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http://www.nasa.gov/mission_pages/hubble/science/milky-way-collide.html 

Andromeda and 
Milky Way  
collide in 4 

billion years. 
Approaching us 

at 300 km/s 
(Doppler shift) 

 
HST astrometry 

plus Doppler 
(plus computer) 

In addition to location, brightness, and time variability 
a key way we learn about stars is by analyzing 
their light. At the most basic level we can analyze 
their color, which turns out to be determined by  
their broad band emission across wavelength 
(black body emission) 
 
In more detail we learn (a lot) more from analyzing 
their spectra (transitions in individual atoms). 

Back to the stars E.g., ORION 

Betelgeuse and Rigel are  !
and -Orionis 

"

"

Even with the unaided eye 
you should be able to  
discern a difference  

in color between 
Betelgeuse and Rigel 



Astronomers historically have measured the color of   
a star by the difference in its brightness (magnitude)  
in two images, one with a blue filter (B) and another  
with a visual filter (V). (i.e., B = mB; V = mV) 
 
This difference, denoted (B-V), is a crude measure of 
the temperature. 
 
Note that the �bluer� the object, the smaller 
B will be (small magnitudes mean greater fluxes),  
so small or more negative (B-V) means bluer and 
hence hotter temperature. 

1 A
o

= 1 Angstrom = 10
−8

 cm

FREQUENTLY  USED  FILTERS   
ON  THE  TELESCOPE 

(there are many more) 

Today there are many more filters, including especially infrared, 
but these are representative 

Blue 
filter 

redder bluer 

More luminous 

Less 
luminous 

For local stars – a “volume limited sample” 
What does this mean? 
 
•  Most, though not all “stars” lie on a well defined 

“line” 
•  The line is not straight 
•  There are many more points to the right of the  

sun than to the left 

To better understand this result, we need to know 
what color means and what sets the color of a star 



As we will discuss more later, stars are blackbodies. This  
is because they are extremely optically thick and the 
light is trapped within for a long time, eventually coming 
into equilibrium with its surroundings. Then the distribution 
of energy with wavelength or frequency is given by the Planck  
function:  
 

This distribution gives the power emitted from the  surface, 
 per unit “everything” – i.e., projected area of emitting surface,  
  per unit solid angle, per unit (frequency,wavelength) 

  

Bλ (T )dλ = 2hc2

λ5

dλ
ehc /(λkBT ) −1

dλ =− c
ν 2 dν

Bν (T )dν = 2hν 3

c2

dν
ehν /(kBT ) −1

  

We will see this Planck function several times later
so it is worth taking a look at it. It has 4 parts

1) The distribution function, aka the Bose Einstein

         distribution function e
hν
kT −1

⎛

⎝⎜
⎞

⎠⎟

−1

. It is common   

         to see exponentials like this in ditribution functions.
         They say how particles with energy (hν  here)distribute 
         themselves among states whose characteristic scale is 
         is kT.  The -1 is peculiar to spin 0 particles that can 
         have any number in a given state - subject to energy 
          conservation.

2) This number distribution function is multiplied by hν, the 
   energy of a particle

Aside 

  

3) And then by 4π (ν /c)2 d(ν / c) = 4πk 2dk,  where k, the wave  
    number (1/λ) is the "phase space" for paking so many photons
    into a given volume

4) And by 2 because there are two polarization states for 
   the photon

This gives (2)(4π ν 2dν
c3 ) hν( ) 1

ehν /kT −1
⎛
⎝⎜

⎞
⎠⎟

or     uνdν = 8πhν 3dν
c3 ehν /kT −1( ) and uν =

8πhν 3

c3 ehν /kT −1( ) erg cm−3 Hz−1

Bν = c
4π

uν = 2hν 3

c2 ehν /kT −1( ) erg cm−2  s−1Hz−1Ster−1

                       
https://www.youtube.com/watch?v=syQbWP-7WC4 

http://disciplinas.stoa.usp.br/pluginfile.php/48089/course/section/16461/qsp_chapter10-plank.pdf 



Blackbody (Thermal) Radiation 

As T rises: 
 
