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A nuclear reaction  turns one nucleus to another. 
We have already discussed several kinds: 
 
        Beta decay, electron capture, positron emission 
 
        Alpha decay and fission (technically everything heavier 
            iron is unstable) 
 
        Neutron or proton drip 
 
http://www.nndc.bnl.gov/wallet/wc8.html     
      
Here we expand the discussion to include fusion reactions 
where two (or rarely more) nuclei come together to produce 
a third, often with the emission of some lighter particles and 
energy.  
 
The generic binary fusion reaction is: 

  I + j → L+k  or     I( j,k )L



  

                  I(j,k)L

   I = Target nucleus              j = incident particle
   L = Product nucleus           k = outgoing particle or particles 
If there is no incident particle put the outgoing 
particles together without a comma
   E.g., pp1; the main reaction sequence powering the sun

             p(p,e+ν )2 H(p,γ )3He(3He, 2p)4He

The symbol  in the second reaction is is 
sort of a catch-all for energy that comes out 
in forms other than neutrinos, electrons, 
and positrons. Energy comes out as 
photons as well as kinetic energy (heat).  



 heat and lightγ =

PP1 Cycle 

Here eβ + +
=



The reaction rate for the reaction I (j,k) L is given by the 
product of the number densities of the reactants times their
relevant speed and cross section. n jv can loosely be thought
of as the flux of particles j on a nucleus of species I

nInjσ I j v

This has units of reactions cm−3  s−1

  

The cross section for the reaction I(j,k)L is

      σ jk (I) = number of reactions/nucleus I/sec
number of incident particles j/cm2 /sec

σ thus has units of cm2  though other units of area are
sometimes used (typically "barns" are the unit in nuclear 

physics; 1 barn = 10−24  cm2  as in "big as a barn")



It is more convenient to write things in terms of the Y’s  previously  
defined 

YI =
XI

AI

nI = ρNAYI

so that the rate becomes
(ρNA )2YI Yj σ I j v

and a term in a rate equation decribing the destruction of I might be

dYI
dt

=− ρYIYjNA σ jk (I )v +....

                             =− ρYIYjλ jk (I ) +....

Here    denotes a suitable average over energies and angles
and the reactants are usually assumed to be in thermal equilibrium.
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For a Maxwell-Boltzmann distribution of reactant energies the 
average of the cross section times velocity is
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where µ  is the "reduced mass"

             µ=
MIm j

MI+ m j

 for the reaction I (j, k) L and E =
1
2
µv2  is the kinetic energy in

the center of mass frame.



For T in 109 K = 1 GK,  in barns (1 barn = 10-24 cm2),  
E6 in MeV, and k = 1/11.6045 MeV/GK, the thermally  
averaged rate factor in cm3 s-1 is 
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for the reaction I(j,k)L

If you know jk  from the lab, or a calculation, just  
put it in and integrate. But often we don’t know the  
cross section at all, or know it in a limited energy  
range or only at a few points. How to estimate, 
interpolate, extrapolate? 



           σ (E) = π2 P(E) Χ(E, A)
geometry      penetration                nuclear 
  term            factor                        structure 

   

 =


p
 = 

1

k

How much the nucleus I+j looks  
like the target nucleus I with j  
sitting at its surface. Liklihood 
of staying inside R once you get  
there. 

Area subtended by a  
de Broglie wavelength  
in the c/m system 

probability a flux of 
particles with energy E 
at infinity will reach the  
nuclear surface. Must account 
for charges and QM reflection. 

The Cross Section 

see Clayton Chapter 4 

(Cla 4-180) 



    

  is the de Broglie wavelenth in the c / m system

π2 = π2

µ2v2 =
π2

2µE
= 0.656barns

Â E(MeV)
where 1 barn = 10-24 cm2  is large for a nuclear cross section.

