
Astronomy 112: Physics of Stars

Problem set 1 solutions

1. Magnitudes: 15 points

The absolute bolometric magnitude, M, of the Sun is 4.755.

(a) Show that that the absolute magnitude of a star with luminosity L is given by

M = 4.755 − 2.5 log

(

L

L⊙

)

.

Solution:

The relation between magnitudes and flux is given by Hershel’s calibration of 5
magnitudes as the equivalent, on a log scale, of a factor of 100 in flux. Defining
flux as L/(4πd2 and evaluating for two stars, 1 and 2, both at 10 pc and both
bolometrically corrected:

Mbol(1) − Mbol(2) = 2.5 log

(

L1/4π(102)

L2/4π(102)

)

Taking star 1 to be some arbitrary star with absolute magnitude, M, and star 2
to be the sun:

Mbol(sun) − Mbol(star) = 2.5 log
(

L
L⊙

)

4.755 − M = 2.5 log
(

L
L⊙

)

log
L

L⊙

= 1
2.5

(4.755 − M)

(b) Now solve this equation for L/L⊙ given M.

Solution:

This is given simply by taking the antilog of both sides

L = 101.9−0.4M L⊙ = 79.8 L⊙ 10−0.4M



(c) Hipparcos measures a parallax of a star of 0.01 arc sec. Its apparent magnitude
is 8.0. Ignoring bolometric corrections, and using equations in your notes, what
is the absolute bolometric magnitude of the star?

Solution:

The distance to the star in pc is 1/p, the parallax angle in arc sec, or 100 pc.
From the notes M - m = 5 - 5 log (dpc) so that M = 3.0

(d) What is the luminosity of the star in units of solar luminosities?

Solution:

L = 79.8 10(−0.4)(3) L⊙ = 5.0 L⊙

2. Blackbody radiation: 20 points

A spherical planet orbits an F-v star with luminosity 1.5 × 1034 erg s−1. The orbit is
circular with a radius from the star of 2 AU. Assume that the planet is rapidly rotating,
has an atmosphere and reflects 20% of the light that falls on it, but absorbs the other
80% and, in the assumed steady state, radiates it as a blackbody.

(a) Ignoring any greenhouse effect, what is the temperature of the planet?

Solution:

The solution to the planetary tempearture comes from assuming a state of “bal-
anced power”. The energy received per second by the planet from its host star,
Ėin is balanced by the energy it radiates per second as a blackbody, Ėout. If this
were not so, then the temperature of the planet would rise or fall until the balance
was achieved. This would take something like the heat capacity of the atmosphere
divided by Ein or in the case of the earth a few weeks.

The energy in is the cross sectional area of the planet as viewed from the star, a
disk with radius Rp intersects the radiation that would have passed througha disk
of area πR2

p (not 2πR2
p, then one would have to integrate cos θ for the incident

radiation, which adds work). The flux passing through each square cm of the disk
is L∗/(4πd2) where d is the distance from the star to the planet. Additionally it
was specified that only 80% of the flux gets through to the planets surface and
contributes to its warming, so

Ėin = 0.8
L∗

4πd2
(πR2

p)



The energy radiated depends on the temperature of the surface of the planet, Tp

- to be solved for - and the emitting area. If a rapid rotator with an atmosphere
the temperature is pretty much the same wordwide so the emitting area is 4πR2

p

and
Ėout = (4πR2

p)(σT 4
p )

Setting Ėin = Ėout, we see that the planet’s radius drops out. It doesn’t matter
if its a rapidly spinning baseball or an earth-sized planet, and

0.8
L∗

4πd2
= (4)(σT 4

p )

Tp =
(

0.8 L∗

16πσd2

)1/4

= 262 K = −11 C

(b) Does the radius of the planet matter? Why or why not?

No, as was shown

(c) At what wavelength does the planet emit most of its radiation?

Solution:

Use Wiens law as given in the notes.

λmax = 0.28978 cm
T

= 0.28978 cm
262

= 1.1 × 10−3 cm = 11 micrometers or µm

(d) What would the temperature on the bright side be if the planet was tidally locked
and kept the same face pointed at the star, had no atmosphere, and absorbed 100%
of the incident light? Express your answer in Centigrade (C).

Solution

Now there is a bright side and a dark side. The planet only emits over one half of
its area which we assume - approximately - to have the same temperature. Also
assuming 100% of the incident radiation.