•  more radiation at  
   all wavelengths 
 
•  shift of peak emission 
   to shorter wavelength 
 
•  greater total emission 
   (area under the curve) 

In
te

ns
ity

 

classic 

quantum 
cut-off 

A SMALLER  COLOR  INDEX  MEANS  A  HOTTER  STAR 

   
B −V( )


=0.65

Can also get the bolometric correction from  
the Planck function 



Color index can be converted to temperature and absolute magnitude  
to luminosity to give the Hertzsprung-Russel diagram in more physical units 

Hertzsprung–Russell  
diagram with 22,000  
nearby stars from the  

Hipparcos catalog  
supplemented with  

1000 stars from  
other catalogs. 

 
Absolute bolometric 
magnitude has been 

converted into  
luminosity, 

 
Note that the stars 

prefer to congregate  
in well defined strips 

  
Bν (T )dν = 2hν 3

c2

dν
ehν /(kBT ) −1

erg cm−2 s−1 Hz−1 steradian

1)  Integrating over solid angle and frequencies 
(a double integral) will give the total power  
radiated per square cm by a blackbody 
 

2)  The frequency, or wavelength where most of the  
power comes out can be obtained by setting the  
derivative to zero. 

What does it mean? 

As we will discuss further in lectures 4 – 6, stars are  
very optically thick and their radiation is trapped  
inside them for a long time. The emergent light, to  
good accuracy thus follows the Planck function 
which describes radiation that is in equilibrium with 
its surroundings: 

To observer 

θ

 

Bν , the Planck radiance, is isotropic, but one 

must correct for the orientation of different regions
of the stellar surface with respect to the observer.

The emission from each cm2  should be multipled by 
 Cos θ



n 

dΩ θ 

Perhaps it�s easier to visualize photons falling from the sky 
 from all directions on a flat area, dA,  

on the surface of the Earth 

Solid  angle as a function of  and "

  
2 dΩ

0

π /2

∫
0

2π

∫ =4π

The total power emitted at all angles and frequencies 
is thus: 

  

P = dν dΩ Bν Cosθ
hemi
sphere

∫
0

∞

∫ dΩ=sinθ dθ dφ d Cosθ =−Sinθ dθ

P = dν dθ dφ Bν
0

2π

∫
0

π /2

∫
0

∞

∫ CosθSinθ = Bν dν dθ dφ
0

2π

∫
0

π /2

∫
0

∞

∫ CosθSinθ

= − 2π Bν dν Cosθ (dCosθ)
1

0

∫
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∫ =2π 0 − 1
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∞
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0
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e
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k 4T 4

h3c2 x3
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∫
dx

ex −1
x = hν
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π 4
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Adding the additional factor of π  from the integral over angles 

P = 2
k 4

h3c2

π 5

15
⎛
⎝⎜

⎞
⎠⎟

T 4 ≡ σT 4



slope = 0 

The maximum occurs where dBλ
dλ

= 0,  which is given by

                 λmax =
hc
x

1
kT

 where x is the solution of

                    xex

ex −1
− 5 = 0  or x = 4.96511423...

                  λmax = 0.28978 cm
T

                          =  2.8978  × 107 A
T

This is known as Wien’s Law 
and it relates the “color” of a star 
to its temperature 

"

B 

P() 

max"

Some blackbody examples:  

  

1) A spherical object with no internal heat source but shining 
because  of stored up heat

 
d
dt

(heat capacity)*mass *T( ) =− 4πr 2σT 4

e.g., a white dwarf

2) A main sequence star in thermal equilibrium

εnuc
0

M

∫ dm = 4πr 2σT 4

3)  Two parallel planes emitting black body radiation at 
      each other

T1 T2 

T1>T2 
Both planes emit and absorb 
radiation perfectly. T1 and T2 
evolve depending on the  
situation (sizes, masses, etc) 

Some blackbody examples:  

4) Planets 

Planet absorbs some small 
fraction of the power emitted  
by a star, reprocesses it into  
heat and radiates as a black 
body with a temperature quite 
different from that of the star. 

The interior of the planet does not participate on relevant 
time scales but the surface and atmosphere quickly 
acquire a temperature as  needed to satisfy balanced  
lower – energy absorbed = energy radiated. 

