Lecture 2

The Hertzsprung-Russell Diagram
Blackbody Radiation
and Stellar Mass Determination

Glatzmaier and Krumholz 2
Prialnik 1.4
Pols 1

Back to the stars

In addition to location, brightness, and time variability
a key way we learn about stars is by analyzing

their light. At the most basic level we can analyze
their color, which turns out to be determined by

their broad band emission across wavelength

(black body emission)

In more detail we learn (a lot) more from analyzing
their spectra (transitions in individual atoms).

Andromeda and
Milky Way
collide in 4

billion years.

Approaching us
at 300 km/s

(Doppler shift)

HST astrometry
plus Doppler
(plus computer)
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tml

E.g., ORION

Even with the unaided eye
you should be able to
discern a difference
in color between
Betelgeuse and Rigel

Betelgeuse and Rigel are «—
and f-Orionis



Astronomers historically have measured the color of
a star by the difference in its brightness (magnitude)
in two images, one with a blue filter (B) and another
with a visual filter (V). (i.e., B =mg V =m,)

This difference, denoted (B-V), is a crude measure of
the temperature.

Note that the “bluer” the object, the smaller

B will be (small magnitudes mean greater fluxes),
so small or more negative (B-V) means bluer and
hence hotter temperature.

Absolute Visual Magnitude (M)

For local stars — a “volume limited sample”
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Today there are many more filters, including especially infrared,
but these are representative

What does this mean?

® Most, though not all “stars” lie on a well defined
“line”

® The line is not straight

® There are many more points to the right of the
sun than to the left

To better understand this result, we need to know
what color means and what sets the color of a star



As we will discuss more later, stars are blackbodies. This
is because they are extremely optically thick and the
light is trapped within for a long time, eventually coming
into equilibrium with its surroundings. Then the distribution

of energy with wavelength or frequency is given by the Planck
function:

2hc*  dA c
B,(T)dA= 25 ek _ dA=- V2 dv
2hv®  dv

B (T)dv=

c? M _4

This distribution gives the power emitted from the surface,
per unit “everything” — i.e., projected area of emitting surface,
per unit solid angle, per unit (frequency,wavelength)

3) And then by 4z (v/c)’d(v/c) =4rk?dk, where k, the wave

number (1/1) is the "phase space" for paking so many photons
into a given volume

4) And by 2 because there are two polarization states for
the photon

This gives (2)(47rv2c31v)(hv)( ! ]
C e

hvIKT _ 4
8rhvidy 8rhv® A
or UVdV = m and Uv = &(TM ergcm Hz
c 2hv?
B =—u =———— ergcm™? s"'Hz"Ster™
v ar v c? (ehv/kT B 1) 9

http:/disciplinas.stoa.usp.br/pluginfile.php/48089/course/section/16461/gsp _chapter10-plank.pdf

https://www.youtube.com/watch?v=syQbWP-7WC4

Aside

We will see this Planck function several times later

soiti

s worth taking a look at it. It has 4 parts

1) The distribution function, aka the Bose Einstein

-1
hv
distribution function [e” —1] .Itis common

to see exponentials like this in ditribution functions.
They say how particles with energy (hv here)distribute
themselves among states whose characteristic scale is
is KT. The -1 is peculiar to spin 0 particles that can

have any number in a given state - subject to energy
conservation.

2) This number distribution function is multiplied by hv, the
energy of a particle
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Blackbody (Thermal) Radiation
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Color index can be converted to temperature and absolute magnitude
to luminosity to give the Hertzsprung-Russel diagram in more physical units
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What does it mean?

As we will discuss further in lectures 4 — 6, stars are
very optically thick and their radiation is trapped
inside them for a long time. The emergent light, to
good accuracy thus follows the Planck function
which describes radiation that is in equilibrium with

its surroundings:

2hv®  dv

BV(T)dVZ?W el’g Cmfz 371 HZ;] Stel’adian

1) Integrating over solid angle and frequencies
(a double integral) will give the total power
radiated per square cm by a blackbody

2) The frequency, or wavelength where most of the
power comes out can be obtained by setting the
derivative to zero.

Hertzsprung—Russell
diagram with 22,000
nearby stars from the
Hipparcos catalog
supplemented with
1000 stars from
other catalogs.

