Some numbers: $\mathrm{L}_{\odot}=4 \times 10^{33} \mathrm{ergs} /$ second $\quad M_{\odot}=2 \times 10^{33}$ grams $\quad \mathrm{c}=3 \times 10^{10} \mathrm{~cm} /$ second.

1. What is the energy source for the Sun? (select one)
__Nuclear fission reactions
___Nuclear fusion of hydrogen into helium
__Conversion of gravitational potential energy into heat and light
___None of the above
2. Why are high temperatures required for fusion reactions? (select one)
__The high temperature is required to counteract gravity
__Only at high temperature do the nuclei in a gas approach close enough for the nuclear force to overcome electrical repulsion
__Uranium only undergoes radiactive decay at high temperature
__The strong force only exists in high temperature environments.
3. Label the following questions about star formation processes True or False.
__Dust is required to shield molecular cloud cores from starlight and thereby allow the cores to cool
Protostars enter the HR Diagram from the upper left corner
Most or all stars form in groups or clusters of stars
Protostars stop their gravitational contraction when their central temperature is high enough for hydrogen fusion to begin
4. Coal burning releases 4×10^{12} ergs per gram of coal.
(a) What is the total amount of energy that could be generated if the Sun were coal-powered and made of coal?
(b) How long would the coal-powered Sun of part (a) last before running out of fuel?
5. How much energy is produced by nuclear fusion in the core of the Sun each second?
6. How long will a $0.3 M_{\odot}$ star with $L=0.01 L_{\odot}$ spend on the main-sequence? (Hint, the main-sequence lifetime of the Sun is 10 billion years).
7. In the fusion of four protons into helium, 4.7×10^{-26} grams of matter is turned into energy. How much energy does this amount of matter produce?
8. Four stars occupy the four corners of an H-R diagram (UL, LL, UR, LR).
\ldots __In which corner(s) is (are) the largest star(s)?
\qquad In which corner(s) is (are) the most luminous star(s)?
____In which corner(s) is (are) the hottest star(s)?
\qquad _In which corner(s) is (are) the lowest mass main-sequence stars?