Since stars are good blackbodies and are to good 
approximation, and are spheres, their luminosities are to  
good accuracy 

  
L = 4π Rstar

2 σTphoto
4

This provides both a tool for measuring stellar 
radii (if we can measure the temperature and luminosity) 
and a physical basis for understanding the systematics 
of plots of luminosity vs temperature, i.e., the  
Herzsprung-Russell Diagram 



The sun vs a 5790 K blackbody 

  

L = 4π Rstar
2 σTphoto

4

e.g. If L is high and T is small, R must be big
                   low               high                      small
etc

It turns out that the  
radius does not increase  

quite as rapidly 
 as the mass. The total 

range of variation 
is about 100. 

 
But there are other 
kinds of stars with 
bigger and smaller 

radii.  

On the main sequence 
more massive stars 
have bigger radii. 



Getting Masses in  
Binary Systems 

Beta-Cygnus (also known as Alberio) 
Separation 34.6�. Magnitudes 3.0 and 5.3. 
Yellow and blue. 380 ly away.  
P > 75000 y. The brighter yellow component  
is also a (close) binary. P ~ 100 yr. 

Alpha Ursa Minoris (Polaris) 
Separation 18.3�. Magnitudes  
2.0 and 9.0. Now known to be a triple. 
Separation ~2000 AU for distant pair. 

Binary and Multiple Stars 
(about one-hird to one-half of all stars) 

1.2 Msun Polaris Ab 
     Type F6 - V 
4.5 Msun Polaris A 
      Cepheid 

Period 30 yr 

Polaris B is 
F3 - V 

Polaris 

             Epsilon Lyra – a double double. 
The stars on the left are separated by 2.3�  about 140 AU; 
those on the right by 2.6�. The two pairs are separated  
by about 208� (13,000 AU separation, 0.16 ly between 
the two pairs, all about 162 ly distant). Each pair would 
be about as bright as the quarter moon viewed from the other. 

1165 years 585 years 
> 105 years 



CLASSES  OF  BINARIES 

•   Visual binaries in which the stars and their orbital 
elements are well resolved (in principle if one 
waits long enough) 
 

•  Spectroscopic binaries – in which the presence of 
a companion can be inferred by the periodic 
Doppler shift exhibited in one or both spectra 
 

•  Eclipsing spectroscopic binaries in which the  
spectrum shows evidence for binarity and the  
light curve shows periodic eclipses or partial  
occultations. 

KEPLER’S  LAWS 

•  Solution to the central force problem for 
a 1/r2 force, i.e., gravity  
 
 
 

•  Orbits are ellipses with central force at one 
focus of the ellipse 
 

•  A lines connecting the central force to the orbiting 
body sweeps out equal areas in equal times 
 

•  The square of the period is proportional to the 
cube of the semi-major axis. 
 

•  Can be generalized to binary stars 

    
r  =  -

GM
r 3 r

  
P 2 = 4π 2

GM
a3

Circular Orbit – Unequal masses 
Two stars of similar mass 

but eccentric orbits 



Two stars of unequal mass and 
an eccentric orbit 

E.g. A binary consisting of 
       a F0v and M0v star 

http://www.astronomy.ohio-state.edu/~pogge/Ast162/Movies/ - visbin 

Some things to note: 

•  The system has only one period. The time for star A 
   to go round B is the same as for B to go round A. 
 
•  A line connecting the centers of A and B always  
   passes through the center of mass of the system. 
 
•  The orbits of the two stars are similar ellipses with 
   the center of mass at a focal point for both ellipses. 
 
•  At each point in time, the product of the mass of one 
   star times its distance to the center of mass is equal 
   to a similar product for the other star. 

However: 
 
   The actual separation between the stars is obviously 
not constant in the general case. 
 
    While not obvious, the separation at closest approach  
is the sum of the semi-major axes of the two elliptical orbits,  
a = a1+a2, times (1-e) where e is the eccentricity. [the  
eccentricity of an ellipse is one half the distance between 
the two focii divided by the semimajor axis)  
 
  At the  most distant point the separation is �a� times (1+e). 
 
