NON-RESONANT -
3
v
[
L e PYCNONUCLEAR NON-RESONANT ¥ |
\\)\L ) u_]E u.lE
€0 A
W 2|2
5 | | | l | |
4 5 6 7 8 9 10
log p (g cm )

FiG. 2—Resonant and nonresonant regimes for the “He + “He — ®Be reaction assuming a pure helium composition. The quantities E,,, E,,, and |U| are the
resonance energy (threshold energy), the Gamow peak energy, and the absolute value of the screening potential for the reaction. The shaded region at high
temperature is the thermonuclear resonant regime. The weak and strong screening nonresonant regimes lie below the shaded region and to the left of the line
|U| = E,,; the pycnonuclear nonresonant regime lies below the shaded region and to the right of this line. The high-density resonant regime lies in a narrow strip just
to the left of the line |U| = E,,. The high-density nonresonant regime lies to the right of the |U| = E, line.

“He + ®Be — 12C*(0™) are similar]. At temperatures T ~ 10® K, corresponding to the cores of normal stars, “He nuclei have kinetic
energies E ~ 100 keV. The energy E,, of the Gamow peak, which is determined by the convolution of the Coulomb barrier and the
Maxwellian distributions of the reacting “He nuclei (Clayton 1968), is greater than or equal to the resonance energy E,,. Hence, the
reaction proceeds via the resonance at 91.78 keV, and the abundance of ®Be nuclei comes into thermal equilibrium.

When the temperature drops to T ~ 107 K, the Gamow peak energy E,, falls below the resonance energy E,, (see Fig. 2), and the
8Be resonance becomes inaccessible to the “He thermal distribution. However, the ®Be nucleus can form by nonresonant reactions,
which occur in the low-energy wing of the resonance peak. At low temperatures the rate of formation of ®Be due to the nonresonant
reactions dominates that due to the resonant reactions, and the abundance of 8Be is no longer in thermal equilibrium.

At low temperatures and high densities, electron screening increases the effective energy of the reacting “He nuclei and enhances
the reaction. Because the lower limit of the effective energy of the reacting particles is given by the electron screening potential U,
when the potential becomes greater than the energy of the Gamow peak, i.e., when U > E_,, the reaction rate depends only on the
density (see Fig. 2). Cameron (1959) termed such reactions “pycnonuclear reactions” (where pycno- is derived from the Greek
pyknos, “ dense, compact ”). Since the effective energy of the reacting particles exceeds the Gamow peak of the nonresonant reaction,
the standard strong screening enhancement factors (Itoh et al. 1979; Alastuey and Jancovici 1978 ; Ichimaru and Utsumi 1984) are not
applicable.

b) Application of the S-Matrix Formalism

We start with the following picture. We assume that “He, ®Be, 12C(0*), 12C*(2*) and *2C*(0*) are eigenstates of the unperturbed
Hamiltonian. When the interaction is turned on, these states undergo transitions with one another. The strength of the transitions is
determined by the matrix elements of the perturbed Hamiltonian connecting these states. We can understand the meaning of an
“unstable particle ” within the S-matrix picture as follows. When the transition matrix elements of an eigenstate of the unperturbed
Hamiltonian have large values for a wide range of relative energies of the incident (or scattered) particles, this eigenstate may be
called an unstable particle. If we know the matrix elements, we can follow the time evolution of the eigenstates of the unperturbed
Hamiltonian. Thus we can determine the abundances of 8Be, 12C*(0*), etc. In calculating these reaction rates, we must take into
account the fact that the initial state consists of identical particles. We also note that since the polarizations and angular distribu-
tions of the y-rays emitted in the decays of the 12C excited states are not observed, we can treat these decays as if they involve
spin-zero particles. Below we give only the final expression obtained using the S-matrix formalism; further details are given in
Appendix E.

For a Maxwellian distribution of initial “He nuclei, the formation rate per unit volume of the ground state of 12C is given by .

r 2nh? 3 -
ro=nd =2 <———£———) KE,,, E,,, T

M ms Lmps Dmgs T) (3.1
h M, M, kT o Lis Do T)
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where n, is the number density of “He particles and M, , and M, , are the reduced masses of the “He + “He and ®Be + “He systems,
repectively. The function I is defined by the integral

e . Forom-— [ (1 + X)°T,(E,)e” ®*TdE, [, (Ee BTdE,
o e Eme S0 @u Jo Joo (By + Ey — Epy — Epy) + [To(E2)21% (Ey — Ep)* + [T (E)/2]2°

where X = (E, + E, — E,,, — E,,,)/AE(0* — 2*). The quantity AE(0* — 2¥) = 3.2152 MeV is the difference in energy between the
12C*(0*) and '2C*(2") states. The quantities E,,, and E,,, are the resonant energies of the *Be and '2C*(0*) states relative to the
ground states of the “He + “He and ®Be + “He systems, respectively, while E; and E, are the relative kinetic energies of the
“He + “He and ®Be + “He systems, respectively. The quantity I',, (E) is the effective energy width of the ®Be ground state for decay
into two *He nuclei with relative kinetic energy E,. It is half of the standard value, T',, (E,), because the particles in the final state are
identical. The quantity I',, (E,) is the energy width of the !>2C*(0™) state for decay into ®Be + “He with relative kinetic energy E,. In
order to clarify the meaning of “energy width,” we make the following remarks. The quantity I'(E) is the product of the phase-space
number density and the absolute square of the transition matrix element between the intermediate state and the particle state whose
relative kinetic energy is E. It therefore represents the strength of the transition. Also, since ['(E) at the resonant energy gives half of
the energy width appearing in the Breit-Wigner expression for the cross section, we shall call it the “energy width,” even for non
resonant values of E. Given this meaning, the quantity I'(E) is perfectly well defined for each specific energy E of the reacting
particles.

When both of the energy widths are very small at their resonant energies, the integrands behave as -functions. We then have
I =exp (—-E,,/kT — E,,/kT), and we obtain the standard (Clayton 1968) thermonuclear (resonant) expression for the triple-a
reaction. When the temperature is low and the density is high, we must know the form of the energy widths. For strong interactions,
the energy width can be written as I'(E) = 2kR,, yP(E), where k = (2uE)*/?/h and u is the reduced mass of the reacting particles; R, is
the radius of the nucleus; y is the reduced energy width of the nuclear state; and P(E) is a penetration factor (Bohr and Mottelson
1969). The penetration factor can be estimated using the WK B approximation. As long as the kinetic energy of the incident particle
is smaller than the Coulomb energy at the surface of the nucleus (~ 1 MeV), the penetration factor is proportional to E~1/2 exp
(—2nZ,Z, e*/hv) (for an s-wave interaction), where Z, and Z, are the charges of the colliding particles. The argument of the
exponential function is derived by integrating the wavenumber in the classically forbidden region. The energy width is then simply
proportional to exp (—bE ™ !/?), where b = 2u)'*nZ,Z, */h.

