ASTRONOMY 2 — Overview of the Universe First Practice Problem Set

1. Calculate the number of stars per unit volume in a certain elliptical galaxy. The number of stars in the elliptical galaxy is 10^{11} , and the galaxy can be approximated as a sphere of radius r=15 kpc. Recall that the volume of a sphere is given by $V=4\pi r^3/3$, $\pi=3.14$, and 1 kpc= 3.09×10^{21} cm.

$$V = \frac{4\pi}{3} \left(4.635 \times 10^{22} \right)^{3}$$

$$= \frac{4}{3} \times 3.14 \times 9.96 \times 10^{67} \text{ cm}^{3}$$

$$= 4.17 \times 10^{68} \text{ cm}^{3} \qquad \text{ANSWER}$$

 $=4.17\times10^{-68} \text{ answer}$ and that Kepler's Third Law can be written as $M=Kv^2R$ where $K=1.5\times10^{7}$ g s²/cm³; $1~M_{\odot}=2\times10^{33}$ g; and $1~AU=1.5\times10^{13}$ cm.

(i) How fast would a body orbit a $10^6~M_{\odot}$ black hole at a distance of 1 AU?

$$M = K6^{2}R$$

$$U^{2} = \frac{M}{KR}$$

$$U = \int \frac{10^{6} \times 2 \times 10^{3} \text{ gm}}{1.5 \times 10^{7} \text{ gm s}^{2} \times 1.5 \times 10^{13} \text{ cm}}$$

$$U = \int \frac{M}{KR}$$

$$U = \int \frac{M}{KR}$$

$$= \int \frac{8.89 \times 10^{18} \text{ cm}^{3}/2}{1.5 \times 10^{13} \text{ cm}}$$

$$= \int \frac{8.89 \times 10^{18} \text{ cm}^{3}/2}{1.5 \times 10^{13} \text{ cm}}$$

$$= \int \frac{8.89 \times 10^{18} \text{ cm}^{3}/2}{1.5 \times 10^{13} \text{ cm}}$$

(ii) At what orbital radius from this black hole will the orbital velocity reach the speed of light, $c=3\times 10^{10}$ cm/s? This radius is known as the Schwartzchild radius.

$$R = \frac{10^{6} \times 2 \times 10^{33} \text{ gm}}{1.5 \times 10^{7} \frac{9 \text{m s}^{2}}{\text{cm}^{3}} \times (3 \times 10^{10} \text{cm/s})^{2}}$$

$$= 1.48 \times 10^{11} \frac{10^{11}}{\text{cm}} \text{ Answer}$$

3. The Sun has a luminosity of 3.9×10^{33} ergs/s, a radius of 7×10^{10} cm, and a surface temperature of 5800 K. Use the blackbody formula $L = 4\pi\sigma R^2 T^4$ to answer the following questions.

(i) A star has a luminosity 0.16 times that of the sun and a temperature of 4000 K. What is its radius?

is its radius?

$$L_0 = 4\pi \text{V} R_0^2 T_0^4 - \text{O}$$

$$L_1 = 4\pi \text{V} R_0^2 T_0^4 - \text{O}$$

$$L_2 = 4\pi \text{V} R_0^2 T_0^4 - \text{O}$$

$$R_1 = 7 \times 10^{10} \text{cm} \left(\frac{5800 \text{ K}}{4000 \text{ K}}\right) \text{Ool6}$$

$$R_2 = 7 \times 10^{10} \text{cm} \left(\frac{5800 \text{ K}}{4000 \text{ K}}\right) \text{Ool6}$$

$$R_3 = 7 \times 10^{10} \text{cm} \left(\frac{5800 \text{ K}}{4000 \text{ K}}\right) \text{Ool6}$$

$$R_4 = \frac{5.89 \times 10^{10} \text{cm}}{1000 \text{ k}} \text{Answer}$$

$$R_4 = \frac{5.89 \times 10^{10} \text{cm}}{1000 \text{ k}} \text{Answer}$$

$$R_4 = \frac{5.89 \times 10^{10} \text{cm}}{1000 \text{ k}} \text{Answer}$$

$$R_4 = \frac{5.89 \times 10^{10} \text{cm}}{1000 \text{ k}} \text{Answer}$$

(ii) Another star has a luminosity 500,000 times that of the sun and a radius 18 times that of the sun. What is its temperature? $T_{\star} = 4\sqrt{500,000} \times \sqrt{\frac{1}{100}} \times 580$

$$\left(\frac{T_{\star}}{T_{0}}\right)^{4} \left(\frac{R_{\star}}{R_{0}}\right)^{2} = \frac{L_{\star}}{L_{0}}$$

$$T_{\star} = \sqrt{\frac{R_{0}}{L_{0}}} \times \sqrt{\frac{R_{0}}{R_{\star}}} \times T_{0}$$

$$= 26.59 \times 0.2357 \times 5800 \text{ K}$$

$$= 3.64 \times 10^4 \text{ K} \text{ ANSWER}$$