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•   Spherical symmetry         
     Broken by e.g., convection, rotation,  
     magnetic fields, explosion, instabilities 
     Makes equations a lot easier. Also facilitates 
     the use of Lagrangian (mass shell) coordinates 
 

•  Homogeneous composition at birth  
 

•  Isolation frequently assumed 
 

•  Hydrostatic equilibrium  
        When not forming or exploding  
 

Assumptions – most of the time 

One of the basic tenets of stellar evolution is the  
Russell-Vogt Theorem, which states that the mass  
and chemical composition of a star, and in particular  
how the chemical composition varies within the star,  
uniquely determine its radius, luminosity, and internal  
structure, as well as its subsequent evolution.  
 
A consequence of the theorem is that it is possible  
to uniquely describe all of the parameters for a star  
simply from its location in the Hertzsprung-Russell 
Diagram. There is no proof for the theorem, and in fact,   
it fails in some instances. For example if the star has  
rotation or if small changes in initial conditions cause  
large variations in outcome (chaos).  

Uniqueness Hydrostatic Equilibrium 

   

Consider the forces acting upon a spherical mass shell

                   dm = 4π r 2 dr ρ
The shell is attracted to the center of the star by a force
per  unit  area

                      Fgrav =
−Gm(r )dm

4πr 2( )r 2
= −Gm(r )ρ

r 2 dr

where m(r) is the mass interior to the radius r
It is supported by the pressure 
gradient. The  pressure 
on its bottom is smaller 
than on its top. dP is negative

    FP = P(r ) i area−P(r + dr ) i area
or 

                   
FP

area
= dP

dr
dr

dm 

P 

P+dP 

m(r) 

M 



Hydrostatic Equilibrium 

   

If these forces are unbalanced there will be an acceleration
per unit area    

                           
F

Area
 =

Fgrav −FP

Area
= dm

Area
r = 4πr 2ρdr

4πr 2
r

                       ρ dr( )r =− Gm(r )ρ
r 2 + dP

dr
⎛
⎝⎜

⎞
⎠⎟

dr

r =
−Gm(r )

r 2 − 1
ρ

dP
dr

r  will be non-zero in the case of stellar explosions
or dynamical collpase, but in general it is very small
in stars compared with the right hand side, so

                        
dP
dr

= − Gm(r )ρ
r 2

where m(r ) is the mass interior to the radius r. This is 
called the equation of  hydrostatic  equilibrium. It is the 
most basic of the stellar structure equations.

  

1)Consider, for example, an isothermal atmosphere composed
of ideal gas, P = nkT   (T= constant; n is the number density). 
Let the atmosphere rest on the surface of a spherical mass M 
with radius R. R and M are both constant. h is the height 
above the surface:

dP
dr

=− GMρ
r 2 r = R + h h << r

dr =dh
NAkT
µ

dρ
dh

=− GMρ
R2 =− gρ P = nkT n =

ρNA

µ
T const.

dρ
ρ

=
ρ0

ρ

∫ − µg
NAkT

dh
0

h

∫ ⇒ lnρ− lnρ0 =− µgh
NAkT

ln
ρ
ρ0

⎛

⎝⎜
⎞

⎠⎟
=− h

H
H =

NAkT
µg

= density scale height

 ρ =ρ0 e− h
H equivalently n = n0e

− h
H H = kT

g
   

Examples of hydrostatic equilibrium:   

  

2) Or water in the ocean   (density constant; incompressible)
dP
dr

=− GMρ
r 2 r = R − h h << r

dr =− dh h = depth below surface

− dP
dh

=− GMρ
R2 =− gρ

P = gρh e.g., at one km depth
= (980)(1)(105) = 9.8×107  dyne cm−2

= 98bars  
              
   

Examples:   

  

3) Stellar photospheres
       As we will disuss next week, a beam of light going through

  a medium with opacity, κ   (cm2 g−1), suffers attenuation

                         
dI
dr

= − κρI ⇒ I = I0 e−κρr ≡ I0e
−τ

where τ  is the "optical depth". The photosphere is defined 
by place where, integrating inwards, τ ≈1 (a value of 2/3 is
also sometimes used).