µ= M1M 2

M1 +M 2

Â= A1A2

A1 + A2

~ 1 for neutrons and protons on heavy nuclei

~ 4 for α -particles if AI  is large, >> 1
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Classical turning radius
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The classical  turning  radius is given by 
energy conservation

1
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Which is close to the factor in exponential in the penetration function
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Note that as the charges become big or E gets small, P gets very small.

QM Barrier Penetration 

The Sommerfeld 
parameter 



   

For particles with charge, providing  X(A,E) does not vary rapidly.
with energy (exception to come), i.e., the nucleus is "structureless"

                      σ (E) = π2Pl X ( A, E) ∝ e−2πη

E

This motivates the definition of an "S-factor" which should be ~ constant

S(E)=σ (E) E exp(2πη)

η=
ZI Z je

2

v
= 0.1575ZI Z j Â / E

Â =
AI Aj

AI + Aj

E in MeV

This S-factor should vary slowly with energy. The first order 
effects of the Coulomb barrier and Compton wavelength have been
factored out.





 

For those reactions in which S(E) is a slowly varying function of energy 
in the range of interest and can be approximated by its value at the energy 
where the integrand in the reaction rate formula is a maximum, E0,

          σ (E)  S(E0 )
E
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The quantity in the integral looks like



For accurate calculations we would just enter the 
energy variation of S(E) and do the integral numerically. 
However, Pols 6.2.2 shows that 
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3) Δ is determined by matching the 2nd  derivatives at E0
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Detail: 
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Detail: 



 The peak is Eo,  the Gamow  Energy. This is the center-o-mass
energy where most reactions happen. It is >>kT

                Eo  = 0.122 ZI
2Z j

2ÂT9
2( )1/3

 MeV

The Gaussian has a  full width at 1/e times the maximum.
This gives the range of interesting energies, e.g., in which
the cross section needs to be measured.

             Δ = 4
3
EokT( )1/2  = 0.237 ZI

2Z j
2ÂT9

5( )1/6
 MeV

  

Â=
AI Aj

AI + Aj

T9 = T / 109  K

Summary 
We replaced the exponential term with a Gaussian 
that was analytically integrable. Matching the first and 
second derivatives of the two functions, the maximum and  
full width of the Gaussian were determined 



Example 

  

3He+ 3He    at 1.5 ×107 K

Eo  = 0.122 ZI
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2ÂT9
2( )1/3

 MeV

      =   0.122 (2222 9
6

(0.015)2)1/3 =0.0214  MeV  = 21.4 keV
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2ÂT9
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= 0.237 2222 9
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= 0.0122 MeV = 12.2 keV

The relevant energy range in which we need to know
S(E) is 21± 6 keV

The value of kT for comparison is 1.3 keV





A Gaussian integral is analytic

NA σ v = 4.34×108
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S(E0 ) τ 2e−τ cm3 / (Mole s)

where S(E0 ) is measured in MeV barns.   If we define

λ jk = NA σ jkv

then a term in the rate equation for species I such as Yjρλ jk  has units
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Different people use different 
conventions for  which sometimes  
do or do not include  or NA. This  
defines mine. %
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The lifetime of the species I against the reaction  
I(j,k)L is given by 

  
τ jk (I) = 1
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E.g., the lifetime of 14N against the reaction
14N (p,γ )15O is

τ pγ (14N)= ρYpλpγ (14N)( )−1



Adelberger et al, RMP, (1998(  
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For example, 12C + 12C  at 8 x 108 K 
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Resonant reactions 

The previous discussion was predicated upon the assumption 
that the nuclear structure factor  was slowly varying with  
energy. This led to an S-factor that was also nearly constant. 
 
This turns out to be the case when the excited state structure 
of the nucleus can be ignored. But suppose I and j come  
together at the Gamow energy to produce L in an excited state  
that has just the right spin, angular momentum, and parity to  
closely resemble I + j.  
 