(1.0)
L∗

4πd2
= (2)(σT 4

p )

Tp =
(

L∗

8πσd2

)0.25

= 329K = 56C



3. Measuring Stellar Masses Using Spectroscopic Binaries - 25 points

For spectroscopic binaries, we can directly observe the maximum line-of-sight velocities
v1,LOS and v2,LOS of the two stars, and their orbital period P . Given this information,
we want to calculate the masses of the two stars, M1 and M2. For simplicity we will
assume that the orbit is circular, with semi-major axis a. The orbital plane of the
binary is inclined at an unknown angle i relative to the plane of the sky, where i = 0
corresponds to an orbit that is perfectly face-on and i = 90◦ to one that is perfectly
edge-on.

(a) In terms of M1, M2, and a, calculate the velocities v1 and v2 of the two stars
about their common center of mass.

Solution:

Let the stars be at distances r1 and r2 from the center of mass; clearly we have

M1r1 = M2r2

r1 + r2 = a

Gm1

a2
=

v2
2

r2

Gm2

a2
=

v2
1

r1
.

The first two equations give

r1 =
M2

M1 + M2
a

r2 =
M1

M1 + M2
a.

Since the stars are always separated by a distance a, star 1 feels a gravitational
acceleration r̈1 = GM2/a

2 and star 2 feels an acceleration r̈2 = GM1/a
2. Equating

the gravitational acceleration of star 1 with the centripetal acceleration required
to keep it in circular motion gives

GM2

a2
=

v2
1

r1
=

v2
1

a

(

M1 + M2

M2

)

v1 =

√

GM2

a

√

M2

M1 + M2

.



Using the exact same argument for star 2 gives

v2 =

√

GM1

a

√

M1

M1 + M2
.

(b) Calculate the orbital period P in terms of M1, M2, and a.

Solution:

The period is the circumference of the orbit divided by the velocity. For star 1,
this is

P =
2πr1

v1
= 2π

√

a3

G(M1 + M2)
.

Of course repeating the calculation for star 2 gives the same value. This is just
Kepler’s third law.

(c) In terms of v1, v2, and i, what is the largest component of each star’s velocity
that will lie along our line of sight? We will call these v1,LOS and v2,LOS. You may
neglect the constant offset to v1,LOS and v2,LOS that comes from the motion of the
binary’s center of mass relative to Earth.

Solution:

This is just vector geometry. If the magnitude of the velocity vector for star 1
is v1, and the orbit is rotated relative to the line of sight by angle 90◦ − i (since
i = 0 corresponds to the vector being perfectly perpendicular to the line of sight),
then the component along the line of sight is v1,LOS = v1 cos(90◦ − i) = v1 sin i.
The same argument shows that v2,LOS = v2 sin i.

(d) Use your answers to the previous parts to calculate M1 and M2 in terms of the
observed quantities and i.

Solution:

In this problem we have three unknowns, M1, M2, and a, constrained by three



equations that we derived in previous parts of the problem:

v1,LOS

sin i
=

√

GM2

a

√

M2

M1 + M2

v2,LOS

sin i
=

√

GM1

a

√

M1

M1 + M2

P = 2π

√

a3

G(M1 + M2)
.

It is easiest to solve for the unknowns if we let M = M1 + M2 be the total
system mass. Taking the ratio of the first two equations immediately shows that
v1,LOS/v2,LOS = M2/M1, so we can write

M = M1 + M2 =

(

v1,LOS + v2,LOS

v2,LOS

)

M1 =

(

v1,LOS + v2,LOS

v1,LOS

)

M2.

Solving for M2 in this equation and substituting into the equation for v1,LOS gives

v1,LOS

sin i
=

√

GM

a

(

v1,LOS

v1,LOS + v2,LOS

)

v1,LOS + v2,LOS

sin i
=

√

GM

a

If we now substitute this expression for
√

GM/a into our equation for the period,
we can re-arrange to get

a =
P

2π

(

v1,LOS + v2,LOS

sin i

)

,

which gives the semi-major axis a solely in terms of observables and sin i. Solving
the equation for the period to isolate M and substituting in this value for a gives

M =
4π2a3

GP 2
=

P

2πG

(

v1,LOS + v2,LOS

sin i

)3

.

Finally, we can write the masses of each of the two stars using our relationship
v1,LOS/v2,LOS = M2/M1:

M1 =
P

2πG

[

v2,LOS(v1,LOS + v2,LOS)
2

sin3 i

]

M2 =
P

2πG

[

v1,LOS(v1,LOS + v2,LOS)
2

sin3 i

]



(e) Some spectroscopic binary star systems have eclipses, where one stars blocks the
light of the other. Why would these systems particularly useful for measuring
stellar masses?

Solution:

If one star passes in front of the other then, unless one of the stars has a radius
comparable to the semi-major axis of the orbit, we know that the inclination must
be close to i = 90◦, i.e. the system is close to edge-on. In this case we know that
sin3 i ∼ 1, and we can measure the masses almost exactly, rather than up to an
unknown inclination.