Consider hydrostatic equilibrium in a stellar atmosphere
where M and R can assumed to be constant

                       
dP
dr

=−GM
R2 ρ = − gρ

   Multiplying by κ  and dividing by ρ
κ
κρ

dP
dr

= κ dP
dτ

= − g or    
dP
dτ

= − g
κ

This was first noted by K. Schwartzschild in 1906

Examples:   



   

Integrating inwards and assuming
 g and κ  are constant (the latter is 
not such a good approximation)

Pphotosphere ≈ g
κ

For the sun g = 
GM

R
2 = 2.7×104

So if κ 1, Pphotosphere ≈ 0.027 bars. 

κ  is  due to the H− ion 
and varies rapidly with temperature
but is of order unity (between 0.1 
and 1 in the region of interest).
Actually P ~ 105  dyne cm−2 =0.1 bar

Solar photosphere 

As we learned last time, the solar photosphere is 
largely neutral. H and He are not ionized much at all 
(~10-4 for H). The electrons come mostly from elements 
like Na, Ca, K, etc. that are very rare. Consequently the 
ion pressure overwhelmingly dominates at the solar 
photosphere (radiation pressure is negligible). This is  
not the case if one goes deeper in the star.  
 
The electron pressure at the photosphere, though small,  
gives the electron density which enters into the Saha 
equation and determines the spectrum. This is in fact 
how it is determined.  
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Table 2-1:  The Holweger-Müller Model Atmosphere7 

 
Height8 

(km) 

Optical 
Depth 
(τ5000) 

Temper-
ature 
(°K) 

 
Pressure 

(dynes cm-2) 

Electron 
Pressure 

(dynes cm-2) 

 
Density 
(g cm-3) 

 
Opacity 
(κ5000) 

550 5.0×10-5 4306 5.20×102 5.14×10-2 1.90×10-9 0.0033 

507 1.0×10-4 4368 8.54×102 8.31×10-2 3.07×10-9 0.0048 

441 3.2×10-4 4475 1.75×103 1.68×10-1 6.13×10-9 0.0084 

404 6.3×10-4 4530 2.61×103 2.48×10-1 9.04×10-9 0.012 

366 0.0013 4592 3.86×103 3.64×10-1 1.32×10-8 0.016 

304 0.0040 4682 7.35×103 6.76×10-1 2.47×10-8 0.027 

254 0.010 4782 1.23×104 1.12 4.03×10-8 0.040 

202 0.025 4917 2.04×104 1.92 6.52×10-8 0.061 

176 0.040 5005 2.63×104 2.54 8.26×10-8 0.075 

149 0.063 5113 3.39×104 3.42 1.04×10-7 0.092 

121 0.10 5236 4.37×104 4.68 1.31×10-7 0.11 

94 0.16 5357 5.61×104 6.43 1.64×10-7 0.14 

66 0.25 5527 7.16×104 9.38 2.03×10-7 0.19 

29 0.50 5963 9.88×104 22.7 2.60×10-7 0.34 

0 1.0 6533 1.25×105 73.3 3.00×10-7 0.80 

-34 3.2 7672 1.59×e+005 551 3.24×10-7 3.7 

-75 16 8700 2.00×e+005 2.37×103 3.57×10-7 12 

 

 

                                                
7Holweger, H. and Müller, E. A.  “The Photospheric Barium Spectrum:  Solar Abundance and 

Collision Broadening of Ba II Lines by Hydrogen”, Solar Physics 39, pg 19-30 (1974).  Extra points 

have been cubic spline interpolated by J. E. Ross. The optical properties (such as the optical depth and 

the opacity) of a model atmosphere are, obviously, very important, and will be considered later.  See 

table C-4 for complete details of the Holweger-Müller model atmosphere including all depth points 

used. 
8The height scale is not arbitrary.  The base of the photosphere (height = 0 km) is chosen to be at 

standard optical depth of one (i.e. τ5000Å = 1 ). 

Holweger and Muller 
Solar Physics, 1974 

Lagrangian coordinates 

  

The hydrostatic equilibrium equation 

                        
dP
dr

= − Gm(r )ρ
r 2

can also be expressed with the mass as the 

independent variable by the substitution dm=4πr 2 ρdr
dP
dr

dr
dm

= − Gm(r )ρ
r 2

1
4πr 2ρ

dP
dm

= − Gm(r )
4πr 4

This is the "Lagrangian" form of the equation. We will find
that all of our stellar structure equations can have either
an Eulerian form or a Lagrangian form.



Merits of using Lagrangian coordinates 

•  Material interfaces are preserved if part or 
all of the star expands or contracts. Avoids 
“advection”. 
 