Such reactions are called “resonant” and the cross section in  
a narrow energy range can be many of orders of magnitude  
larger than if the resonant state were not there. See appendix 
to these notes.%



Specific Reactions in  
Hydrogen and Helium  

Burning 

•  pp1 chain 
•  pp2 and pp3 chains 

 
•  CNO cycle 

 
•  3-alpha and 12C(,)16O 



Proton-proton reaction (the basic first step for pp1, 2, 3): 

  
p ( p,e+

ν
e
)2 H (+0.42MeV)

  This cross section is far too small (~10-47 cm2 at 1 MeV) 
 to measure in the laboratory but it does have a nearly constant,  
calculable S-factor.  
 
Two stages: 
•  Temporarily form diproton. The initial wave function 
   is the same as for proton scattering. Initially the  
   diproton must have its protons spins counter alligned 
   because can�t have protons in identical states. Unbound. 
•  Diproton experiences a weak interaction (with a  
   spin flip) to make deuteron with the neutron and proton  
   alligned. Higher this is more tightly bound than the counter 
   alligned state 



pp1 

pp2,3 

no weak interaction needed, 
very fast 

4Li is unbound 



 heat and lightγ =

PP1 Cycle 

Here eβ + +
=



H. A. Bethe (b 1906) 
Nobel 1967 



Lifetimes against various reactions 

Reaction Lifetime (years) 

1H(p,e+)2H 7.9 x 109 
2H(p,)3He 4.4 x 10-8 

3He(3He,2p)4He 2.4 x 105 
3He(4He,)7B 9.7 x 105 

For 50% H, 50% He at a density of 100 g cm-3 
and  a temperature of 15 million K 
 
The time between proton collisions, for a given  
proton, is about a hundred millionth of a second. 



How much energy is produced and how fast is it 
liberated. We could just add up the energies of each  
reaction and divide that number by the time scale for 
the slowest reaction. Instead let’s solve the general  
problem (make things easier in the future). 
 
We have a set of nuclei {Yi } that is transformed into 
a new set {Yi+Yi). Each nucleus has binding energy  
BEi in MeV. 

  qnuc = 1.602×10−6 N A [ (δYi )(BEi − qweak )] erg/gm∑

Nuclear energy yield 

Here 1.602 x 10-6 is the conversion factor from MeV (which 
are the units of BE) to erg. qweak is a correction term that is 
only non zero for weak interactions. It accounts for neutrinos 
lost and mass changes when protons and electrons turn to 
neutrons or vice versa.  



  

Basically important only  in hydrogen burning
qweak accounts for the neutron proton mass

difference, the creation and annihilation of positrons,
and energy lost to neutrinos

        qweak =ΔZ * [ n − p mass difference( )+mec
2 ]−q

ν

=ΔZ * [1.294 MeV-0.511 MeV ]−q
ν

=ΔZ * [0.783 MeV ]−q
ν

For example in the pp1 process 4 protons urn into 2 neutons
and 2 protons so ΔZ = −2.  In addition two neutrinos are emitted
with an average of 0.26 MeV each, so q

ν
= 0.52 MeV

and qweak =− 2.09MeV

qweak 



Example:          Hydogen burning

a) 100% 1H → 4He δY(1H) = −1 BE(1H) = 0

δY(4 He) = 1
4

BE(4He)=28.296MeV

From previous page qweak =− 2.09

q=9.65×1017 28.296 − 2.09
4

⎛
⎝⎜

⎞
⎠⎟ = 6.32×1018  erg g−1

b) 70% 1H; 30% 4He →4 He δY(1H) = − 0.7

δY (4 He) = 1
4
− 0.3

4

q=9.65×1017 1
4
− 0.3

4
⎛
⎝⎜

⎞
⎠⎟ 28.296 − 2.09( ) = 4.42×1018  erg g−1



 
A related quantity, the energy generation rate is given by  

  
εnuc =9.65×1017 dYi

dt
(BEi −qweak ) erg g-1 sec-1∑

BE(12C) = 92.162  MeV 
BE(16O) = 127.619 
BE() = 28.296 MeV 
qweak = 0 

values for helium burning 

Additional nuclear physics needed for post-helium burning  
stages will be covered when we treat the advanced burning stages 
of massive stars later in the course. 