The electrons around a nucleus partially screen the Coulomb potential of the nucleus. The net effect of such screening in the
classically forbidden region is to shift the potential by a constant value U(< 0) (Cameron 1959; Clayton 1968). The energy of the
resonant state as determined by laboratory experiments is determined by the structure of the nucleus, in the absence of any
surrounding electrons. Hence the effect of electron screening on the resonant energy is to shift it downward by an amount |U|. The
net effect on the energy width is to move the effective energy up by an amount |U|. Using the index 0 to denote the values without
screening, we can summarize as follows:

(3.2)

E,=E,,—|U| (for the resonant energy) , (3.3a)
I'(E) - -

=exp [BE~ Y2 — bE + |U|)~V?]. 3.3b

=P (E + U] (3:3b)

In the pycnonuclear regime, the screening potential changes from —|U| at r = 0 to zero at the classical turning point. Hence 1| U |
should be used in equation (3.3b) instead of |U|, where 4 is a number between 0 and 1. The value of 1 depends on the detailed
structure of the screening potential. We will carry out a more detailed calculation of it in another paper. Since the final result
depends only on 4'/2, we shall take 4 = 1 throughout the rest of this paper. In the next section, we use these relations to discuss our
results.

IV. RESULTS

In order to understand the behavior of the triple-a rate, we convert the variables in the expression for it into dimensionless form.
We express the energies in terms of the Gamow peak energy of the reaction, E,. We introduce a nondimensional temperature, t,
which is related to the Gamow peak energy by © = 3E,, /kT. For the reaction of particles with masses M; and M, and charges Z,
and Z,, the parameter 7 is given by

2\ 1/3
M”) i @.1)

— 2/3( 2¢
T = 3(naZ,Z,) <2kT

where M = M, M,/(M, + M,)is the reduced mass and « is the electromagnetic fine-structure constant. The quantities e, c, y(€), and
u correspond to the dimensionless energies of the relative motion of the incident particles (E), the resonant energy (E,,), the energy
width [T(E)], and the screening potential (|U|), respectively. The indices 1 and 2 denote quantities and functions which are
associated with the “He + “He — ®Be reaction and the ®Be + “He — 12C*(0™*) reaction, respectively. The index zero refers to the
values of quantities when there is no screening. With these definitions, equation (3.3) can be summarized as

€L =Cro — Uy, €y =Cy0 — Uz,
71(€1) = y10(€r +uy), 72(€2) = V20(€2 + ) . 4.2)
The quantity I can be written in terms of the unscreened values. When there is no screening and the reaction is purely resonant, I
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is given by its classical value, exp (— T, ¢,0/3 — T;¢10/3). We denote this classical value by I,. The screening factor fis defined by

I

I_ = F(c105 €205 105 Y205 T1» T25 Uy, Uz) 4.3)
cl

f =
where F is defined by

_ 720(€20) 10(C10)

F
2n 2n

T T
exp [—33 (uy + c50 + 2¢507%) + -31— (uy + cq0 + 2c2‘0“2)]

y J“’ de, J” de, [ (1 + X)° exp [—1y(e; + 26, 1/)/3]  exp [— (€, + 2¢; '%)/3] (4.4)

€ — Ca0 + 5(€1 — €10)]° + [720(€2)/21% (€1 — €10)* + [F1ol€1)/2]*

Here X = [€, — 40 + S(€; — ¢10)]/A€, Ae = 3AE(0* —» 2%)/1,kT, and s = t,/7,. If there is no s(e; — ¢;,) term in X and in the
denominator of the first integrand of equation (4.4), the integral is completely separable. Hence we call s(€; — ¢;,) a “correlation
term.”

The transformation from cgs units to these nondimensional units was done for two reasons. The first reason is simply that we can
write the nondimensional quantity F in terms of nondimensional parameters. The second reason is that we can gain a good insight
into the behavior of F without performing any numerical integrations. The parameterse, = 1 and €, = 1 correspond to the Gamow
peaks of .reaction 1 (*He + “He — ®Be) and reaction 2 [®Be + *He — '2C*(0™)], respectively. The parameters €, and €, are
expressed in terms of the corresponding Gamow peaks. We call them GPU1 (for “ Gamow peak unit for reaction 1”) and GPU2 (for
“Gamow peak unit for reaction 2”). For 1 < T, < 10?, the temperatures ¢, and t, are of order 100. The function ¢~ ¢ *2¢™"*)3
behaves as a d-function of strength (4n/7)*/2e " at 1 GPU. The resonant energies ¢, and c,, are of order 10 GPU1 and 10 GPU2,
respectively, in this temperature range. The numerical values of the nondimensional parameters are summarized in Table 1.

Since the resonant peaks lie far above the Gamow peaks for temperatures T < 10® K, the Boltzmann factors suppress the
resonant reactions and make them less important compared with the nonresonant reactions. Hence we now discuss the behavior of
the nonresonant reactions. When the screening potentials u; and u, are smaller than 1 GPU1 and 1 GPU2, the integrals over €, and
¢, pick up the Gamow peaks and are independent of u; and u,. The screening factor is proportional to e*2*2/3+141/3 — ¢~ U2/KT=UUkT,
which is its standard value. However, when u, and u, become larger than 1 GPU1 and 1 GPU2, the integrals do not pick up the
Gamow peaks. Using the formula

© _ 3 1 1 _
J o Te 26123 g = [1 + = + O(W>:Ie—t(u+2u 1/2)/3 foru>1, 4.5)

we notice that the screening factor is proportional to exp (—2t,u; /2/3 — 2t,uy V/?/3). If the strong screening potential is used,
corresponding to a uniform electron background, we find that the argument of the exponential does not depend on temperature. It
is simply proportional to —p ~*/6, as derived by Cameron (1959).