•  Avoids artificial mixing of of composition 
and transport of energy 
 

•  In a stellar code can place the zones “where 
the action is”, e.g., at high density in the  
center of the star 
 

•  Handles large expansion and contraction (e.g.,  
to a red giant without regridding.  

•  In fact the merit of Lagrangian coordinates 
is so great for spherically symmetric problems 
that all 1D stellar evolution codes are writen 
in Lagrangian coordinates 
 

•  On the other hand almost all multi-D stellar codes 
are written in “Eulerian” coordinates. 

  

This Lagrangian form of the hydrostatic equilibrium
equation can be integrated to obtain the central pressure:

        dP = Psurf −Pcent = − Gm(r ) dm
4πr 4

0

M

∫
Pcent

Psurf

∫
and since Psurf =0

Pcent =
Gm(r ) dm

4πr 4
0

M

∫
To go further one would need a description of how
m(r) actually varies with r. Soon we will attempt that .
Some interesting limits can be obtained already though. 
For example, r is always less than R, the radius of 

the star, so
1
r 4 > 1

R4  and 

                Pcent >
G

4πR4 m(r ) dm =
0

M

∫
GM 2

8πR4    

A better but still very approximate result comes from 
assuming constant density (remember how bad this is 

for the sun!) m(r)= 4/3 πr3ρ  4/3 πr3ρ0 (off by 2 decades!)

           r4  =
3m(r )
4πρ0

⎛

⎝⎜
⎞

⎠⎟

4/3

⇒ m(r )
r 4 =

4πρ0

3m(r )
⎛
⎝⎜

⎞
⎠⎟

4/3

m(r )

Pcent ≈
−G
4π

4πρ0

3
⎛
⎝⎜

⎞
⎠⎟

4/3
dm

m1/3(r )
=

0

M

∫
G
4π

4πρ0

3
⎛
⎝⎜

⎞
⎠⎟

4/3
3M 2/3

2

but
4πρ0

3
⎛
⎝⎜

⎞
⎠⎟

4/3

= M
R3

⎛
⎝⎜

⎞
⎠⎟

4/3

so

Pcent = 3GM 2

8πR4  or 
GMρ0

2R
since ρ0 is assumed = 

3M
4πR3

This is 3 times bigger but still too small



   

The sun's average  density is 1.4 g cm−3  but its 

central density is about 160 g cm−3.

Interestingly, most main sequence stars are supported primarily by 

ideal gas pressure (TBD),  P=
ρNAkT

µ
,so for the constant density 

(constant composition, ideal gas) case

         
ρ0NAkT

µ
=

GMρ0

2R
so the density cancels and one has

                     Tcent =
GMµ
2NAkR

∝M
R

For a typical value of µ=0.59

Tcent = 6.8×106 M / M

R / R

⎛

⎝⎜
⎞

⎠⎟
K

This of course is still a lower bound. The actual present value 
for the sun is twice as large, but the calculation is really for
a homogeneous (zero age) sun. A similar scaling (M/R)
will be obtained for the average temperature using the 
Virial Theorem
    

Hydrodynamical Time Scale 

   

We took r=0 to get hydrostatic equilibrium. It is also 
interesting to consider other limiting cases where r 
is finite and the pressure gradient or gravity is negligible. 
The former case would correspond to gravitational 
collapse, e.g., a cloud collapsing to form a star or galaxy. 
The latter might characterize an explosion.

r =
−Gm(r )

r 2 − 1
ρ

dP
dr

If 
dP
dr

→0, then r = -Gm(r ) / r 2 = g(r )

 which is the equation for free fall.

Free fall time scale 

  

If g(r) is (unrealistically) taken to be a constant = g(R),
the collapse time scale is given by 

1
2

gτ ff
2 ≈R  and for the whole star, 

                       
GMτ ff

2

2R2 ≈ R but M = 4πρR3

3
(exact)

4πGρRτ ff
2

6
≈ R

τ ff
2 = 3

2πGρ
So

τ ff ≈
1

2π
3

Gρ
= 2680 s

ρ
      

Clearly this is an overestimate since g(r) actually increases
during the collapse.