   

We could include all the reactions and evaluate 
dYi

dt
for each species but it is much easier to just realize that
the net result is that every time 4 protons are burned by the 
reaction p(p,e+ν), one 4He appears. So

     dY (4 He)
dt

=− 1
4

dY (1 H )
dt

= 1
4

2ρY 2(1 H )λ pp =
1
2
ρY 2(1 H )λ pp

εnuc = 9.65×1017 dYi

dt
(BEi −qweak ) erg g-1 s-1∑

= 9.65×1017

2
ρY 2(1 H )(26.2)λ pp

= 1.26×1019 ρY 2(1 H ) λ pp     erg g−1   s−1

For hydrogen burning by the pp1 process 



 

Previously we showed

λ = 4.34×108
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for the pp reaction Â = 1*1/ (1+1) = 1/ 2
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Compare with Clayton 5.11 



  

Putting it together

ε =1.26×1019 ⋅1.97×10−13 ρYH
2T6

−2/3 e−33.7/T6
1/3

  erg  g−1 s−1  

e.g. ρ=150  g cm−3 T6 =15 YH =0.35

ε =(2.48×106)(150)(0.35)2 (15)−2/3 e−13.66   erg  g−1 s−1

=8.7 erg  g−1 s−1

Given our previous discussion this can also be written

as a power law of the temperature with n = 
τ − 2

3
τ = 33.7 / (15)1/3 =13.66 ⇒ n= 3.89

So εpp ≈ 8.7
ρ

150g cm−3

⎛
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2
T

15 ×106 K
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⎞
⎠⎟

3.89

erg  g−1 s−1



Reality checks: 

1)  Energy budget for the sun 

   

Q = L τMS()≈(4 ×1033 erg s−1)(1010  yr)(3.16 ×107  s/yr)

      1 ×1051 erg
Qnuc ≈(4.4×1018  erg g− )(0.1)(M)

= (4.4×1018  erg g−1)(2×1032  g) =9 ×1050  erg

2) Luminosity of the sun 

   

L =3.84×1033  erg s−1

εpp i(0.1M)  9erg g−1 s−1(2×1032  g)~ 2×1033erg s−1

Could adjust YH ,T,ρ, or fraction burning to get better agreement



3)  Lifetime 

   

τMS τ pp = YH /
dYH

dt
⎛
⎝⎜

⎞
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−1

=
YH

ρYH
2λpp

⎛

⎝
⎜

⎞

⎠
⎟

−1

= (1.97×10−13ρYHT6
−2/3 e−33.7/T6

1/3
)−1

At   ρ=150g cm−3; T6 = 15;YH = 0.7

τMS  (2x10−13)(150)(0.7)(0.164)(1.1x10−6)( )−1

= 3.8×10−18( )−1
  s  = 8 billion years



In the sun 
 
•  pp1  85% 
•  pp2 15% 
•  pp3 0.02% 

pp2 and pp3 chains (more important at higher T) 

4 +

e

          In all cases

4p  He + 2 e 2 ν→ +

Tcentral = 15.7 Million K 



Neutrino Energies 

Species            Average energy         Maximum energy 
 
 p+p                     0.267 MeV                    0.420  MeV 
 
  7Be                     0.383 MeV                   0.383  MeV     10%    
                             0.861                            0.861              90% 
 
  8B                       6.735 MeV                    15  MeV 

In the case of 8B and p+p, the energy is shared with 
a positron hence there is a spread. For 7Be the electron 
capture goes to two particular states in 7Li and the neutrino 
has only two energies 



For temperatures above 
18 million K, the �CNO 
cycle� dominates energy  

production 

10 min 
2 min 



  

