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Summary of energy generation rates (Lecture 10) 

  

εpp =2.48 × 106 ρYH
2T6

−2/3 e−33.7/T6
1/3

  erg  g−1 s−1

εCNO = 4.33 ×1025Yp Z ρ T9
−2/3e−15.19/T9

1/3

erg  g−1 s−1

(smaller S-factor than in texts)

ε3α = 5.11×108 ρ2Xα
3 T9

-3 exp (−4.403 / T9) erg  g−1 s−1

 



Consider stars supported mostly by ideal gas 
pressure contracting and obeying the Virial theorem. 
 
When not powered by nuclear reactions, such  
stars radiate their gravitational binding energy 
on a Kelvin Helmholtz time scale. This is equivalent 
to radiating away the internal energy of the star. This 
requires a gravitational energy generation rate in erg  
g s-1 of  

  

εgrav =
3P

2ρτKH

=
NAk
µ

T
τKH

For the sun with T~107  K, τKH ~30My, this gives

εgrav ~ 1  erg g s−1 (GK  say ~10)



   

Asimilar number can be obtained from simply dividing the 

present luminosity of the sun by its mass, L  /M ≈ 1.9 erg g s−1.

From previous discussions, e.g., of Eddington's standard
model, note that this answer is independent of whether the 
source of the star's energy is nuclear or gravity.

Continuing to use Eddington's standard model, which also

has L∝M3  suggests that, as a function of mass, 
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for stars near the main sequence.



   

"Ignition" on the main sequence will happen (can be defined 
by the point)when εnuc = εgrav for the whole star. In fact, because

the nuclear reactions are very temperature sensitive, nuclear
energy generation goes on in a much smaller fraction of the 
star's mass, which we shall call f  ~ 0.1. Then 

          εnuc wholestar
≈ εgrav wholestar

⇒

εnuc,center ≈ εgrav / f ≈ 10 εgrav

≈ 20
0.1
f
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(recovering GK for 1M)

Putting εpp  or (for T> 18MK) εCNO  equal to the value required

above gives the ignition line for main sequence (hydrogen burning)
stars.



Helium burning 

Continuing to consider non-degenerate stars (the  
helium flash must be considered separately), we can,  
as in your homework problem, also treat the helium core 
as a separate star with smaller mass.  
 
Again using Eddington’s model as a guide, the luminosity 
increases, for a given M, as µ4, which implies an increase 
of (1.34/0.61)4 = 23. In fact, since a) the central regions of  
helium burning stars are convective and b) the surface   
opacity is less, the luminosity increase is even greater.  
Typical horizontal branch stars have have helium core 
luminosities ~ 30 - 50 times solar and core masses about 
0.5 solar masses. More massive stars that do not  
become HB stars have more massive helium cores and 
are even more luminous with L again going roughly as  
the cube of the helium core mass.  



Helium burning 

   

As a result helium ignition requires substantially
higher energy generation rates at ignition. Even without
this increase, the temperature required for helium ignition
would be much hotter because of the larger Coulomb 
barriers involved and the smaller energy generation rate.  
Near ignition for helium burning, the 0.5 M  helium core has
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Maximum Temperature Achieved 
in a Contracting Core 

  

We found for all polytropes a relation

                    Pc =CnGM 2/3ρc
4/3

with Cn  a weak function of n, equal to Cn  =  0.478

for n = 3/2. This polytropic index is appropriate for
both non-relativistic degeneracy and fully convective
stars supported by ideal gas. For ideal gas the 
central temperature thus depends on the central density
as 

                      Tc =
CnGµM 2/3

NAk
ρc

1/3



Maximum Temperature Achieved 
in a Contracting Core 

  

The temperature will continue to rise until the
gas becomes degenerate (if it ever does). Then 
the pressure if it becomes degenerate will be given by 

PNR deg = KNR ρYe( )5/3
KNR = 1.004 ×1013  dyne cm−2

which also  =   C3/2GM 2/3ρc
4/3 so 

ρc
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KNRYe
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Maximum Temperature Achieved 
in a Contracting Core 

   

The maximum temperature will be reached, at the point
when the gas first becomes degenerate and the two pressures
are comparable, that is

      Pc,total = C3/2GM 2/3ρc
4/3 = 2

ρcTcNAk
µ
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from which it follows

    Tc =
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5/3 M 4/3 (Pols 8.5)
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K for µ= 1.33,  Ye = 0.50 (helium)



Minimum mass star for H ignition 

   

Set 

εpp =2.48 × 106 ρYH
2T6

−2/3 e−33.7/T6
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  erg  g−1 s−1

evaluated at Tmax = 5.7 × 107 M
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erg g−1 s−1  and solve for M. Probably 

easiest to solve by iteration. Pick M =0.2M  and solve for 

Tmax to get 6.7 ×106  K which gives (at YH = 0.7,ρ = 100gcm3)

εpp =0.6.  εnuc,center ≈ 20(.04)= 0.8, a pretty close match.

Empirically better results are obtained with 
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Then 0.1 M gives 5.3×106  K, εpp =0.16.  εnuc,center ≈ 20(.01)= 0.2,



Minimum mass star for He ignition 

   

ε3α = 5.11×108 ρ2Xα
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Try ρ=1.×104  Xα =1., M =0.45M, 0.50M ⇒T = 1.27,1.10×108  K

ε3α = 22,000 , 160.

So in between 0.45 and 0.50 M even allowing for uncertainty

in the density.The answer is close to right because of the high
power of temperature which 3α  depends on for such low T

(T41 at 1.0 x 108  K)



Beyond Helium Burning 

Following the same approach it is not difficult 
to write down approximate energy generation rate 
formulae for carbon and oxygen burning. Silicon  
burning is more complicated. We shall discuss these 
later, but defer them for now since neutrino losses 
by the pair process play a dominant role there (Pols 6.5) 
 
Setting neutrino losses equal to nuclear energy  
generation we will later determine that the heavy  
fuels burn at a nearly constant temperature (because 
of the huge temperature sensitivity. The densities vary. 

Fuel Temperature (109 K) Density (g cm-3) 

Carbon 0.8 2 x 105 
Oxygen 1.8 2 x 106 
Silicon 3.2 2 x 107 



assuming the burning 
density scales as T3 

Woosley, Heger, and Weaver (RMP, 2002) 
