Absolute bolometric
magnitude has been
converted into
luminosity,

Note that the stars
prefer to congregate
in well defined strips

= {{40089

—>

To observer

B, the Planck radiance, is isotropic, but one

must correct for the orientation of different regions
of the stellar surface with respect to the observer.
The emission from each cm? should be multipled by
Cos 6



Solid angle as a function of ¢ and 6

X

2r rml2
Perhaps it’ s easier to visualize photons falling from the sky 2J' .[ dQ =4r
from all directions on a flat area, dA,
on the surface of the Earth o 0

The total power emitted at all angles and frequencies
is thus:

TBvdv=T2hV3 dv _2k3T3T(hvj3 dv
0

2 hv - 22 )| LT hv
0 ¢ g heto\kT) &
B 2k4T4]'1 s dx oo
w h°c??  e*-1 kT
P=[dv [ dQB Coso dQ=sin6dodyp d Cosb=-Sinode
0 helr7m' k4T4 7[4
sphere — _ —
o ml2 27 o w2 2% h3c? | 15
P=[dv [ d6[dyB, CosoSing =[B,dv [ do [dg CosoSine
0 0 0 0 0 0

Adding the additional factor of = from the integral over angles
oo 0 =
=-2r [B,dv[Cos6(dCos0) :240—%)]@ dv
0 1 0

- k* (=° 4_ 4
= [B,dv P=2—h302 (E}T =oT
0




B
The maximum occurs where C;—f =0, which is given by

he 1

max

X

=—— where x is the solution of
x kT

Y€ _5-0 orx=496511423...
e -1
e - 0.28978 cm
T
2.8978 x 107 A
- T

This is known as Wien’s Law
and it relates the “color” of a star
to its temperature

Some blackbody examples:

4) Planets

Q o

B,

Planet absorbs some small
fraction of the power emitted
by a star, reprocesses it into
heat and radiates as a black
body with a temperature quite
different from that of the star.

The interior of the planet does not participate on relevant
time scales but the surface and atmosphere quickly
acquire a temperature as needed to satisfy balanced
lower — energy absorbed = energy radiated.

Some blackbody examples:

1) A spherical object with no internal heat source but shining
because of stored up heat

%((heat capacity)*mass*T) =—4nr’cT*
e.g., a white dwarf

2) A main sequence star in thermal equilibrium
M
[ &,,dm = 4nr*cT*
0

3) Two parallel planes emitting black body radiation at
each other

~,
VAW

(\ ¢

Both planes emit and absorb

NN radiation perfectly. T, and T,

T, # A~~~ A AN T, evolve depending on the
€ENNNANNS situation (sizes, masses, etc)

AVAVAVAVA

L avaW;

Since stars are good blackbodies and are to good
approximation, and are spheres, their luminosities are to
good accuracy

L=47R?> oT*

star photo

This provides both a tool for measuring stellar

radii (if we can measure the temperature and luminosity)
and a physical basis for understanding the systematics
of plots of luminosity vs temperature, i.e., the
Herzsprung-Russell Diagram



The sun vs a 5790 K blackbody
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more massive stars
have bigger radii.

It turns out that the
radius does not increase
quite as rapidly
as the mass. The total
range of variation
is about 100.

But there are other

kinds of stars with

bigger and smaller
radlii.
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Getting Masses in
Binary Systems

Polaris

1.2 Msun Polaris Ab
Type F6 -V

4.5 Msun Polaris A
Cepheid

Period 30 yr

Polaris B is
F3-V

Binary and Multiple Stars
(about one-hird to one-half of all stars)

Beta-Cygnus (also known as Alberio) L .
Separation 34.6”. Magnitudes 3.0 and 5.3. élpha L:'rsa :\gns?,”SM(POI,at”Z)
Yellow and blue. 380 ly away. eparation 18.5". Magnituges

: 2.0 and 9.0. Now known to be a triple.
P > 75000 y. The brighter yellow component Ny . .
is also a (close) binary. P ~ 100 yr. Separation ~2000 AU for distant pair.

> 10° years

585 years 1165 years

Epsilon Lyra — a double double.
The stars on the left are separated by 2.3” about 140 AU;
those on the right by 2.6”. The two pairs are separated
by about 208” (13,000 AU separation, 0.16 ly between
the two pairs, all about 162 ly distant). Each pair would
be about as bright as the quarter moon viewed from the other.



