The UTC Time Scale: Internet timing issues

Judah Levine
Time and Frequency Division
NIST/ Boulder
Jlevine@boulder.nist.gov
Focus is on time

- Time interval and frequency not considered
 - Network time services usually not used for this except at low accuracy
 - Calibrating stopwatches, timers, etc. where traceability to NIST or other NMI required
Outline of the presentation

- Realization of computer and network time
- Incorporating leap seconds
- Difficulties with current methods
- Possible solutions
- Conclusions
System time formats

- Seconds (and fractions) since epoch
 - Network Time Protocol uses 1900.0
 - Other choices: 1970.0, 1980.0, 17 Nov. 1858

- Time scale is almost always UTC

- Conversions done by applications
 - Local time zone, daylight saving time, ...
 - Display formats, ...
Computer clocks

- Oscillator generates periodic “ticks”
 - Hardware tick period not adjustable
- Register incremented on each tick
 - Increment value is adjustable in software
 - Normally always > 0
- Register can be over-written
 - Discontinuous setting of the clock
 - Strongly discouraged except during a cold start
- Register is basis for all system time functions
Realization of a leap second

- Time tags during a negative leap second:

 UTC
 Day N 23:59:58
 Day N+1 00:00:00

- Skipping a second does not present a very serious time problem

- Probably will never happen anyway
Realization of a leap second

- Time tags during a positive leap second:

 UTC
 Day N 23:59:58
 Day N 23:59:59
 Day N 23:59:60
 Day N +1 00:00:00
Realization of a leap second

Time tags during a positive leap second:

<table>
<thead>
<tr>
<th>UTC</th>
<th>TAI</th>
<th>TAI-UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day N</td>
<td>23:59:58</td>
<td>T</td>
</tr>
<tr>
<td>Day N</td>
<td>23:59:59</td>
<td>T+1s</td>
</tr>
<tr>
<td>Day N</td>
<td>23:59:60</td>
<td>T+2s</td>
</tr>
<tr>
<td>Day N+1</td>
<td>00:00:00</td>
<td>T+3s</td>
</tr>
</tbody>
</table>
Realization of a leap second

- **Time tags during a positive leap second:**

<table>
<thead>
<tr>
<th>UTC</th>
<th>Computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day N</td>
<td>23:59:59</td>
</tr>
<tr>
<td>Day N</td>
<td>23:59:60</td>
</tr>
<tr>
<td>Day N+1</td>
<td>00:00:00</td>
</tr>
</tbody>
</table>
Difficulties with the definition

- Computer clocks cannot represent a leap second and are effectively stopped when it occurs
 - Most physical clocks have the same problem
- Time sequence is:
 23:59:59 .0, .1, ..., .8, .9, .0, .1, ..., .8, .9, ...
Difficulties with the definition-2

- Time stamps can reverse time ordering of events and can violate causality:
 An event at 23:59:59.5 (#1) came before one at 23:59:59.4 (#2)

- Systems do not support adding flag to second time stamp to show leap second in progress
Difficulties with the definition-3

- Leap seconds can occur in the middle of a working day in Asia and Australia
 - Electronic commerce and digital transactions will be affected as soon as transactions depend on sub-second time resolution
 - This will be a problem sooner rather than later
 - Already a problem for NIST time services in supporting customers of online auctions (eBay)
Difficulties with the definition

- Implementation becomes more difficult as the number of unsophisticated computer users who are engaged in e-commerce increases.
 - Many PC operating systems do not support automatic insertion of leap seconds.
 - Synchronization of wide-area networks lost or degraded by a leap second.
 - Restoring synchronization places heavy load on time services.
 - NIST time services currently handle 10^9 requests/day.
 - Load immediately after leap second about 50X avg.
How many users are affected?

- NIST network time service receives about 10^9 requests per day
 - About 10^4 requests during leap second
 - Rate increasing about 8% per month
- Potential future impact: very serious
- Actual current impact: ?
All of these problems are going to get worse as the interval between leap seconds gets shorter.

What should we do?
1. Abandon leap seconds

- All previous problems disappear
- But –
 - ut1 correction becomes unbounded
 - Message format problems
 - Astronomy problems
 - Public relations problems
 - Legal time in US is MST (minor legal change)
- Recommended only as a last resort
2. Use TAI instead of UTC

- TAI time scale not readily available
 - NMI s and timing laboratories transmit only UTC
- Legal and commercial purposes require UTC
 - Conversion back from TAI possible but complicated and likely to produce lots of confusion
- NIST NTP Time servers transmit UTC and TAI
 - Does not help much during a leap second
3. Change leap second name

- Replace “23:59:60” with 23:59:59+flag to show leap second in progress
 - Flag could be used by applications to restore causality, etc.
 - Standard hardware clocks couldn’t do this, but they are broken in the current system too
 - Unknown, potentially large effects on lots of application software
 - Interesting, but probably not practical
4. Move leap second epoch

- Leap second epoch would be only on 1 January at 1200 UTC
 - Multiple leap seconds if needed
 - Business holiday in all time zones
 - Compromise:
 - Problems still remain but effects reduced
 - Advantages of current system preserved
 - ut1 correction remains bounded, might exceed 1s
Any solution to leap second question will involve a compromise
- Some undesirable effects will always remain

Moving leap second epoch to 1200 UTC on 1 January is possible compromise
- Minimal impact on all users
- Preserves most current advantages
Conclusions-2

- Changing to TAI has lots of problems and will raise lots of objections
 - By using it directly
 - Implicitly by abandoning leap seconds
- Some form of leap second system is here to stay
Conclusions-3

- Changing the name of the leap second to be more compatible with digital time representations would be very helpful and should receive further study
 - 23:59:59 + “leap second in progress”
 - Use of 23:59:60 could remain for those systems that can support it

- Any change in leap second epoch should not depend on the outcome of this study