The physical interpretation of this behavior is as follows. The energy width increases as exp (—bE*~ 1/2) when the effective energy
E* is enhanced by screening. When the screening potential is very large, this increase is not fast enough to compensate for the
decline of the Maxwellian distribution with energy. Hence, the energy of the Gamow peak decreases, and eventually it becomes
negative. When this happens, only the high-energy tail of the Gamow peak contributes to the reaction rate, and the reaction rate
cannot be described by the standard nonresonant reaction rate multiplied by the standard strong screening factor (Itoh et al. 1979;
Alastuey and Jancovici 1978; Ichimaru and Utsumi 1984). We also note that energy widths 3, o(¢;) and y,,(€,) in the denominator of

TABLE 1*
NONDIMENSIONAL PARAMETERS IN THE TRIPLE-a REACTION

“He + “He — ®Be 8Be + “He — 2C*(0™)

1, = 13492T5 1 1, = 23572T 51

€0 = 23.683T; 23 Cpo = 42462T ;23
F1o(Cro) = 17547 x 1073T 52 20(C20) = 1.3145 x 1073T 523
u, = 1.3451p2P(u,/2)~ 1 PT 23 U, = 1.3535p13(u,/2)" 13T ;23

Ae = 474.86T ;%3

2 The nondimensional temperature, t, is defined in eq. (4.1). Then the
Gamow peak energy is E, = tkT/3. The nondimensional energies are
obtained by expressing them in terms of the Gamow peak energy. The sub-
scripts 1 and 2 denote those quantities associated with the *He + *He — ®Be
and 8Be + *He — 12C*(0™) reactions, respectively. The subscript index zero
denotes the value when there is no electron screening. The quantities ¢ and y
are the nondimensional resonance energy and resonance energy width, respec-
tively. The quantity u is the absolute value of the nondimensional screen-
ing potential. In this paper we use the strong screening formula (5.2b). The
quantity Ae is the nondimensional resonance energy for the y-decay,
E“[IZC‘(O*')—’ IZC*(2+)].
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F1G. 3.—The left vertical scale gives the energy generation rate for the triple-« reaction, while the right vertical scale gives the depletion time scale for an “He
particle. We assume a composition of pure “He. The curves are drawn from our numerical calculations.

equation (4.4) are important only near the resonant energies, since they do not increase fast enough to dominant the denominator
(until near nuclear density).

The energy generation rate per gram is given by the product of the classical energy generation rate, (€3,)c;, and the factor F
defined in equation (4.4):

€3, = Fle3)a »

2
(€3)c = 5.120 x 102°Y3 % e 4401.5/Ts  (ergss™! g71), (4.6)
6
where T, and pg are the temperature and density in units of 10° K and 10° g cm™3, respectively, and Y is the helium mass
abundance. Figure 3 shows the energy generation rate as a function of density for fixed temperatures, based on our numerical
calculations. By using an asymptotic expansion, we can write the integral (4.4) (in cgs units) as

€3, = 5.120 x 10*°Y°pZ G(Ts, pe)GoATs, Pe) - 4.7

The functions G, and G, correspond to factors which are associated with the “He + “He — ®Be reaction and the
8Be + “He — 2C*(0™) reaction, respectively. The function G, includes the effect of the correlation term, about which we remarked
following equation (4.4). When u = 1.35p%/3/T%/® < 1, where p is defined by p = p(2/u,) (1, is the electron molecular weight), the
functions G (T, pe) and G (T, pe) are given by

(60.492p¥\[ exp (—1065.1/T;) s .. 1616 exp (—134.92/T%P)
G, = exp ( T T3 05458 > 107 = Po) + a5 (1" 4222 x 107 T2 + 2643 x 10 °T5" |’
106.35p%\[ exp (—3336.4/T) _ . 2446 (14 3.528 x 1073T2%)% exp (—235.72/T4")
= 1. “ . @
G2 e""( T, T2 001836 > 10° = Po) + "3 (12807 x 10 7127y + 2704 x 10-o75° )+
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where 6(x) = 1 for x > 0 and 6(x) = O for x < 0. When u > 1, they are

exp [(60.492p%3 — 1065.1)/T,] , .. 1178 1 exp (—77.554/pL/%)
= 458 x 10° — =2 4= ,
Gy T3 0(5.458 x 10° = bo) + 11 2 (1 5680 x 10-2p%3) + 8.815 x 10~ 'T2
exp [(106.35p1% — 3336.4)/T,] W .. 1348 1) (1 + 5070 x 10735133 exp (— 135.08/pL/6)
= 1. 10% — = — . (48b
G T3 6(1.836 x 107 = po) + TL? L+n (1 —3.791 x 107 2p2P3)2 + 5162 x 10~ 8T2 (4.8b)

These analytical expressions agree with our numerical integration to within a factor of a few for u ~ 1 and to within a few percent
for small and large u. The contours of constant energy generation rates are shown in Figures 4 and 5.

The multiplicative factors exp (60.492p%/3/T;) in G, and exp (106.355%/3/T;) in G, of equations (4.8a) correspond to the conven-
tional strong screening factors (see Clayton 1968) derived from the simple screening potential (eq. [5.2b]) discussed in the next
section. These factors can be replaced, if desired, by the more detailed expressions given by Itoh et al. (1979) for u < 1, and by
Alastuey and Jancovici (1978) for u < 1.6. However, such replacements are not valid for the pycnonuclear regime described by
equation (4.8b).

There are new regimes for log p > 9.737 in the “*He + “He — ®Be reaction and for log p > 10.264 in the ®Be + “He — 12C*(0*)
reaction, respectively. Above these critical densities, the screening potentials become larger than the resonance energies of the
corresponding reactions (see Fig. 2). The resonance energies therefore lie below the effective energy ranges for the reactions.
Consequently, the reactions are exothermic and nonresonant, even at high temperature. We call these regimes “high-density
nonresonant regimes ”; these regimes are the reason we introduced the step functions for the resonant terms in expressions (4.8a)
and (4.8b). In narrow bands in density just below the critical densities, the resonant reactions dominate even at low temperature. We
call these bands “ high-density resonant regimes.” Since the resonant reactions turn off above the critical densities, the reaction rate
drops suddenly by a factor of about 100 above the critical densities.