CLASSES OF BINARIES

Visual binaries in which the stars and their orbital
elements are well resolved (in principle if one
waits long enough)

Spectroscopic binaries — in which the presence of
a companion can be inferred by the periodic
Doppler shift exhibited in one or both spectra

Eclipsing spectroscopic binaries in which the
spectrum shows evidence for binarity and the
light curve shows periodic eclipses or partial
occultations.

Circular Orbit — Unequal masses

KEPLER’S LAWS

Solution to the central force problem for
a 1/12 force, i.e., gravity

GM

3
r Equal Areas in
ual Times

Perihelion Aphelion

Orbits are ellipses with central force at one
focus of the ellipse

A lines connecting the central force to the orbiting
body sweeps out equal areas in equal times

The square of the period is proportional to the

cube of the semi-major axis. pz_47°
GM

Can be generalized to binary stars

Two stars of similar mass
but eccentric orbits



Two stars of unequal mass and
an eccentric orbit
E.g. A binary consisting of
a FOv and MOv star

However:

The actual separation between the stars is obviously
not constant in the general case.

While not obvious, the separation at closest approach
is the sum of the semi-major axes of the two elliptical orbits,
a = a,+a,, times (1-e) where e is the eccentricity. [the
eccentricity of an ellipse is one half the distance between
the two focii divided by the semimajor axis)

At the most distant point the separation is “a” times (1+e).

For circular orbits e = 0 and the separation is constant.

Some things to note:

® The system has only one period. The time for star A
to go round B is the same as for B to go round A.

® Aline connecting the centers of A and B always
passes through the center of mass of the system.

® The orbits of the two stars are similar ellipses with
the center of mass at a focal point for both ellipses.

® At each point in time, the product of the mass of one

star times its distance to the center of mass is equal
to a similar product for the other star.

ASSUME FOR NOW CIRCULAR ORBITS

. )
r

1) cm m,
m
both stars feel
the same gravitational 2 2
neg my” _ m,yv, 2ry, 2@,
attraction and thus —_— = —— = ——= = Period
both have the same 8 r v V,
centrifugal force
_ Gm,m, . w_n
5 . =
(n+n) V, h
b 2
mlrl)/zy _ mzva/
—=—

) e~ 7 m, v

More massive star is 12 __ 1
m,r;, = m,tr-
closer to the center r, m, v,

of mass and moves

slower. Also since the periods are

equal|myv, =m.y,



Circular Orbit — Unequal masses

Ar?
(M +M,)) = 2 (r, + /"2)3

47?

= _(AUY for the earth
? G(ly'”)z( :

Divide the two equations

KEPLER’S THIRD LAW FOR BINARIES

GMM, _ My

() R

2 M,
GMM, _ Myv3 v
+ (141, )2 I,

(41, )2 T T, Pzr1 Pzr2
2
7T
= —P2 (41,)

GM,+M,) v} V2 4n’t? 4n’e?
1tVh) _ Vi 2 _ 1 2

.
P2 = K (1, +1,)° K=—2%
’ G(M,+M,)

3
M1+M2 _ (’/1+r2)AU
2
M@ Pyr
M r M %
1 _ 2 or )
Mz ’/1 Mz Vl

If you know 7, r,in AU, orv,, v, and P
in years you can solve for the two masses.



The general case

. . —1=0.5,e=0.2
(unequal masses eccentric orbits) M,
Define a coordinate system based on the center of mass 1 LI S S L S B B e s s e e
M, + M7, =0 : ;
. M, |
Then r=——2r, |
M, -

where ﬁand anre the distances from the center of mass to
stars 1 and 2 respectively. Let r=T,—T, be the vector between