  

Sometimes in the literature one sees instead

         τ ff =
R

vesc

= R

2GM / R
= 3R3

8πGR3ρ
⎛
⎝⎜

⎞
⎠⎟

1/2

= 3
8πGρ

⎛
⎝⎜

⎞
⎠⎟

1/2

= 1340 / ρ sec

And for  the density, which changes logrithmically
3 times as fast as the density

τ ff =
1
3

3
8πGρ

⎛
⎝⎜

⎞
⎠⎟

1/2

= 446 / ρ sec

In any case all go as ρ−1/2  and are about 1000 s for ρ =1



   

A related time scale is the explosive time scale.
Say g suddenly went to zero. An approximate expansion
time scale for the resulting expansion would be 

r =4πr2 dP
dm

⎛
⎝⎜

⎞
⎠⎟
= 1
ρ

dP
dr

⎛
⎝⎜

⎞
⎠⎟

R~1/2 rτexp
2

2R
τexp

2
~

P
ρR

τexp ~R
ρ
P

⎛
⎝⎜

⎞
⎠⎟

1/2

≈ R /csound

Usually the two terms in the "hydrostatic equilibrium" equation 
for r are comparable, even in an explosion andτ ff ≈τexp We shall 
just use 2680 s / ρ for both.

Explosion Time Scale 

   
r ~

2R
τ exp

2

  

a)The sun     ρ = 1.4  g cm−3

τHD =2680. / 1.4 =1260 s=38  minutes

If for some reason hydrostatic equilibrium were lost
in the sun, this would be the time needed to restore it. If the 
pressure of the sun were abruptly increased by a substantial
factor (~2), this would be the time for the sun to explode

b) A white dwarf     ρ ~106 −108  g cm−3

τHD =2680. / 106 =0.26 − 2.6 s 

~ Time scale for white dwarfs to vibrate (can't be pulsars)
         ~Time for the iron core of a massive star to
                 collapse to a neutron star
             

Examples 

  

c) A neutron star      ρ ~1015  g cm−3

τHD =2680. / 1015 =0.084  ms

~ Time for a neutron star to readjust its structureafter
               core bounce

d) A  red giant  - solar mass, 1013  cm ⇒ρ ~5 ×10−7  g cm−3

τHD =2680. / 5 ×10−7 =4×105  s   ≈5 days

        ~Time for the shock to cross a supergiant star making
             a Type IIp supernova
        ~Typical Cepheid time scale 

Examples 

Generally the hydrodynamical, aka free fall,  
aka explosion time scale is the shortest of all 
the relevant time scales and stars, except in  
their earliest stages of formation and last explosive 
stages, are in tight hydrostatic equilibrium. 



Some  definitions 

  

The total gravitational binding energy of a star of
mass M,  is

        Ω = − Gm
r0

M

∫ dm = −α GM 2

R
α ~ 1    (see next page)

Similarly, the total internal energy is the integral
over the star's mass of its internal energy per gram, u.

For an ideal gas   u = 
3
2

 
NAkT
µ

= 3
2

P
ρ

(TBD)

U = u
0

M

∫ dm

= 3
2

P
ρ

dm    for  an ideal gas
0

M

∫

m 

dm 
Gravitational binding energy for a  

sphere of constant 

  

If ρ=constant = ρ0, m(r )=
4πr 3ρ0

3
dm=4πr 2ρ0 dr

Ω=− Gm(r )
r0

M

∫ dm= −
4πGr 2ρ0

30

R

∫ 4πr 2ρ0 dr

=−
16π 2Gρ0

2

3
r 4 dr =−

0

R

∫
16π 2Gρ0

2R5

15

=− 3G
5R

4πR3ρ0

3

⎛

⎝⎜
⎞

⎠⎟

2

=− 3GM 2

5R

i.e., α =3/5  for the case of constant density. In the 
general case it will be larger.

Similarly 

   

The total kinetic energy is

        T =
r 2(m)

20

M

∫ dm 1
2

Mv 2 if the velocity is the same everywhere

The total nuclear power is
         

         Lnuc = ε(m)
0

M

∫ dm where ε  is the energy generation rate 

                                    in erg g−1 s−1 from the nuclear reactions
 ε  is a function of T, ρ,  and composition

and the luminosity of the star

L = F(m)
0

M

∫ dm where F(m) is the energy flux entering

                                              each spherical shell whose inner 
boundary is at m

The Stellar Virial Theorem 

  

The Lagrangian version of the hydrostatic equilibrium equation is
dP
dm

=− Gm(r )
4πr 4

Multiply each side by the volume inside radius r,  V= 
4
3
πr 3,

and integrate

V dP(r ) = 4
3
πr 3⎛

⎝⎜
⎞
⎠⎟

−Gm(r )
4πr 4

⎛
⎝⎜

⎞
⎠⎟

dm = − 1
3

Gm(r )dm
r

V dP = − 1
3Pcent

P (r )