V. COMPARISON WITH OTHER WORK

We define three additional correction factors. The factor f, ..., is the ratio between the true reaction rate and the classical
resonant reaction rate when electron screening is negligible. It shows how much the contribution of the nonresonant reactions
enhances the reaction rate. The factor £, .. is the ratio between the true reaction rate and the reaction rate including the contribution
of the nonresonant reactions but not the effect of electron screening. It shows how much the reaction rate is enhanced by electron
screening. The factor f,, shows the deviation of the screening factor from the standard formula for strong screening. Using the

T li T

— log €3a(erg g 'sec ') =-20 \\ 4
x
’_
o 70 -
o
6.5 =
6.0 1 | I ] 1 | ! Il 1 | 1
4 5 6 7 8 9 10
log p (g cm™>)

Fi1G. 4—Contours of constant energy generation rate are shown in the (p, T)-plane
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F1G. 5—The same contours as in Fig. 4 are shown for a wider range of densities and temperatures

F-factor defined in equations (4.3) and (4.4), these three factors can be written as
fnonres = F(CIO’ €205 Y105 V205 T1s T25 07 0) ’

fo = F(c10, €205 Y105 Y205 T1> T25 Uy Up)
pure — . . R s
F(c105 €205 V105 Y205 T1s T25 0, 0)

frew = F(c10; €205 Y105 Y205 T1s T25 Uy Ua) (5.1)
dev — 3+ 3 . . . . .
€22B3TBE (e, €205 V105 V205 T1s T23 0, 0)

They are shown in Figures 6a, 6b, and 6¢. As examples, the nonresonant reaction rate is larger than the classical resonant reaction
rate by a factor of 10°°° at log T = 6.5, and electron screening enhances the nonresonant reaction rate by a factor of 10%¢ at log
T = 6.5and log p =9.5.

The energy generation rate calculated by Cameron (1959) is shown in Figure 7. Our reaction rate increases faster than Cameron’s
as the density increases. This is due to differences in the screening potentials used and in the resonant terms. Cameron used the
screening potential

3 (4nn,\ 3
_(U)Cameron = 5 (%) le%/3e2 s (523)
while we use
9 (4mn\'3
~ (UrusmiciLams = T ( ’;") [(Z, +Z)%° - Z3* — 23] (52)

As a consequence, Cameron’s “He + “He — ®Be reaction rate increases as exp (— 65.1/p&/%), while ours increases as exp (— 77.6/p¢'°).

The ®Be + “He — 12C*(0*) reaction rate shows the same tendency. Cameron did not include electron screening in the resonant
terms, while we have done so (see expressions [4.8a] and [4.8b]). The reaction rates also differ for two additional reasons. First,
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Cameron used 1.4 eV for the width of the 12C*(07) to 12C*(2*) radiative transition, while we use the more recent experimental value
of 3.7 x 1073 eV (see Table 2). Second, Cameron dropped the E~/? dependence in the penetration factor. As a consequence, the
energy widths of a-capture processes acquired E/2 dependence. When averaged over the initial energies, this leads to a factor
kT/(E,, E,)** compared with our calculation. Both of these factors are of order 10° in the strong screening regime; however, they
go in opposite directions and the overall error is therefore much smaller.

The energy generation rate calculated by NTM is shown in Figure 8. When the correlation term in the reaction rate is omitted
[see our remark following eq. (4.4)] and the density is low (u < 1), our results agree with those of NTM. However, when the
correlation term is included, we find that the energy generation rate is reduced only by a factor [E,,,/(E,,, + E,,)]* ~ 0.6, whereas
NTM’s energy generation rate decreases to less than a few hundredths of its former value. Furthermore, NTM give an expression for
the unscreened reaction rate only. In the weak and strong electron screening regimes, the screened reaction rate may be found
simply by multiplying their expression by the standard screening factor (e.g., [toh et al. 1979). However, as we discussed earlier, this
approach cannot be used in the pycnonuclear regime. What would happen were one to do so is illustrated by the extensions of

TABLE 2

COMPARISON OF EXPERIMENTAL PARAMETERS USED
BY VARIOUS AUTHORS

Parameter Fushiki-Lamb Cameron NTM
91.78 keV 94 keV 91.78 keV
287.5 keV 278 keV 287.7 keV
3.2152 MeV 3.2175 MeV
4.439 MeV
6.8 eV 6.8 eV
8.9 eV ... 8.5eV
3.7 meV 1.4 eV 3.7 meV
10.8 meV
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F16. 9.—Weak, strong, and pycnonuclear screening regimes for the “He + “He — ®Be reaction, assuming a pure helium composition. The quantities |U| and E
are the screening potential and the Gamow peak energy for the reaction.

NTM’s curves shown as dashed lines in Figure 8. We calculated these lines by multiplying NTM’s unscreened reaction rate by the
strong screening factor obtained using our simple expression for the screening potential (f = e/V/*T). Thus NTM’s expression for the
reaction rate can be used in the weak and strong screening regimes, but not in the pycnonuclear regime. Our analytical expression
(egs. [4.7] and [4.8]) is valid in all three regimes. Figure 9 shows these regimes for the reaction *He + “He — ®Be [the regimes for
the reaction ®Be + “He — '2C(0*) are very similar]. Table 2 summarizes the experimental parameters used by Cameron, NTM, and
ourselves.

VI. CONCLUSIONS

We have developed an S-matrix formalism which can be applied to reactions in which electron screening is important, including
three-body reactions and reactions involving weak interactions. The S-matrix approach allows us to define precisely the meaning of
the energy-dependent width of the reaction in terms of the interaction Hamiltonian. The reaction rate can then be calculated
quantum mechanically from first principles or by using the experimental value of the energy width at resonance, as we have done in
this paper.

We have discussed systematically the various regimes of the triple-o reaction, and have identified a new nonresonant regime at
high (log p > 9.7) densities. Using the S-matrix formalism, we have obtained an analytical expression for the screened triple-a
reaction which is accurate for all temperatures and densities. We have compared our results with those of Cameron (1959) and
NTM, and have verifed NTM’s expression for the unscreened reaction rate. However, we have shown that the reaction rate in the
pycnonuclear regime cannot be obtained from the unscreened rate using a screening factor, and that NTM’s expression therefore
cannot be used in this regime. We confirm the e ““/*"’® dependence of the pycnonuclear reaction rate (Cameron 1959).

We are grateful to Fred Lamb for advice about the S-matrix formalism and its application to three-body reactions, and to Friedel
Thielemann for discussions about the triple- reaction and for sharing his calculations with us. We thank Chris Pethick and George
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values for the relevant nuclear reactions. We also thank Al Cameron, Willy Fowler, Dai-ichiro Sugimoto, and Jim Truran for
stimulating discussions about electron screening. One of us (I. F.) gratefully acknowledges the hospitality of the Department of
Astronomy and Astrophysics and the Enrico Fermi Institute at the University of Chicago, where this work was completed. This
research was supported in part by National Aeronautics and Space Administration grants NAG-8520, NAG-8563, NAGW-246,
and NAGW-830.
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APPENDIX A
INTERACTION PICTURE

Suppose that there are (k + 1) stable states when there is no interaction between them. When the interaction is turned on, these
states are no longer stable and they undergo transitions with one another. Let us assume that the total Hamiltonian can be
separated into two terms,

H=H, + H,,, (A1)

where H, and H,, denote the unperturbed and interaction parts, respectively. Let us further assume that the eigenstates |n)
(n=0,1,2,...,k) of Hyare complete and that both H, and H,, are Hermitian operators. The eigenstates satisfy

Ho|n) = E,|n},  <nim) = Ny oum (A2)

where ./, are positive normalization constants. Since the unperturbed Hamiltonian is Hermitian, the unperturbed energies E, are
real numbers. An arbitrary state |«(t)) of the perturbed system can be expanded in terms of unperturbed states with time-dependent
numbers b,(t) as

la(t)> = 3. by(t)e™ = |n) .

