Homework 3 Spring 2008 YOUR NAME:___

Some numbers: $L_{\odot} = 4 \times 10^{33}$ ergs/second $M_{\odot} = 2 \times 10^{33}$ grams $c = 3 \times 10^{10}$ cm/second.

- 1. What is the energy source for the Sun? (select one)
 - ____Nuclear fission reactions
 - ____Nuclear fusion of hydrogen into helium
 - <u>Conversion of gravitational potential energy into heat and light</u>

<u>None of the above</u>

2. Why are high temperatures required for fusion reactions? (select one)

<u>The high temperature is required to counteract gravity</u>

___Only at high temperature do the nuclei in a gas approach close enough for the nuclear force to overcome electrical repulsion

- _____Uranium only undergoes radiactive decay at high temperature
- _____The strong force only exists in high temperature environments.

3. Label the following questions about star formation processes True or False.

____Dust is required to shield molecular cloud cores from starlight and thereby allow the cores to cool

____Protostars enter the HR Diagram from the upper left corner

<u>Most or all stars form in groups or clusters of stars</u>

____Protostars stop their gravitational contraction when their central temperature is high enough for hydrogen fusion to begin

4. Coal burning releases 4×10^{12} ergs per gram of coal.

(a) What is the total amount of energy that could be generated if the Sun were coal-powered and made of coal?

(b) How long would the coal-powered Sun of part (a) last before running out of fuel?

- 5. How much energy is produced by nuclear fusion in the core of the Sun each second?
- 6. How long will a $0.3M_{\odot}$ star with $L = 0.01L_{\odot}$ spend on the main-sequence? (Hint, the main-sequence lifetime of the Sun is 10 billion years).

- 7. In the fusion of four protons into helium, 4.7×10^{-26} grams of matter is turned into energy. How much energy does this amount of matter produce?
- 8. Four stars occupy the four corners of an H-R diagram (UL, LL, UR, LR).

_____In which corner(s) is (are) the largest star(s)?

_____In which corner(s) is (are) the most luminous star(s)?

_____In which corner(s) is (are) the hottest star(s)?

In which corner(s) is (are) the lowest mass main-sequence stars?