Rate equations: 

dY(12C)
dt

= −Y(12C)Ypρλpγ (12C)+Y(15N)Ypρλpα (15N)

dY(13N)
dt

= Y(12C)Ypρλpγ (12C)−Y(13N)λ
e+ (

13N)

dY(13C)
dt

= Y(13N)λ
e+ (

13N)−Y(13C)Ypρλpγ (13C)

dY(14N)
dt

= Y(13C)Ypρλpγ (13C)−Y(14N)Ypρλpγ (14N)

dY(15O)
dt

= Y(14N)Ypρλpγ (14C)−Y(15O)λ
e+ (

13N)

dY(15N)
dt

= Y(15O)λ
e+ (

13N)−Y(15N)Ypρλpα (15N)

dYp

dt
= −Y(12C)Ypρλpγ (12C)−Y(13C)Ypρλpγ (13C)

−Y(14N)Ypρλpγ (14N)−Y(15N)Ypρλpα (15N)

dYα

dt
= Y(15N)Ypρλpα (15N)

Detail 



  

 The slowest reaction is 14N(p,γ )15O so for purposes
of energy generation the rate equations can be approximately
be written: 

dYp

dt
= − 4Y(14N)Ypρλpγ (14N)

dYα

dt
= Y(14N)Ypρλpγ (14N)

where Y(14N) ≈ 1
14

(XC + XN + XO) ≈ Z
14

One still needs to subtract off the energy carried
away by neutrinos and adjust for n - p mass differences

qweak =ΔZ * [0.783 MeV ]+ q
ν
= (2)(0.783)+1.70

= 3.26 MeV



The S factor for 14N(p,)15O is 1.64 x10-3 MeV barns  
(including a recent downward revision) 

  What is λpγ ( 14 N)?

 

λ = 4.34×108

Â ZIZ j

S(E0 ) τ 2e−τ cm3 / (Mole s)

for the 14N(p,γ ) reaction Â = 1*14 / (14 +1) = 14 /15

τ = 4.248
ZI

2Z j
2 Â

T9

⎛

⎝
⎜

⎞

⎠
⎟

1/3

= 4.248 1i 72 i14 /15
T9

⎛
⎝⎜

⎞
⎠⎟

1/3

= 15.19 T9
−1/3

λpγ (14N ) = 4.34×108

7(14 /15)
1.64×10−3( )(15.19)2 T9

−2/3e−15.19/T9
1/3

= 2.51×107T9
−2/3e−15.19/T9

1/3

= 1.69 ×10−16 for example at T9 = 0.02 (20 M K )



  

dYα

dt
= Y(14N)Ypρλpγ (14N)

≈
YpZ
14

ρλpγ (14N)

 At T9 =20, τ =56.0, n = τ − 2
3

=18

λpγ (14N) ≈ 1.7×10−16 T
20MK

⎛
⎝⎜

⎞
⎠⎟

18

dYα

dt
≈ 1.2×10−17 ρYpZ

T
20MK

⎛
⎝⎜

⎞
⎠⎟

18

εnuc =9.65×1017 dYi

dt
(BEi −qweak ) erg g-1sec-1∑

=11.7ρYpZ
T

20MK
⎛
⎝⎜

⎞
⎠⎟

18

(28.296 − 3.26)

εCNO = 293 ρYpZ
T

20MK
⎛
⎝⎜

⎞
⎠⎟

18

erg g-1sec-1



Ratio of CNO energy generation to pp 

  