Using the interaction picture, the Schrédinger equation can be written as
3 a ! ! !
th 2, 10°0)) = Hip|o'(1))

or
BN Y2, (t) = T Hop e ® =B A7 12b, (1) (A3a)

where
l(®)> = e a())

H;nt = eiHot/ﬁHi“te—iHot/ﬁ ,

Hnm = <anint|m>/(‘/Vn‘/Vm)1/2 . (A3b)
If we choose the state |«(t)) that coincides with the state |0) at ¢ = 0 (or equivalently b,(0) = d,), A", b,(t) gives the S-matrix element
{n|S(t; 0)|0). Thus the S-matrix gives the abundance of each state as a function of the time ¢.

In ordinary perturbation theory, b,(t) is expanded in terms of the order of 4 and the first few terms are calculated. This

approximation is valid only as long as the amplitude of a state b,(t) does not decay significantly or oscillate. However, we must be

able to handle just such a situation in order to calculate the abundances of the states. We must therefore find a nonperturbative

approach.
Following the procedure in Heitler (1954), we use outgoing Green’s functions for the b,(t):

bt) = — 5% J dE G,(E)e'®~Brih | (A4)
C

The contour C of integration is shown in Figure 10. The G,(E) satisfy
(E — E)NPGUE) = Y Hyn N 3> GolE) + N G?8,0 . (AS)

Our problem is to solve equation (A5) in a nonperturbative way. It can be easily proved that all poles of G,(E) are real as long as
we consider only discrete states. However, when we allow for continuous states, the Green’s functions have imaginary poles. The
outgoing Green’s functions of the continuous states can be defined by analytic continuation of the Green’s functions for the discrete
states from the upper plane of E. By using the formula

1

zZ—a

1
=P —— —inéz — a), A
a2 ind(z — a) (A6)
where a is a real number, we can obtain the outgoing Green’s functions for the continuous states.
APPENDIX B

A RESONANT REACTION

Here we study the simplest resonant reaction. Let us suppose that the states |0), [1), |2),..., |k), and |m) are orthogonal
eigenstates of the unperturbed Hamiltonian. When the interaction is turned on, these states undergo transitions with each other. We
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Fi1G. 10.—Contour taken in the E-plane to give an outgoing wave function. The contour C. is taken for ¢ > 0, and the contour C_ taken for t < 0.

regard the state |[m) as the intermediate state, according to the following meaning: the other states cannot undergo transitions with
one another unless they pass through the state |m).

Taking the state |0) as the initial state, we can follow the time evolution of all of the states; we call this the “1 + 1 + k states
problem.” The resulting Green’s functions can be written in the form (A5) as

(E — Eq) N §*Go(E) = Hop Gu(E) + NG,

k
(E - Em)Gm(E) = HmO ‘A/(l)/zGO(E) + z Hmj GJ(E) H (Bl)
i=1
(E — Ej)G/(E) = H,,, G,(E)
where we take the normalization of the states as A", = A#"; = 1(j = 1,2,..., k). The solution is
II-Imol2 -1
G(E)={(E~—E)— )
° * E—E,— Y5 i [|Hul*/(E — Ej]
NY2H
G.(E) = Lm0 ,
(E — E){E — Epy = Y 5= 1[| Hjml /(E — E)]} — | Hpol?
NY?H, H
G/{E) = S mo - . (B2)
! (E — ENI(E — E){E — E, — Y5 i [| Hyml*(E — E)]} — | Hpnol]
Regarding the states |0), |[1),..., |k> as continuous states and using the result of Appendix C, we can write the outgoing Green’s
functions as
| Homol? !
Gi(E)=|(E—-Ey) - —————
o(®) [( - E, — iT(E)/2
I/ZH
G1(B) = 20 M ;.
(E — Eo)[E — E,, — il(E)/2] — | H pol
NY2H, H
GH(E) = 0 —jm. - m0 . (B3)
T = ETE)E = EJE — B, — TB2] — [ Hyol?)
where the energy shifts are included in Ey, E,,,and E;.
The energy width I'(E) is defined by
[(E) = 2nIHjm|2p(Ej)|Ej=E s (B4)
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where p(E;) is the number of states per unit energy interval of all the possible final channels. If we neglect the | H,,0|* term, G4 (E) is
simply 1/(E — E,), and the initial state remains unchanged. Hence, we expect that we can neglect the | H,,,|* terms in the denomina-
tors of the outgoing Green’s functions as long as the abundance of the initial state does not change appreciably. We discuss the
validity of this approximation in Appendix D.

The contour integrals of the outgoing Green’s functions give the amplitudes of the states, and the values of the poles of the Green’s
functions are therefore important. We evaluate them at the resonant energies and regard the energy widths as constants. We obtain

2 —
|bm(t)|2 — (EO —’—/Vg)"ll)ljrf'(r/z)z {1 _ 28—1"1/27: cos I:(E_O_gEL)t] + e—I‘!/i’n} R (B5)

This expression has a rather unfamiliar form. However, if we average the initial energy E, over a small interval around E,,, we
obtain the familiar form

N ol Huol’(1 — ™™™
(Eo — E)* + (/2

When I't/h > 1, the state |[m) approaches its equilibrium value. The energy width I is of order 1 €V for the strong interaction and 1

meV for the electromagnetic interaction. The time scales for reactions involving these interactions to reach equilibrium are therefore

typically 10~ 1% and 1012 s, respectively. Both conditions are well satisfied in the case of interest to us. Under these circumstances,
the production rate of the state |j) is

d 2 N o|Hpl?| H,pol? 1 L
Zlbj(t)lzz— o H il | Hol {E 5 sin (E’ Eq t>
0

b (0)1*> = (B6)

7 (Eo — E,) + (T/2? |E, — 7
1 L — . —
T By + ()27 [(E" " Bl sin (E"h—EO t) 5 oo <£'h_EO t)]} ‘ ®7

Let us suppose that there are g exit channels, and denote one of them as Q. The creation rate for the Q particle is given by integrating
over its momentum as
d d
— |by(t)|* = — |b{O)I1?po(E)dE; =~
= 1bal0) Lgdtu()lpg( ME,

J

z '/VOPQ(Ej)lHjmllemolz
h (Eo — E,)* +(T/2)?
where p,(E;) denotes the number density of the Q channel. Since integration over the second and third terms in equation (B7) gives

e T'/?" these terms drop out and we obtain a constant creation rate. Such a constant creation rate cannot be true at arbitrarily long
times, because the absolute square of b(t) is limited. We come back to this problem in Appendox D.