  For circular orbits e = 0 and the separation is constant.  

x 

m1v1
2

r1
= m2v2

2

r2
2πr1
v1

= 2πr2
v2

= Period

= Gm1m2

(r1 + r2 )
2 ∴ v1

v2
= r1
r2

m1r1
2v2
2

r1r2
2 = m2v2

2

r2
m1r1 = m2 r2

r1 r2 

m1 
m2 

r1
r2

= m2

m1

= v1
v2

More massive star is  
closer to the center  
of mass and moves  
slower. 

both stars feel 
the same gravitational 
attraction and thus 
both have the same 
centrifugal force 

CM 

ASSUME  FOR NOW CIRCULAR  ORBITS 

  

Also since  the periods are
equal  m1v1 = m2v2



Circular Orbit – Unequal masses 

GM1M2

r1+r2( )
2
=
M1v1

2

r1

GM1M2

(r1+r2 )
2
=
M2v2

2

r2

G(M1+M2 )
(r1+r2 )2 = v1

2

r1
+ v2

2

r2
= 4π2r1

2

P2r1
+ 4π2r2

2

P2r2

= 4π2

P2 (r1+r2 )

P2 = K(r1+r2 )3 K = 4π2

G(M1+M2 )
 

+ 

x r1 
r2 M2 

M1 

KEPLER�S  THIRD  LAW  FOR  BINARIES 

   

( M
1
+ M

2
) =

4π 2

GP
2

(r
1
+ r

2
)3

M

=

4π 2

G(1yr)2
( AU )3

Divide the two equations 

for the earth 

   

M
1
+ M

2

M


=
r
1
+ r

2
( )

AU

3

P
yr

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
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M
1

M
2

=
r

2

r
1

  or 
M

1

M
2

=
v

2

v
1

If you know r1, r2 in AU, or v1, v2, and  P  
in years you can solve for the two masses.  



The general case 
(unequal masses eccentric orbits) 

   

Define a coordinate system based on the center of mass
M1


r1+M2


r2 =0

Then

r1=−

M2

M1


r2

where 

r1and 


r2 are the distances from the center of mass to 

stars 1 and 2 respectively. Let  

r = 

r2 −

r1 be the vector between 

the two stars (in magnitude r = r1 + r2  since they are always in 

opposite directions).  


r = 1+

M2

M1

⎛

⎝⎜
⎞

⎠⎟

r2 =

M1 +M2

M1

⎛

⎝⎜
⎞

⎠⎟

r2


r2 =

M1

M1 +M2

⎛

⎝⎜
⎞

⎠⎟

r =

M2M1

M1 +M2

⎛

⎝⎜
⎞

⎠⎟


r

M2

= µ

r

M2

where µ is the "reduced mass" (smaller than M1 or M2).

SImilarly 

r1 =−

µ

r

M1

 in the frame with the c/m at the origin.

  

M1

M2

=0.5, e = 0.2

r1 

r2 
“a” = average of 
greatest and least 

separations 

M2 

M1 

    

M2
r2 = −

GM1M2

r 3 r (1)

M1
r1 =

GM1M2

r 3 r (2)

Multiply (1) by M1 and (2) by M2  and subtract (2) from (1)

M1M2
r2 − r1( ) = −

GM1M2(M1 +M2)
r 3 r

M1M2
r = −

GM1M2(M1 +M2)
r 3 r

r = −
G(M1 +M2)

r 3 r

    

In the circular case r2  = 
v2

2

r2

r = r1+ r2

Thus we have transformed to an equivalent central force 
problem in which the mass that appears is the sum of the  
masses and the relevant vector is the distance between the 
two stars 

   


f =

GM1M2

r 3


r

d 2r
dt 2 = −

G(M1 +M2)
r 3


r

  

 

r = 

r2 −

r1

µ=
M1M2

M1 +M2

 

r1=−

µ
M1


r

r2 =

µ
M2


r

http://farside.ph.utexas.edu/teaching/336k/newton/node50.html 



   

The solution to the central force problem, as before, 
is that the orbit  is still an ellipse with distance between the 
two stars given by

         r =

r2 −

r1 =

a 1− e2( )
1+ eCosθ

  