εCNO = 293 ρYpZ
T

20MK
⎛
⎝⎜

⎞
⎠⎟

18

erg g-1sec-1

εpp =1.26×1019 ⋅1.97×10−13 ρYp
2T6

−2/3 e−33.7/T6
1/3

= 1.36 ρYp
2 T9

0.02
⎛
⎝⎜

⎞
⎠⎟

3.89

erg g-1sec-1

The ratio = 1 when 

293
1.36

Z
Yp

⎛

⎝
⎜

⎞

⎠
⎟

T9

0.02
⎛
⎝⎜

⎞
⎠⎟

14

=1

and if Z= 0.015, Yp =0.7

4.62
T9

0.02
⎛
⎝⎜

⎞
⎠⎟

14

=1 T9 = 0.0179

CNO will dominate above about 18 MK





CNO Tri-cycle 

Note nucleosynthetic implications: 
Synthesis of some 13C.  14,15N,  17,18O, 19F 



Helium Burning 
Helium burning is a two-stage nuclear process in which two  
alpha-particles temporarily form the ground state of unstable 8Be*. 
Occasionally the 8Be* captures a third alpha-particle before it flies 
apart. No weak interactions are involved. 

unstable 



Helium burning 2 – the 12C(,) rate 

No resonance in Gamow  
window – C survives ! 

Resonance in Gamow window 
- C is made ! 

But some C is converted 
 into O … 



The current value is due to Caughlan and Fowler (1988) using 
mesurements from Sam Austin

                    λ3α =2.79× 10−8 T9
-3 exp (−4.403 / T9 )

                    T9
d lnλ
d ln T

                   0.1                41

                   0.2                19 = 4.403
T9

− 3

                   0.3                12

Unlike most reactions in astrophysics, the temperature dependence 
here is not determined by barrier penetration but by the Saha equation.  
In fact, at high temperature (T9 > 1.5)   the rate saturates and actually  
begins to decline slowly as the resonance slips out of the Gamow  
window. 

Slight revisions to

Γγ here



AFor binary reactions, N vλ σ≡

 

dYα

dt
=-3ρ2Yα

3 λ3α /6 - Yα Y(12C)ρλαγ (12C)

dY(12C)
dt

=ρ2Yα
3 λ3α /6 - Yα Y(12C)ρλαγ (12C)

dY(16O)
dt

= Yα Y(12C)ρλαγ (12C)

12

12

12

16

For Y  small or large

                     C

For Y large or small

                     O

ρ

α

ρ

α

→

→

Helium Burning 



Energy Generation from Helium Burning 

  

BE(4He) = 28.296 MeV BE(12C)= 92.162 MeV
BE(16O) = 127.617 MeV

1) 3 4He→ 12C
q= 9.65× 1017 (δYi )(BEi ) erg/gm∑ (qweak = 0)

= 9.65× 1017 Yfinal (
12C) BE(12C) −Yinitial (

4He) BE(4He)⎡⎣ ⎤⎦

= 9.65× 1017 1
12

92.162 − 1
4

28.296
⎡

⎣
⎢

⎤

⎦
⎥

= 5.85 × 1017   erg  g−1

2) 18 4He→ 12C + 4 16O (i.e. 12
76

= 15.8% C 84.2%O)

= 9.65× 1017 [Yfinal (
12C) BE(12C) +Yfinal (

16O) BE(16O)−

Yinitial (
4He) BE(4He)]

= 9.65× 1017 1
12

12
76

92.162 + 1
16

64
76

127.617− 1
4

28.296
⎡

⎣
⎢

⎤

⎦
⎥

= 8.25 × 1017   erg  g−1



Energy Generation from Helium Burning 

  

εnuc =9.65×1017 dYi

dt
(BEi ) erg g-1 sec-1∑

dYα

dt
=-3ρ2Yα

3 λ3α /6 ignore 12C(α ,γ )16O

dY(12C)
dt

=ρ2Yα
3 λ3α /6

εnuc =9.65×1017 dYi

dt
(BEi )∑

= 9.65×1017 ρ2Yα
3 λ3α /6 92.162 − 3 (28.296)⎡⎣ ⎤⎦

= 1.83× 1016ρ2 Xα
3 λ3α

= 1.83× 1016ρ2 Xα
3 2.79× 10−8 T9

-3 exp (−4.403 / T9 )( )
ε3α = 5.11 ×108 ρ2 Xα

3 T9
-3 exp (−4.403 / T9 ) note typo in GK 

coeff off by 1000 



In a 15 solar mass star: 

12

3( ) / 3Cαγ αλ λ



Extra Material  



The resonances can be broad 
Resonant Reactions 



or narrow 

~ constant S-factor 
for direct capture 

Not constant S-factor 
for resonances 
(log scale !!!!) 



