Astro 112 – Physics of Stars Problem Set #2, Spring 2017 Due on Wednesday, April 19, 2017

1) The Sun's mass is $2 \cdot 10^{30}$ kg, its radius is $7 \cdot 10^8$ m, and its surface T_{eff} is 5,800 K. The energy being radiated away comes entirely the conversion of mass to energy in the Sun's core, via $E=mc^2$. Find the mass loss for the Sun in one second. How many years are needed for the Sun to lose 1% of its mass by radiation?

2) A simple star: given a spherical equilibrium configuration of mass *M* and radius *R*, assume that the density distribution is given by $\rho(r)=\rho_c(1-r/R)$. Express all results below in terms of *M* and *R*, not ρ_c .

a) Write ρ_c in terms of *M* and *R*.

b) Calculate the mass distribution *m*(*r*).

c) Calculate the pressure distribution P(r). It is fine to assume P(R)=0.

d) Using the *M* and *R* values for the Sun (see problem 1), what is the Sun's central pressure? Compare to the real value of 2.48×10^{16} pascals.

e) Assume the ideal gas law, and assume a solar composition mix (μ =0.61), to find the central temperature. Compare to the real inferred value of 1.57 x 10⁷ K.

3) Two stars are measured to have the same effective temperature of 30,000 K and luminosities of 10^5 L_Sun and 0.1 L_Sun. One of the stars has a radius of 15 R_Sun. What is the radius of the other, in units of R_Sun?

4) Let us assume, for simplicity, that the temperature stratification inside a region of a star is isothermal, with temperature T, and with a constant gravitational acceleration, g. The gas is ideal. Show that the pressure stratification follows the expression:

 $P(r) = P(r_{o}) \exp(-\mu m_{\rm H} g r / (k_{\rm B} T)),$

where r is the distance from a reference radius r_0 , μ is the unitless mean molecular weight, $m_{\rm H}$ is the mass of the hydrogen atom, $k_{\rm B}$ is Boltzmann's constant, and $P(r_0)$ is the pressure at our reference radius, r_0 .