4. Hydrostatic Equilibrium and the Virial Theorem - 25 points

Suppose that a star of mass M and radius R has a density distribution ρ(r) = ρc(1 −

r/R), where ρc is the density at the center of the star. (This isn’t a particularly realistic
density distribution, but for this calculation that doesn’t matter.)

(a) Calculate ρc in terms of M and R. For all the remaining parts of the problem,
express your answer in terms of M and R rather than ρc.

Solution:

The mass and density are related by

M =

∫ R

0

4πr2ρ(r) dr =

∫ R

0

4πr2ρc

(

1 −

r

R

)

dr = 4πρc

(

R3

3
−

R3

4

)

=
1

3
πR3ρc

Inverting this relationship,

ρc =
3M

πR3

and

ρ(r) =
3M

πR3

(

1 −

r

R

)

.

(b) Calculate the mass m(r) interior to radius r.

Solution:

This is the same as the integral for the previous part, but integrating to some
radius r < R:

m(r) = mr =

∫ r

0

4πr′2ρc

(

1 −

r′

R

)

dr′ = 4πρc

(

r3

3
−

r4

4R

)

=
4

3
πρcr

3

(

1 −

3r

4R

)

.



Substituting in the expression for ρc from part (a) gives

mr = M
( r

R

)3 (

4 − 3
r

R

)

.

(c) Calculate the total gravitational binding energy of the star.

Solution: Substitute mr and dmr into the definition of the gravitational potential
energy (i.e., binding energy) and define x = r/R.

Ω = −

∫ M

0

Gmr

r
dmr

= −12
GM2

R

∫ 1

0

x4(4 − 3x)(1 − x) dx

= −12
GM2

R

∫ 1

0

(4x4
− 7x5 + 3x6) dx

= −12
GM2

R

(

4
x5

5
− 7

x6

6
+ 3

x7

7

)

= −12
GM2

R

(

168 − 245 + 90

210

)

= −

(

26

35

)

GM2

R

(d) Using hydrostatic equilibrium, calculate the pressure P (r) at radius r. You may
assume that the P (R) = 0.

Solution:

Hydrostatic equilibrium requires that

dP

dr
= −ρ

Gmr

r2

= −

(

3

π

)

GM2

R5

(

1 −

r

R

)( r

R

)(

4 − 3
r

R

)



Integrating both sides from r′ = r to r′ = R, we obtain

∫ P (R)

P (r)

dP = −

(

3

π

)

GM2

R5

∫ R

r

(

1 −
r′

R

) (

r′

R

) (

4 − 3
r′

R

)

dr′

P (R) − P (r) = −

(

3

π

)

GM2

R4

∫ 1

x

x(4 − 3x)(1 − x)dx

P (r) = −

(

3

π

)

GM2

R4

(

4x2

2
−

7x3

3
+ 3

x4

4

)1

x

,

P (r) = −

(

3

π

)

GM2

R4

(

2 −

7

3
+

3

4
−

4x2

2
+

7x3

3
− 3

x4

4

)

,

where again we have defined x = r/R. Since P (R) = 0 and it is important to
note that both extremes of the integral on the right must be evaluated and the
difference. Since P (R) = 0, we obtain

P (r) =

(

3

π

)

GM2

R4

(

5

12
− 2x2 + 7

x3

3
− 3

x4

4

)

P (r) =

(

1

4π

)

GM2

R4

(

5 − 24x2 + 28x3
− 9x4

)

.

You could have solved this portion by integrating from 0 to r but then you would
have the central pressure as an additive constant that you would need to evaluate
by doing an integral from 0 to R.

(e) Assume that the material in the star is a monatomic ideal gas. Calculate the total
internal energy of the star from P (r), and show that the virial theorem is satisfied.

Solution:

The internal energy per unit mass is

u =
3

2

P

ρ
,



so the total internal energy is

U =

∫ R

0

4πr2ρu dr = 6π

∫ R

0

r2P (r) dr

=

(

3

2

)

GM2

R

∫ 1

0

x2
(

5 − 24x2 + 28x3
− 9x4

)

dx

=

(

3

2

)

GM2

R

(

5

3
−

24

5
+

28

6
−

9

7

)

=

(

3

2

)

GM2

R

(

52

210

)

=

(

13

35

)

GM2

R
.

This is clearly −1/2 of Ω = −(26/35)GM2/R, so the virial theorem is satisfied.

5. Powering Jupiter by Gravity - 15 points

The Sun is in thermal equilibrium because its thermal timescale is short compared
to its age. However, smaller objects need not be in thermal equilibrium, and their
radiation can be powered entirely by gravity.

