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Abstract

I have constructed a code to simulate the evolution
of fluid under the Boussinesq approximation con-
tained within a box. [Discuss boundary conditions
here] Vertical resolution is represented using a grid
for which derivatives are computed by the finite dif-
ference method while horizontal resolution is repre-
sented as a fourier sequence. In order to test that this
code worked, I ran it under the standard Rayleigh-
Benard convection problem. Second, I investigated
allowing the bottom boundary n = 2 temperature
mode to fluctuate periodically in time, holding the
top boundary at constant temperature.

1 Introduction

Often we can represent fairly complicated astrophys-
ical or terrestrial phenomenon with simple simula-
tions in the goal of gaining understanding or intuition
about the system. In this work, I have constructed
a simulation of Boussinesq fluid inside a box, which
perhaps is a model for convection in the ocean, ac-
cretion disks or a thin convective zone on the sun.

This simulation makes the following important as-
sumptions: (1) the Boussinesq approximation, (2)
the fluid is 2D and (3) the boundaries are given by
a box with the specified boundary conditions. These
are quite unrealistic for any system of research inter-
est so should only be used to build intuition. Cer-
tainly quantitative predictions in no way are accu-
rate.

2 Methods

In this section, I present the non dimensional Boussi-
nesq approximation as well as discuss details of im-
plementing this in the code.

2.1 Boussinesq Approximation

Define the Rayleigh number and Prantdl number as
follows

Ra ≡
gα∆TD3

νκ
(1)

Pr ≡
ν

κ
(2)

where the Rayleigh number measures the ratio of
buoyancy force to the viscous force. The Prantdl
number is the ratio of viscous to thermal diffusion
coefficients. g is the magnitude of the gravitational
force (assumed to be in the vertical direction), ∆T
is the magnitude of the difference in temperature be-
tween top and bottom, D is the distance from top
to bottom, ν is the kinematic viscosity, and κ is the
thermal diffusivity.

The Boussinesq approximation is given by the fol-
lowing equations

∂v

∂t
= −(v · ∇)v −∇p+ RaPrTẑ + Pr∇2

v (3)

∂T

∂t
= −(v · ∇)T + ∇

2T (4)

∇ · v = 0 (5)

.
The main assumption is that the thermal expan-

sion of the fluid is small so that the fluid is approx-
imately incompressible, yet thermal expansion still
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creates a buoyancy force affecting the momentum
equation. Temperature is transported by advection
and diffusion.

2.2 Rayleigh-Benard Convection

The Rayleigh-Benard convection problem is defined
to have fluid confined between two plates each held at
constant temperature. Convection occurs when the
bottom plate is held at a sufficiently higher temper-
ature than the top plate. Gravity waves occur when
the top plate is held at a sufficiently higher temper-
ature than the bottom plate.

This physical situation is modified often by adding
(1) magnetic fields, (2) rotation or (3) inserting a
salinity gradient.

The boundary conditions are as follows. The tem-
perature is held fixed on the top and bottom and the
sides are set to have ∂T/∂x = 0. The stress free
boundary conditions were employed for the momen-
tum equation.

2.3 Code & Algorithm

From the original Boussinesq equations, we take the
curl of the momentum equation to get an evolution
equation for the vorticity. The governing equations
are then

∂ω

∂t
= −(v · ∇)ω − RaPr

∂T

∂x
+ Pr∇2ω (6)

∂T

∂t
= −(v · ∇)T + ∇

2T (7)

v = ∇× ψŷ (8)

ω = −∇
2ψ (9)

We horizontally decompose ω, T and ψ into their
nonzero Fourier terms

ω(x, z, t) =
∑

n≥1

ωn(z, t) sin
(nπx

a

)

(10)

T(x, z, t) =
∑

n≥0

Tn(z, t) cos
(nπx

a

)

(11)

ψ(x, z, t) =
∑

n≥1

ψn(z, t) sin
(nπx

a

)

(12)

ω and T are evolved forward at each time step and
ψ is determined from ω of the previous time step
using a tri-diagonal matrix solver. The time step is
determined to be the minimum of (δz)2/(4 Pr) or the
Courant-Fridrichs-Lewy condition.

3 Tests and Results

The code was run first in the standard Rayleigh Be-
nard problem as shown in Figure (1) with Rayleigh
number 100000. Notice that there is a well defined
steady convective cell that develops.

Figure 1: Snapshot of temperature profile in the stan-
dard Rayleigh-Benard problem. Ra = 100000, Pr =
2, Number of horizontal spectral modes = 25, number
of vertical zones = 201, aspect ratio = 2

The code was also run at various Rayleigh num-
ber to test the Rayleigh-Nusselt relationship that has
been historically studied. The Nusselt number is de-
fined to be ratio of the total energy flux to the con-
ductive energy flux. It turns out that this is also equal
to the conductive flux at the boundary for this nondi-
mensionalized problem. The trend is shown in Figure
(2). Quantitative results from this simulation are un-
likely to match behavior of 3D simulations, however
it is nice to see that the Rayleigh number for which
convection begins is close to the value 103.

3.1 A modification

I modified this code by setting the bottom to have a
modulating n = 2 temperature profile. The result of
this simulation is shown in Figure (3)
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Figure 2: Rayleigh Nusselt relationship. Each fluid
was run for 1 unit time. The Nusselt number was de-
termined by measuring the average temperature gra-
dient at the bottom boundary. In these runs, there
are 51 vertical zones, 25 horizontal spectral modes,
the Prandtl number is 2, the aspect ratio is 3. It is
promising that the relationship is monotonically in-
creasing.

4 Conclusions

In this work I have presented a 2D Boussinesq code
applicable to the Rayleigh-Benard convection prob-
lem. The code is useful because it reveals intuition on
how these simple flows work. Quantitative measure-
ments should not be taken seriously, but it is nice to
see that the “order of magnitude” behavior is quan-
titatively matched in the Rayleigh-Nusselt relation-
ship. Interesting future modifications include adding
Rotation, shear, magnetic fields or salinity.
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Figure 3: Snapshot of temperature profile where
bottom boundary condition has temperature profile
T2 = A cos(Ωt) where T2 denotes the amplitude of
the second spectral mode. Ω = 200. Also, the num-
ber of vertical zones = 101, the number of horizontal
spectral modes = 25, the Rayleigh number is set to
10000, the Prandtl number = 2 and the aspect ratio
is 1.
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