If the resonance is much broader than the Gamow energy, 
then treat with the formalism we have already developed 
by with a slowly varying S-factor.  
 
For narrow resonances though, width << the Gamow 
energy, another formalism is employed.  This would take 
some time to develop, so here we just give the result. 



Rate of reaction through a narrow resonance 

Narrow means:  Γ << ΔE

In this case, the resonance energy must be �near� the relevant energy range  
E to contribute to the stellar reaction rate. 

Recall: 
< σv >=

8

πµ

1

(kT )
3/2

σ (E)E e
−
E

kT

0

∞

∫ dE

and 

 

σ (E) = π
2
ω

Γ
1
(E)Γ

2
(E)

(E − E
r
)
2
+ (Γ(E) / 2)

2

pull out front 

Here Er is the energy of the resonance and the ’s are the partial widths  
of the state to break up into I+j, L+k, etc. 



Then one can carry out the integration analytically (Clayton 4-193) and finds: 

N
A
< σv >= 1.54 ⋅10

11
(AT9 )

−3/2ωγ [MeV]e

−11.605 E
r

[MeV]

T
9

cm
3

s mole

ωγ =
2J

r
+1

(2J
j
+1)(2J

I
+1)

Γ
1
Γ
2

Γ

For the contribution of a single narrow resonance to the stellar reaction rate: 

The rate is entirely determined by the �resonance strength��!ωγ

In general the reactions during the proton-proton cycles are 
non-resonant but the reactions for the CNO cycle and more  
advanced burning stages are resonant.  



  

Light particle  (n, p, α ): λ jk ≡ NA σ jkv

YI Yp ρλpγ (I); YI Yn ρλnγ (I); YI Yp ρλpα (I)

Heavy Ion
1

6
Yα

3λ3α ; 1

2
ρY 2 12C( )λ12,12;

1

2
ρY 2 16O( )λ16,16

Weak interaction (beta decay, electron capture, 
positron emission)

YI λβ (I); YI λec (I); YI λβ (I) λ = ln 2
τ1/2



  

E.g.  the decay of 14C

       
dY(14C)

dt
= − Y(14C) λβ (14C)

So

                    Y(14C) =Y0(14C) exp(−λβ (14C) t)     

                    τ1/2 = 5730 y = 1.81× 1011 sec

λ =
ln 2

1.81× 1011 = 3.83 × 10−12 sec−1               

Example of solving a rate equation 



  

E.g., pp1 hydrogen burning:

p(p,e+ν)2H(p,γ )3He(3He,2p)4He

     
dYp

dt
= − 2

1
2

⎛
⎝⎜

⎞
⎠⎟
Yp

2 ρλpp +2
1
2

⎛
⎝⎜

⎞
⎠⎟
Y 2 3He( )ρλ3,3

dY(2H)
dt

= 1
2

⎛
⎝⎜

⎞
⎠⎟
Yp

2 ρλpp −YpY
2H( )ρλpγ (2H)

dY(3He)
dt

=YpY
2H( )ρλpγ (2H) −2

1
2

⎛
⎝⎜

⎞
⎠⎟
Y 2 3He( )ρλ3,3

dY(4He)
dt

= 1
2

⎛
⎝⎜

⎞
⎠⎟
Y 2 3He( )ρλ3,3

The rate factors λ  contain the temperature dependence
of the rate equations. The density dependence
has been separated out.