the two stars (in magnitude r = r, +r, since they are always in @
opposite directions). ™ 7]
>
- M, . [M+M,). “a” = average of
r= 1+V r,= i r greatest and least
1 1 separations 7
- M, Y. _( MM, \F uf [
r.= r = _—
2\ M,+M, M+M, | M, M, -
where u is the "reduced mass" (smaller than M, or M,). -1 i L e
ot ) o -1 -0.5 0 0.5 1
Similarly 1, =—M in the frame with the c/m at the origin. x / a
Thus we have transformed to an equivalent central force
GMM problem in which the mass that appears is the sum of the
M.r, = —%f (1) In the circular case # = 2 masses and the relevant vector is the distance between the
MM 2o two stars
Mf=—5=r @
- GMM, .
f=—"-1-2r
3
Multiply (1) by M, and (2) by M, and subtract (2) from (1) 27 GM. +M,)
1 2/ 7
_— —r
M1M2<f2_f1):_GM1M2(I;/I1+M2)I’ dt? r
r
MMf:—GM1M2(M1+M2)r r=n-n
1772 3 MM
r -1
i"——G(M1+M2)r M, +M,
- 3
r i=-Hr o poKy
M M

http://farside.ph.utexas.edu/teaching/336k/newton/node50.html




The solution to the central force problem, as before,
is that the orbit is still an ellipse with distance between the
two stars given by

2 e=0is
_‘ ‘ (1 e ) the circular case
1T 1+ eCos6 in which r =r,+r,

Since (1-e?) {1+ e)(1-e), the semi-major axis of this ellipse is
half the sum of the maximum and minimum separations (6=0,7)

1[a(1—e2)+ a(']—:z)]:%(3(1_e)+a(1+e))=a

2 1+e 1-

1(r +r.)=a

2 min max

The orbital period is related to a by

Ar® 2
am °
as we found for circutar orbits. Also still my,=m,v,

Fr= where M (M, + M,)

and mr,=m,r, though v and r both vary with time now.

Spectroscopic binaries

Hubble Space Telescope photo of Gliese 623,
two stars separated by 2 AU.

The quantities to be measured then are a) the period
b) some measure of the semimajor axis and c) an observable
ratio, ry/r, or v4/v, that can give the ratio of the

masses. 2 dr M, dr,
r,=—%r, andso —=—%
; t M, dt
M, v,=M,v,

at all times (and at all angles)

In the ideal case we can look at the orbit face on and
measure the closest and most distant separation of

the stars at Cos 6=0, 7 as discussed on the previous page,
rmln max 2a
Otherwise we have to measure r or v indirectly and also
somehow account for inclination.

Stage1  Center Stage 2 Stage 3 Stage 4
7/ of mass 8 A
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o) = 2 {2 tan~! (\/ﬁmno) T Si"ﬂ}
o T7e™2) ~ Treems SPECTROSCOPIC BINARY MASSES
o This tells you the time ¢ it takes a body to travel in its orbit from periapsis (6 = 0) to any
value of § along the trajectory.
SEE S o Assume circular orbit. Measure
;f_ :. g Em e Period
Wiz -[)he g?nilﬁ:)l case Csn *  Velocity of each star
/\/ e solved but can be e v is constant for circular orbit

|
|
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For this class we will
""" restrict the examples

First get 1, and r, from v, and v,

$bo

| i pAdLLs to circular orbits. . = P
:M f\\/ o | 2 P__27'L'r
JiEiELL J_ — J S One can extract “a” Example: v
A B I m as well as (sometimes) v,=75kms" v, =25 kms"
WET ] » e information on
AT i /N inclination. P=175 days
N s Assume v is measured in plane of orbit,
i, 26 Virtous veooky carves for evra biarysyses. Sce aresiglelned ad soce are otherwise we just see the component of the
P tameAry T e G R velocity directed towards or away from us
P A Observer
a=r,+r, =—(v1+v2) |
r 1
1
17 days _
= | 222 |(100 kms™) =2.34x 10 cm :
2 |
= 0.156 AU ' 0
:
1
P =17 d = 0.0465 years v
M +M, s (M+M,) (0.156)° '
P?(yr)=| ———2| (0.0156) = | ——2 |= (0.156) 5
M, M, ) (0.0465)
=1.76 6=0 face on, measure no velocity
Ratio of masses is v, /v, =3 9=% edge on, measure full velocity

4x=1.76 = M,=044M_ M, =1.32M_
The larger mass has the slower speed.



Eclipsing Binaries
(usually have circular orbits)
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For an eclipsing binary you know you are viewing Two views of the mass-luminosity relation (Malkov 2007,
the system in the plane of the orbit. L.e., Sini =1 left, and Henry 2004, right)
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1 Center of mass

MeT— < >

kL _u a(1-e?)
M, \ 1+eCoso

(0)+1,(n)) = Mia
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