Since (1-e2) =(1+ e)(1− e), the semi-major axis of this ellipse is 
half the sum of the maximum and minimum separations (θ=0,π )

1
2

a 1− e2( )
1+ e

+
a 1− e2( )

1− e

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

2
a(1− e)+ a(1+ e)( ) =a

1
2

rmin + rmax( ) =a

The orbital period is related to a by

P2 = 4π 2

GM
a3 where M =(M1 +M2)

as we found for circular orbits. Also still m1v1=m2v2

and m1r1=m2r2   though v and r both vary with time now.

e = 0 is 
the circular case 
in which r = r1+r2 

The quantities to be measured then are a) the period 
b) some measure of the semimajor axis and c) an observable 
ratio, r1/r2 or v1/v2,  that can give the ratio of the  
masses.  

  

r1 =
M2

M1

r2 and so  
dr1
dt

=
M2

M1

dr2

dt
M1 v1 = M2 v2

at all times (and at all angles) 

In the ideal case we can look at the orbit face on and 
measure the closest and most distant separation of  
the stars at Cos =0,   as discussed on the previous page,  
rmin + rmax = 2a  
 
Otherwise we have to measure r or v indirectly and also  
somehow account for inclination. 

Hubble Space Telescope photo of Gliese 623,  
two stars separated by 2 AU. 

Spectroscopic binaries 



The general case can 
be solved but can be  

quite complicated. 
 

For this class we will  
restrict the examples 

to circular orbits. 
 

One can extract “a” 
as well as  (sometimes) 

information on  
inclination. 

2 r
P

v

π
=

SPECTROSCOPIC BINARY MASSES  

Assume circular orbit. Measure 
•      Period 
•      Velocity of each star 
•       v is constant for circular orbit 

First get  r1  and r2  from v1 and v2

ri =
vi P
2π

Example:
v1 = 75 km s−1 v2 = 25  km s−1

                          P= 17.5 days

r1 

m1 

v1 

r2 m2 

v2 

. 

Assume v is measured in plane of orbit,  
otherwise we just see the component of the  
velocity directed towards or away from us 

   

a= r1+ r2 = P
2π

v1 +v2( )
= 17days

2π
⎛
⎝⎜

⎞
⎠⎟

100 kms−1( ) =2.34×1012  cm

=  0.156  AU

P = 17 d = 0.0465 years

P2(yr )=
M1 +M2

M

⎛

⎝⎜
⎞

⎠⎟

−1

0.0156( )3 ⇒
M1 +M2

M

⎛

⎝⎜
⎞

⎠⎟
= (0.156)3

0.0465( )2

=1.76
Ratio of masses is v1 / v2 = 3

4x=1.76 ⇒ M1 = 0.44M M2 = 1.32M

The larger mass has the slower speed.

Observer 

θ

v 

 

θ =0  face on, measure no velocity

θ=
π
2

edge on, measure full velocity

•



Eclipsing Binaries 
(usually have circular orbits) 

For an eclipsing binary you know you are viewing 
the system in the plane of the orbit. I.e., Sin i = 1 

Two views of the mass-luminosity relation (Malkov 2007, 
left, and Henry 2004, right) 

   

Recall

τMS ≈
f Mq
Mn n ≈ 3 − 4 for lower main sequence stars

                ∝M1−n 1010  yr
M
M

⎛

⎝
⎜

⎞

⎠
⎟

2



HR diagrams for open clusters 
M 67 and NGC 188 

Schematic representation of 
HR diagrams and main 
sequence turn-offs observed 
for different open clusters 

horizonal 
branch 



  

r1 =
µ

M1

r = µ
M1

a(1− e2)
1+ eCosθ

⎛
⎝⎜

⎞
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r2 =
µ

M2

r = µ
M2

a(1− e2)
1+ eCosθ

⎛
⎝⎜

⎞
⎠⎟

a1=
1
2

r1(0)+ r1(π )( ) = µ
M1

a a2 =
1
2

r2(0)+ r2(π )( ) = µ
M2

a

a1 + a2 =a


