HOMEWORK FOR QUIZ 5 Spring 2008

 $V_{escape} = \sqrt{2GM/R}$

 \mathcal{M}

Possibly useful formulae: $\omega_{final} = \omega_{initial} \times (\frac{R_{initial}}{R_{final}})^2$; where R = radius, $\omega = \text{spin rate}$

$R=2GM/V_{escape}^2$ where $V_{escape}=$ escape velocity, $M=$ mass of the object from which you are trying to escape, $R=$ radius from which you are trying to escape and G is the gravitational constant.
$T = \frac{T_0}{(\sqrt{1 - (\frac{v}{c})^2}}$
1. We have identified neutron stars in which of the following ways? As the secondary in Algol systems
$\frac{\sum}{\sum}$ As pulsars
X Via x-rays from the hot surface of nearby neutron stars X As the source of energetic cosmic rays
2. What is the evidence for black holes (the 3-10 Mo variety)? When a Stellar-ih Mass B.H. Orbits a companion (a close binamy system) it can accrete material from the companion. This material will form an accreation clish, which is visible in the X-rays. Also, from microlensing events. 3. If the Earth shrank to 1/4 of its current radius, what would the escape velocity be from its new surface? (the current Vescape is 25,000 mph) Vesc XIR > Vrew = IRow IROW
4. Which of the following would be expected to be left behind after a SNII explosion? A massive white dwarf
A massive Fe core of a former high-mass starA neutron star with M $< 1 M_{\odot}$ A rapidly-spinning neutron star
5. Algol is a binary system with a 3.7 Mo main-sequence star and a 0.8 Mo red giant. (a) Explain why this is unexpected if the two stars formed at the same time. The move Massive & Share have left the Mosn Sequence & started up the Red Giant Branch before the (aver mass * (Nove mass =) Shorter 1, fe time) (b) What is the explanation to resolve this paradox? The red giant * expanded past its Roene Radios. This allowed the start to accrete Material from the red giant.
2. 8 10 SCENCKE MALLOWED LONG BOOK