) (B8)

Ej=Eo

APPENDIX C
GREEN’S FUNCTIONS FOR CONTINUOUS STATES

The poles of the Green’s functions for discrete states are real as long as the Hamiltonian is Hermitian. However, when the number
of real poles is increased, the Green’s functions cannot be continuous at the real axis. Therefore, we cannot obtain the Green’s
functions for continuous states simply by increasing the number of poles in the Green’s functions for discrete states. We must define
outgoing and ingoing Green’s functions for continuous states which are analytic across the real axis.

Let us consider the complex function F(z) defined by

b d
F(z) =J =, (1)
, z2—a
where « and f are real numbers and the integral is performed along the real axis. The discrete form of F(z) is
" 1
F2)= Y (€2)

E
k=02 — O

where o < ay < a, < *-* < a, = f. Apparently there are no imaginary poles in F,(z). By “imaginary pole,” we mean a pole which
has an imaginary part; it need not be purely imaginary. As n increases, the strip on the real axis between « and § becomes filled with
poles. The function F,(z) is ill-behaved on this strip and is not extensible across the strip. We now show that in the continuum limit,
the strip should be treated as a cut rather than as a collection of real poles.

We define two different analytic functions, depending on from which plane we analytically extend F(z). The integral in F(z) is then
easily evaluated. We obtain

Fe)=[—In(@a—2]f = —In <ﬂ — Z> . (C3)

o—Zz
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Notice that there is no singularity in the strip « < z < . We restrict our attention to the region where « < Re z < . We define the
outgoing function F *(z) by extending F(z) from the upper plane to the lower plane of z. When Im z > 0, the argument of a — z
increases by an amount ¢*(z) = arg (« — z) — arg (B — z), where = < arg (x — z) < 37/2 < arg (8 — z) < 2n. Using the function
¢ *(z), we can write F*(z) as

B_

F*'@) = —1In

[ —i¢*(2). )
If Im z is small, ¢*(z) ~ 7. By choosing n/2 < arg (« — z) < = and 27 < arg (8 — z) < 57/2, we can extend F *(z) to the lower
half-plane. The function ¢ *(2) is still ~n when the imaginary part of z is small. We define the ingoing function F ~(z) by choosing
—n/2 < arg (B — z) <n/2and n/2 < arg (« — z) < n. We define ¢ ~(z) as the imaginary part of — F ~(z). This definition is similar to
that for ¢ *(z) in terms of F *(z). Contrary to the case for ¢ *(z), the function ¢ ~(z) ~ —n when the imaginary part of z is small.

When the integral is of the form

 f(a)da

>
zZ—a

Fi2) =

a

(€5

where f(z) does not have a pole, we can define the outgoing and ingoing functions as follows. If the imaginary part of z is small, we
can choose «; and B, (« < &; < Re z < f8; < f), so that f(z) does not change appreciably in the neighborhood of a, and ,. Hence

we can write
ay d B1 B
. f flada e J o, J flada <o
[ oy —a B

, Z2—a

Choosing |a; — z| = | ; — z|, we obtain the outgoing and ingoing functions
b fla)d
ri =P [ 10 2 . ©

In the integral following P, the argument of z is chosen so that arg (z — «,) ~ arg (8, — z). When z is real, P reduces to the standard
principal-value integral.
Symbolically, we can write

1
z—a

P Tz, (C8)
zZ—a

where the minus sign is for the outgoing function and the plus sign is for the ingoing function.

APPENDIX D
EXACT SOLUTION FOR A RESONANT REACTION

In Appendix B we derived the amplitudes of the states by dropping | H,,,| in the denominators of the Green’s functions. In this
appendix we derive the exact solutions and justify the approximation made in Appendix B.
First, we start with the outgoing Green’s function Gg (E) for the initial state. It can be expanded in the form

G+E - 1 it [ |PIm0|2 ]n (Dl
"()_E—EOE0 (E—E)E—E,+il'/2)| "~ )

The amplitude by(t) is easily obtained from the Cauchy integral:

1 + i(E — Eo)i/h
= — — v E
bo(?) i J;Go (E)e d

a2 mtr—n 1 [ —i| Hpol’t ][_ | Hool? ]
T X rin— 1! (n—n)! | WE, — E,, + i[/2) (Eq — E,, + iT'/2)?

On=r

R S e i i mn+r+1! 1 i|H 0|2t T |H,,l? 1 ‘ 2
r=0 n=r T+ D! (n—n!| HE, — E, +il/2) (Eo — E,, + iT/2)?

Fort » #/T, the second series of the expansion drops out, and we have

B Tl Hpl? ¢ | Hpol*
|bo(@)|? = exp [— E.—E) + T2 h][l * 0<(E0 —E) + (r/2>2>] ' -
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Similarly, the amplitude b,(t) can be derived by expanding the outgoing Green’s function in terms of | H,,|* and using the Cauchy
integral. For t > h/F, we obtain

N §*Hmo [Hol® t | H ool
f)= — O “Tm0 PR LiS T — m ) D4
bl =5 P\ ek +uan) T\ —E, + 027 (D4
The absolute square magnitude of the amplitude is
N ol Homol? T|H,,l? t | Homol?
b t 2 - 0 mO0 _ mO e 1 0 mO . D5
bl = " E )7 + @2 P LT B — B + @ )L T O\ B + 2 (B3)

Integrating ifib(t) = H,,, ¢'®~E»/"p_(z), we can obtain the amplitudes b (¢). The final abundance of the channel Q, |bg(z)|?, is given by
summing over the j which belongs to the channel. For t > A[(E, — E,,)* + (I'/2)*]/T | H,,o|?, the equilibrium abundance of the final
state is

b0 = 6 2. (06)

In § II, we chose 4", = N,N,. However, in order to have the solution consistent to all orders, we notice that 4"y should be
chosen to be N,, where we assume that N, < N,. The reason is as follows. The sum of the absolute squares of the amplitudes is a
constant value ./",. This value is also equal to the maximum possible number of the intermediate state. Since the intermediate state
is formed from particles 1 and 2, the maximum possible number should be N,—that is, the number of the less abundant particle.
The decay time of the initial and intermediate states should be equal to the creation time of the final state. In order to have a
consistent picture, the initial wave function of particle 1 should be normalized to be unity within a volume 1/n,, where n, is the
number density of particle 1, instead of being normalized to N, in the volume V. With this normalization, | H,,|* can be written as

|Hm0|2 = nhzznlvro 5 (D7)
and the decay time scale 7 for the initial state becomes

1 nol'T

==zl S : D8

: = En—Eo + (/2 ®9
This coincides with the formation rate for the final state for a specific relative energy E, per particle 2. Thus, as long as ¢ is less than
7, our approximation in Appendix B and § II is valid. As far as this condition is satisfied, the results in Appendix B and § II are
independent of the normalization. We may choose 4"y = N N,.

