Summary of energy generation rates (Lecture 10)

Lecture 12:
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Overview of £, =248 x10° pYT, 720" erg g s
Stellar Evolution
SCNO =4.33 % 1025 yp 7 p 7-9—2/367‘15.19”9 erg g,»] s,1
Glatzmaier and Krumholtz 13 (smaller S-factor than in texts)
Prialnik 7
POIS 8 8 2y/3 3 1 1
£,,=5.11x10° p° X" T;° exp (—4.403/T,) erg g~ s~
Consider stars supported mostly by ideal gas Asimilar number can be obtained from simply dividing the
pressure contracting and obeying the Virial theorem. present luminosity of the sun by its mass, L_ /M_ =~ 1.9 erg g s

From previous discussions, e.g., of Eddington's standard

When not powered by nuclear reactions, such
model, note that this answer is independent of whether the

stars radiate their gravitational binding energy

on a Kelvin Helmholtz time scale. This is equivalent source of the star's energy is nuclear or gravity.

to radiating away the internal energy of the star. This

reql:ires a gravitational energy generation rate in erg Continuing to use Eddington's standard model, which also
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For the sun with T~10" K, 7,,, ~30My, this gives for stars near the main sequence.
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"Ignition" on the main sequence will happen (can be defined
by the point)when ¢ = ¢__ for the whole star. In fact, because

c grav
the nuclear reactions are very temperature sensitive, nuclear
energy generation goes on in a much smaller fraction of the
star's mass, which we shall call f ~0.1. Then
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(recovering GK for 1M,))

Putting g, Or (for T> 18 MK) ¢_,,. equal to the value required

CNO
above gives the ignition line for main sequence (hydrogen burning)
stars.

Helium burning

As a result helium ignition requires substantially

higher energy generation rates at ignition. Even without

this increase, the temperature required for helium ignition
would be much hotter because of the larger Coulomb
barriers involved and the smaller energy generation rate.
Near ignition for helium burning, the 0.5 M_ helium core has
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Helium burning

Continuing to consider non-degenerate stars (the
helium flash must be considered separately), we can,
as in your homework problem, also treat the helium core
as a separate star with smaller mass.

Again using Eddington’s model as a guide, the luminosity
increases, for a given M, as u*, which implies an increase
of (1.34/0.61)* = 23. In fact, since a) the central regions of
helium burning stars are convective and b) the surface
opacity is less, the luminosity increase is even greater.
Typical horizontal branch stars have have helium core
luminosities ~ 30 - 50 times solar and core masses about
0.5 solar masses. More massive stars that do not
become HB stars have more massive helium cores and
are even more luminous with L again going roughly as
the cube of the helium core mass.

Maximum Temperature Achieved

in a Contracting Core
We found for all polytropes a relation

P :C GM2/3p4/3
with C_ a weak function of n, equalto C = 0.478
for n = 3/2. This polytropic index is appropriate for
both non-relativistic degeneracy and fully convective
stars supported by ideal gas. For ideal gas the
central temperature thus depends on the central density
as

T = C,GuM 2 p1°
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Maximum Temperature Achieved
in a Contracting Core

The temperature will continue to rise until the
gas becomes degenerate (if it ever does). Then
the pressure if it becomes degenerate will be given by

P Kue(pY,)" Ky =1.004x10" dyne cm™

NRdeg
H — 2/3 4/3
which also = C, ,GM“"p”" so
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Minimum mass star for H ignition

Set
e =248 x10° pY T **e

PP

-33.7/T3 erg 9,1 s

4/3
evaluatedat T _ 5.7 x 10’ [MMJ K

(0]
equal to

2
E o conter = 20(%)[%} erg g™ s and solve for M. Probably

©
easiest to solve by iteration. Pick M=0.2M_ and solve for
T . toget6.7 x10° K which gives (at Y,=07,p= 100gcm?®)
=~ 20(.04)= 0.8, a pretty close match.

Empirically better results are obtained with

2 2 5/3 4/3
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Then 0.1 M_gives 5.3x10° K, €,=0.16. ¢

Epp:0.6. £

nuc,center

~20(.01)=0.2,

nuc,center

Maximum Temperature Achieved
in a Contracting Core

The maximum temperature will be reached, at the point
when the gas first becomes degenerate and the two pressures
are comparable, that is

TN, k
= CslzGMmp:/3 = Z[pCCTA] = 2(KNR (che )5/3)

Pc Jtotal

from which it follows

T = C3/ZG‘uM2/3 p1/3 — C3/2(;IJA/12/3 CI}/ZGI\ﬂzl3
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= 5.7 x 107 (Mﬂj K  forpu=0.6, Y,=0.875
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=3.2x10° [/Cr/’j K foru=1.33, Y,=0.50 (helium)

Minimum mass star for He ignition
€,,=5.11x10° p2X° T.> exp (-4.403/T,) erg g"' s
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Try p=1.x10* X_ =1., M=0.45M_,0.50M_ =T = 1.27,1.10x10% K
e,,=22,000 , 160.

So in between 0.45 and 0.50 M even allowing for uncertainty

in the density.The answer is close to right because of the high
power of temperature which 3o depends on for such low T

(T* at 1.0 x 10® K)



Log p [g em™®]

Beyond Helium Burning

Following the same approach it is not difficult

to write down approximate energy generation rate
formulae for carbon and oxygen burning. Silicon

burning is more complicated. We shall discuss these
later, but defer them for now since neutrino losses

by the pair process play a dominant role there (Pols 6.5)

Setting neutrino losses equal to nuclear energy
generation we will later determine that the heavy

fuels burn at a nearly constant temperature (because
of the huge temperature sensitivity. The densities vary.

Fuel Temperature (10° K)  Density (g cm)
Carbon 0.8 2x105
Oxygen 1.8 2x108
Silicon 3.2 2x107
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Woosley, Heger, and Weaver (RMP, 2002)

assuming the burning -
density scales as T3 —

Temperature (Billions K)
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Figure 8.2. The equation of state in the log 7. - log p plane (left panel), with apptoxmule boundaries between
regions where radiation pressure, ideal gas pressure, non-relativistic ¢l y and ly rela-
tivistic electron degeneracy dominate, for a composition of X = 0.7 and Z = 0.02. ln the right panel, schematic
evol tracks for ing stars of 0.1 - 100 M, have been added
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Table 8.1. Ch istics of subseq gravitational contraction and nuclear buming stages. Column (3)
gives the total gravitational energy emitted per nucleon since the beginning, and col (5) the total nuclear
energy emitted per nucleon since the beginning. Column (6) gives the minimum mass required to ignite a
certain buming stage (column 4). The last two col give the fraction of energy emitted as photons and
neutrinos, respectively.

phase T (10°K) total Eg/n  main reactions total Egy/n Mgn y(%) v(%)

grav. 0— 10 ~ 1keV/n 100

nucl. 10 = 30 'H - *He 6.7MeVin 008 M, ~95 ~5
grav. 30 — 100 ~ 10keV/n 100

nucl. 100 — 300 ‘He —» °C,"%0 =~74MeVn 03M, ~100 ~0
grav. 300 —700 ~ 100keV/n ~50  ~50
nucl. 700 — 1000 2C - Mg,Ne =7.7MeV/n L1 M, ~0 ~100
grav. 1000 — 1500 ~ 150keV/n ~100
nucl. 1500 — 2000 %0 — S, Si ~80MeVin 14 M, ~100

grav. 2000 — 5000 ~ 400keV/m Si— ...— Fe = 8.4MeVin ~100