(a) Jupiter radiates more energy than it receives from the Sun by 8.7 × 10−10 L⊙.
Jupiter’s radius is 7.0 × 104 km and its mass is 1.9 × 1030 g. Compute its Kelvin
Helmholz timescale. Could gravitational contraction power this luminosity for
Jupiter’s entire lifetime of 4.5 Gyr?

Solution:

The Kelvin-Helmholz timescale is

tKH =
GM2

RL
= 1.0 × 1019 s = 320 Gyr.

This is vastly longer than 4.5 Gyr, so gravitational contraction could easily power
this luminosity for 4.5 Gyr.

(b) Use conservation of energy to estimate the rate at which Jupiter’s radius is shrink-
ing to power this radiation. You may ignore the factor of order unity that arises
from Jupiter’s unknown density distribution.

Solution:



Jupiter is in hydrostatic balance; so using the virial theorem and conservation of
energy we showed that when, as is the case for Jupiter, kinetic energy changes
more slowly than internal and gravitational potential energy and no nuclear re-
actions are occurring,

L ≃ −

Ω̇

2
.

Then, since

Ω ≃ −

GM2

R
and

Ṁ ≃ 0 ,

Ω̇ ≃

GM2

R2
Ṙ .

Therefore, dropping the factor of one-half,

Ṙ ≃ −

R2L

GM2
= −6.9 × 10−10 cm s−1 = −0.022 cm yr−1 .

6. The thirsty professor - not required, but could be substituted, at the time

of submission, for one of the above

The professor likes to drink wine and prefers it chilled to 10 degrees C (283 K). The
wine and bottle have a mass, m, of 1000 gm and a surface area of 700 cm2. The heat
capacity of the wine and bottle together is CP = 4 × 107 erg gm−1 K−1. The total
heat content of the bottle of wine at temperature, T, is assumed to be CP m T. The
wine and bottle are good conductors and maintain a uniform temperature throughout.
Initially the wine is at room temperature, 20 degrees C (293 K).

(a) The professor dreams he is an astronaut in space and puts the wine out on the
dark side of the space craft where it is in a vacuum at nearly 0 K. Calculate
how long it takes the wine to cool to 10 C. (an integral will be necessary for an
accurate answer).

Solution:

Because the wine radiates into a vacuum with close to zero temperature we can
beglect any “back radiation”. The energy loss, which is area times blackbody
flux, is powered by a decrease in the internal heat content which is carried by
(assumed instantaneous) conduction to the bottle’s edge.

(

dE

dt

)

loss

= (A)(σ T 4)



This is provide by decreasing the internal energy so

(CP )(m)
dT

dt
= −A(σ T 4)

∫ 283

293

dT

T 4
= −

Aσ
CP m

∫ t

0
dt

−

1

3

(

1

2833
−

1

2933

)

= −
Aσ

CP m
t

4.37 × 10−9CP m

Aσ
= t

t = 1.45×10−9(4×107)(1000)
(700)(5.67×10−5)

t = 1460 sec

or 24 minutes.

(b) The professor wakes up, but is still thirsty, so he puts the same wine, initially at 20
C, in a freezer where the temperature is -10 C (263 K). How how long does it take
the wine to cool down to +10 C (283 K)? An approximate answer will get substan-
tial credit, but an accurate one requires a quartic integral (dx/(x4 - a4)) that can
be evaluated at mathportal.org (http://www.mathportal.org/calculators/calculus/integral-
calculator.php). If evaluating an arctan on your calculator, be sure it is set to
radians mode and not degrees.

Solution:

The solution is very similar to before, but now radiation is being absorbed from
the “freezer”, as well as emitted

(

dE

dt

)

loss

= −Aσ (T 4
bottle − T 4

freezer)

This time the integral is more complicated

(CP )(m)
dT

dt
= −Aσ(T 4

− (273)4)
∫ 283

293

dT

T 4
− 2734

= − [(Aσ)/(CPm)] t

Fortunately the integral can be evaluated at mathportal (use class link) or www.integral-
calculator.com. Both give the indefinite integral

∫

dx/(x4
− a4) =

1

4a3
(−log(x + a) + log(x − a) − 2Arctan(x/a))



which could be evaluated - perilously - by hand or do the definite integral at the
same sites

∫ 283

293

dx

x4
− 2734

= −7.87 × 10−9

So

t = 7.87 × 10−9CP m

Aσ
= 7900 sec

or 2.2 hours. [postscript: the professor has done many such experiments and finds
that the cooling time is less than 30 minutes in the freezer. Apparently conduction
and convection, in the air at the bottle’s edge, neglected here, are important.]