APPENDIX E
S-MATRIX FOR THE TRIPLE-ALPHA REACTION

In this appendix we formulate the S-matrix for the triple-a reaction. We define |0) as the initial state, which is made of three “He
particles. First, we assume that these three particles are distinguishable. The *He particles 1 and 2 form a 8Be nucleus whose
momentum is the same as the total momentum of particles 1 and 2. The |m, > corresponds to the system consisting of the formed ®Be
nucleus and the third “He particle. This state |m, ) can decay into a series of states |o, ). In our case, the g, correspond to the
system consisting of the third *He particle and the two “He particles from the decay of 8Be. The state |m, ) can also form |m,),
which consists of a 12C*(0*) nucleus whose momentum is the same as the total momentum of the state |[m, ». The state |m,) can
decay into a series of states |6,> and |y, ). The states |0, correspond to the system consisting of the decayed Be nucleus and a “He
nucleus. The states |y, ) correspond to the system consisting of the emitted y-ray and the '>C*(2*) nucleus. The states |u;) can
decay into the states |, >, which correspond to the system consisting of the *2C(0*) nucleus and two emitted y-rays. We take 4", for
the normalization constant of the initial state, and the other states are normalized to unity. We can then write the basic equations
for the Green’s functions as

(E — EQA §Go(E) = Hon Gul(E) + ¥,
(E = Epp)Gon(E) = Hypo N 52Go(E) + Hupyoy G E) + Y, Hpy, G, (E)
(E — E, )G, (E) = Hyyp, Gy (E) . "
(E — E,,)G,,(E) = H,ym Gy (E) + Z H,.,,G,(E)+ Z H,,,““GM(E) R (E1)
(E = E,)GoE) = Hypy GuE) "
(E — E,)G,(E) = Hyym, Guy(E) + 3 H,,,, Gui(E)
(E — E“)GM(E) = Huszm(E) .
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The solutions for *2C* and the final states are
H H
G (E) — pop1 —pimz Gm (E) , (Ez)
" (E - Euz){E - Em - ZM'z[lHum'zlz/(E - Eu'z)]} z
‘/V(l)/zH 2 1H 10 { |H |2 |H '2 }( IH |2>
mam m = E _ Em _ m202 — m2u1 E — Em . mia1 (E - E )
sz(E) : azz E - Eaz ﬂzl E - Elll - an[IHmuzlz/(E - Euz)] ' ; E— Ean °

— |H, IZ{E By -y Hmal_y S
m " E— Eaz H1 E— Eul - Zuz[IHmuz'z/(E - EMZ)]

o2

|2

} — |Hpymy|E — E) . (E3)

As long as the initial state does not change appreciably, we can neglect the |H,, 0| and |H,,,,,| terms in the denominators of the
Green’s functions. Since

. |H,, 12 . |H

llm ma2p1 — hm m2u1 - s
Im E->+0 % E - Em - Zuz[l Hmnzlz/(E - Euz)] Im E-0 % E— Em - PZuz[l Hmuzlz/(E - Euz,)] + lrﬂl(E)/z

where I, (E) is the total decay width of the state |, ). The energy width in this equation is given by I',,,,,, as long asT', (E) is small
compared with the resonant energy E, . The energy width I,,,,, is the decay width of the state |[m,) into the states |y, ). We then
obtain for the outgoing function of the state |m,) the expression

N?H,, . H

- mam; m10.~ . (ES)
[E — En, + 00, (E)/2][E — E,, + il (E)/2)(E — Eo)

|2

(E4)

G::z(E) =

The energy shifts are included in E,,, and E,,,. The width I, ,(E) is the total decay width of the state |m,); i.e., it is the sum of the

decay width [T, ,,(E)] to the ®Be + *He system and the decay width [T',,,, (E)] to the '>*C*(2*) + y system. Since the latter width is
a thousand times smaller, the total width is equal to T',,,,,(E). The effective width I, (E) is used because a ®Be nucleus decays into
two identical particles. The amplitude b,,,(¢) is given by the Green’s function. When ¢ > #/T",, (E,,,), #/T,,,(E,,,), we obtain for the
equilibrium abundance the expression .

JV0|Hmzm1|2|Hm10|2
[(EO - Eml)z + (rm1/2)2][(E0 - Em2)2 + (f‘ml/z)z] '

Here we do not specify the arguments of the energy widths. We will come back to this point later. The outgoing Green’s function for
the final state is

|bmy (D) ~ (E6)

NY2H,  H, . H, . H,,

pop1” " pim2 "7 namy

(E—E,NE—E, +il', /2(E — E,, + il ,,/2(E — E,,, + il ,,/2(E — E,)

The amplitude b,,,(t) is derived from this Green’s function. It has a rather complicated form even for t > #/T, (E,,,), #/T ,,(E,,,),
#/T",,(E,,). After integrating over the energies of the emitted photons, we obtain a constant reaction rate

FYI(E‘)'l) |E,,1=Eo mOlezmlllemlolz _
h [(Eo — En,)* + (/2 I(Eo — Ep)* + (/2217

where I', (E,,) = T',,, ,,. In this derivation we have assumed that the decay widths of the y-ray transitions are narrow compared with
the resonance energies and that they do not have an exponential dependence on the energies.

In order to obtain quantities which are physically observable, we must average over the initial states. The initial energy E, is the
sum of the kinetic energy of particles 1, 2, and 3. We can decompose it as

Egy=E +E, +Es=E, +E ., +E;=E;; +Eq33+ Ecy- (E9)

The quantities E,, and E, , , are the relative energy and the center-of-mass energy of the 1 + 2 system, respectively. The quantities
E(12); and Ecy are the relative energy and the center-of-mass energy of the (1 + 2) + 3 system, respectively. We denote by E,,, and
E,,, the threshold energies of the “He + “He — ®Be and ®Be + “He — '2C*(0*) reactions, respectively. The energies E,,, and E,,, can
be written as

G,,(E) = (E7)

d
lbucl = (E8)

Em1 = Eml + El +2 + E3 H Emz = Eml + Emz + ECM . (Elo)

We assume that |H,, o| and |H,,, | are functions, respectively, of E,, and E;,,; only. Also, we assume that the energy distribution
function of the initial state f,(E,) can be decomposed into the product of the distribution functions of E, 5, E; 5)3,and Ecy,i.€.,

fO(EO) =f12(E12)ﬁ12)3(E(12)3)fCM(ECM) .