∫
Gm 'dm '

r0

m(r )

∫
The integral on the right hand side is just the total gravitational
potential energy in the star interior to r,  Ω(r ). 
The left hand side can be integrated by parts out to radius r < R

V dP =PV ⎤⎦
Pcent

P (r )

∫
cent

r

− P dV
0

V (r )

∫ =P(r )V(r )− P dV
0

V (r )

∫ since V = 0 
at the center 



  

V dP =PV ⎤⎦
Pcent

P (r )

∫
cent

r

− P dV
0

V (r )

∫ = P(r )V(r ) − P dV
0

V (r )

∫

Substituting dV = 4πr2dr = 4πr2ρdr
ρ

= dm
ρ

P dV = P
ρ

dm so
0

m(r )

∫
0

V (r )

∫

P(r )V(r ) − P
ρ

dm = 1
30

m(r )

∫ Ω(r )

 This is true at any value of r, but pick r = R where 
P(R)= 0, then

                       -
P
ρ

dm = 1
30

M

∫ Ωtot   (Prialnik 2.23)

but for an ideal gas  
P
ρ
= 2

3
u

for any EOS 

  

So for ideal gas 2
3

u dm =−1
3
Ω

0

M

∫

The left hand side is 2/3 of the total internal energy of 
the star,  hence 
                             2U  =  - Ω       (Prialnik 2.26) (Ω is defined < 0)
 The internal energy is, in magnitude, 1/2 the binding energy 
of the star. We shall see later that similar though somewhat 
different expressions exist for radiation and relativistic degeneracy 
pressure. This is the Virial Theorem.
Note that we can also define a mass averaged temperature
in the star

                     T =
1
M

T(m)dm
0

M

∫

The Virial Theorem for ideal gases 

  

For an ideal gas, P=
NAkρT

µ
(same as nkT but in terms of ρ)

                    U = 
3
2

P
ρ0

M

∫ dm = 3
2

NAkT
µ0

M

∫ dm but T dm = T M
0

M

∫

= 3
2

NAkMT
µ

=− 1
2
Ω

                         
3MNAkT

µ
= αGM 2

R
where e.g., α =3/5  for a sphere of constant density

T =αµG
3NAk

M
R

       note again the inverse dependence of T on R

Virial temperature 

The Virial temperature 

 

This is similar  to the value obtained from hydrostatic equilibrium

but 
α
3

(about 0.2)  instead of  0.5, so cooler, about

2.6 x 106 for the sun.  

Note that the temperature of nearly homogeneous 
stars like the sun is set by their bulk properties, M and R. 
As the mass on the main sequence rises, R empirically  
rises only as about M2/3 so the central temperature of  
massive stars rises gently  with their mass. We shall  
see later that the density actually decreases.  



Conservation of Energy 
(aka First law of thermodynamics) 

Consider the changes of energy that can be experienced 
by a small (spherical) mass element m = 4  r2  r.  
r << R; m << M. If the zone is sufficiently small, we  
can also think of m as dm and it is customary to 
do so In stellar evolution codes. The zone’s internal energy,  
u, can change as a consequence of: 
 
•  energy flowing in or out of its upper or lower 

boundary by radiation, conduction, or convection 
 

•  compression or expansion 
 

•  nuclear reactions generating or absorbing energy 
  

The change in internal energy in a thin shell of mass, 
δm, during a small change of time, δ t, is then

  δudm=δQ+δW

where  δQ = ε δmδ t +F(m)δ t −F(m +δm) δ t  is 
the internal energy generation plus the net 
accumulation or loss of energy from fluxes at its 
upper and lower boundaries and

δW =−PδV =−Pδ 1
ρ

⎛
⎝⎜

⎞
⎠⎟
δm

is the energy lost to work because the zone expands and pushes
on its boundaries or is compressed and gains energy. Note that 

δV =4πr2δ r  and δm = constant = 4πr2 ρδ r  so 

 δV =δm δ 1
ρ

⎛
⎝⎜

⎞
⎠⎟

  

dm and δm used 
interchangably here

  

P is the pressure
in the zone. ε  is the 
energy generation 
in the zone.