Since we have assumed that the matrix elements of the interaction Hamiltonian are independent of Ey,, the integral of foy(Ecy) over
Ecy gives unity, and the integrations reduce to the double integral over E,, and E;,);. From now on we shall use E, for E; — Ecy,
E, for Ey,, E, for E(5)3, f1(E,) for f1,(E,,), f2(E>) forf(lm(E11 2)3) Em, fOT E,, , and E,,, for E,,,. In this new notation, E,,, is equal to
E,, + E,, + E,, — AE, where AE is the energy gap between '*C*(0*) and '*C*(2"*). Setting E,, = E,, gives

E,=AE+E, +E,—E, —E,,. (E11)

Lmy
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Since '2C*(0*) —» '>C*(2,) is an E2 transition, its energy width, T, (E,,), can be written as

E,+E,—E

my Emz >
AE ’
where I, is the energy width at the resonant energy.

So far we have not considered the indistinguishability of three “He particles. We now do so. When the interaction Hamiltonian
operates on the state |p,, p,, p3), where p,, p,, and p; are the momenta of the three a-particles, there are three different ways to
form 12C*(0*). If we assume that the products between different paths vanish, we have three times the contribution to the absolute
square values of the amplitudes. However, since the particles are indistinguishable, the total phase space is 3! times smaller than that
of three distinguishable particles The factor by which we must multiply the absolute square values of the amplitudes is therefore
3/3! = 4. We take A4, = N3, where N is the total number of “He particles in the volume V. The average number density of *2C*0*)
nuclei i 1s given by the average of |b,,,(t)|*/V. We can write this as

r'}’l(E}'l)

(E12)

=l"“><<1+

Ey1=Eo

2nh?

where the function K is defined by

3
) Ki(Epyps Enys Tty Tiy) s (E13)

3
nlzct(oﬂ = na<\/7
M12M23

- 1 o (o r E E—1/2 —-1/2
Ki(Epys Epyy Dy Tppy) = — J f nilE2)E; /. ZZ(EZ)dEZ 5 Lo (B ‘)b;‘ J(EE, 5. (E14)
16r Jo Jo (Ey + E; —E,, — E,)* + [T,,(E;)/2]* (E, — E,,))* + [I,,(E))/2]
The average reaction rate per volume ({rc}) is given by the average of (d|b1,c|?/dt)/V. This can be written as
r 2nh? 3
r =n3—u<—-——>K(Em,Em,l“m,F , E15
{ C} h m 2 1 2 1 ) ( )
where the function K, is defined by
1+X5r,,, E,)E; V*f,(E,)dE T, (E)E; V*(E,)dE
KBy By Ep T) = 7 J f JTwE)Es TENAE, T (EJE THEME,
T (Ey + E; — E,, — E,))* + [T,,(E2)/2]* (E, — E,)* + [T (Ey)/2]
and X = (E, + E, — E,, — E,,)/AE. When the distribution functlons are Maxwellian, we obtain the results givenin § IV.
If the typical energies of E; and E, are close to E,,, and E,,,, respectively, the average reaction rate can be written as
{re} ® =% Niacwos) - (E17)
REFERENCES

Ajzenberg-Selove, F. 1984, Nucl. Phys. A, 413, 1.

Ajzenberg-Selove, F., and Busch, C. L. 1980, Nucl. Phys. A, 336, 1.

Alastuey, A., and Jancovici, B. 1978, Ap. J., 226, 1034.

Bohr, A., and Mottelson, B. R. 1969, Nuclear Structure, Vol. 1 (New York:
Benjamin), p. 358.

Cameron, A. G. W. 1959, Ap. J., 130, 916.

Clayton, D. D. 1968, Principles of Stellar Evolution and Nuclear Synthesis (New
York : McGraw-Hill).

Cook, C., Fowler, W. A, Lauritsen, C. C, and Lauritsen, T. 1957, Phys. Rev.,
107, 508.

Fowler, W. A,, Caughlan, G. R., and Zimmerman, B. A. 1967, Ann. Rev. Astr.
Ap., 5, 525.

Fowler, W. A, and Greenstein, J. L. 1956, Proc. Nat. Acad. Sci, 42, 173.

Hameury, J. M., Bonazzola, S., Heyvaerts, J., and Lasota, J. P. 1984, Adv. Space
Res., No. 10-12, p. 297.

Heitler, W. 1954, The Quantum Theory of Radiation (3d ed.; Oxford:
Clarendon).

Hoyle, F. 1954, Ap. J. Suppl., 1,121.

Ichimaruy, S., and Utsumi, K. Ap. J., 278, 382.

Itoh, N., Totsuji, H., Ichimaru, S., and DeWitt, H. E. 1979, Ap. J., 234, 1079;
239,414.

Lamb, F. K., and ter Haar, D. 1971, Phys. Rept., 2,253.

Lewin, W. H. G., and Joss, P. C. 1983, in Accretion Driven Stellar X-Ray
Sources, ed. W. H. G. Lewin and E. P. J. van den Heuvel (Cambridge:
Cambridge University Press), p. 115.

Miyaji, S., and Nomoto, K. 1985, Astr. Ap., 152, 33.

Nomoto, K. 1982, Ap. J., 253, 798.

N(()II:II'(I)}O’) K., Thielemann, F. K., and Miyaji, S. 1985, Astr. Ap., 149, 239

M).

Salpeter, E. E. 1952, Ap. J., 115, 326.

. 1953, Ann. Rev. Nucl. Sci., 2, 41.

. 1957, Phys. Rev., 107, 516.

Salpeter, E. E., and Van Horn, H. M. 1969, Ap. J., 155, 183.

Taam, R. E. 1985, Ann. Rev. Nucl. Particle Sci., 35, 1.

Woosley, S. E. 1984, in AIP Conf. Proc. No. 115, High Energy Transients in
Astrophysics, ed. S. E. Woosley (New York: AIP), p. 597.

Ikko FusHIKI: Department of Physics, University of Illinois, Urbana, IL 61801

D. Q. LaMB: Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987ApJ...317..368F