  

F  is the flux of energy at 
m or m+dm

  

δQ = ε δmδ t +F(m)δ t −F(m +δm) δ t
and since 

F(m +δm)=F(m) + dF
dm

⎛
⎝⎜

⎞
⎠⎟
δm

δQ= ε − dF
dm

⎛
⎝⎜

⎞
⎠⎟
δm δ t

so    δuδm+ Pδ 1
ρ

⎛
⎝⎜

⎞
⎠⎟
δm = ε − dF

dm
⎛
⎝⎜

⎞
⎠⎟
δm δ t

dividing by δm and δ t and taking the limit as δ t →0

du
dt

+P
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟
=ε − dF

dm
  

  

F  is the flux of energy at 
m or m+δm

The energy conservation 
equation aka “the first law 
of thermodynamics 

  

du
dt

+P
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟
=ε − ∂F

∂m
 

du
dt

 is the rate at which the internal energy in erg g−1  is

             changing, e.g., in a given zone δm of a (Lagrangian)
             stellar model

P
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

is  the PdV work being done on or by the zone

               as it contracts  (ρ ↑⇒PdV  is negative) or expands

               (ρ ↓⇒PdV  is positive). Units are erg g−1 s−1

ε  is the nuclear energy generation rate minus neutrino 

               losses in erg g−1 s−1

dF
dm

dm is the difference in energy (per second) going out the 

               top of the zone (by diffusion, conduction, or convection) 
              minus the energy coming in at the bottom. It is positive
              if more energy is leaving than entering.        



Thermal Equilibrium 

  

If a steady state is reached where in a given zone the 
internal energy (u), density (ρ), and pressure (P) are not changing
very much, then the left hand side of the 1st law becomes
approximately zero and 

                     ε =
dF
dm

Energy flows into or out of the zone to accomodate what
is released or absorbed by nuclear reactions (plus neutrinos).

If this condition exists through the entire star

               ε dm =Lnuc = dF = L
0

M

∫
0

M

∫
then the star is said to be in thermal equilibrium. It is also 
possible for thermal equilibrium to exist in a subset of the star.

Examples: 

•  Main sequence stars are in thermal equilibrium 
 

•  Massive stars becoming red giants are not. More 
energy is being generated than is leaving the  
surface. The star’s envelope is expanding 
 

•  White dwarfs are in a funny thermal equilibrium 
where nuc = o and PdV is zero, but u is decreasing 
in order to provide L 
 

•  Late stages of massive stellar evolution may also  
approach a funny equilibrium where neutrino 
losses balance nuclear energy generation, at least 
in those portions of the star where burning is going 
on at a rapid rate 

  ⇒
U =L

   

   
du
dt

+P
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟
=ε − dF

dm
 

Integrate over mass:

du
dt

dm
0

M

∫  + P
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm
0

M

∫ = ε dm
0

M

∫ −F(M)+ F(0)

= Lnuc − L
Since m does not depend on t the leftmost term can be 
rewritten

             
du
dt

dm
0

M

∫ = d
dt

udm
0

M

∫ = U

The second term takes some work, one can rewrite 1/ρ
(since dm = dV / ρ)

                 
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟
= d

dt
dV
dm

⎛
⎝⎜

⎞
⎠⎟
= d

dm
dV
dt

⎛
⎝⎜

⎞
⎠⎟

Integrating the first law of thermodynamics 

  

                 
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟
= d

dt
dV
dm

⎛
⎝⎜

⎞
⎠⎟
= d

dm
dV
dt

⎛
⎝⎜

⎞
⎠⎟

= d
dm

4πr 2 dr
dt

⎛
⎝⎜

⎞
⎠⎟

Integrate by parts:

P
0

M

∫
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm = Pd 4πr 2 dr
dt

⎛
⎝⎜

⎞
⎠⎟0

M

∫

= 4πr 2P dr
dt

⎤

⎦
⎥

0

M

− 4πr 2 dr
dt

dP
dm0

M

∫ dm

The first term is zero at r = 0 and M (where P = 0) so

P
0

M

∫
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm = − 4πr 2 dr
dt

dP
dm0

M

∫ dm

Continuing: 

(2nd  
term) 



   

  P
0

M

∫
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm = − 4πr 2 dr
dt

dP
dm0

M

∫ dm

But 
dP
dm

= −Gm
4πr 4 −

r
4πr 2

P
0

M

∫
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm = Gm
r 2

0

M

∫
dr
dt

dm+ r
0

M

∫
dr
dt

dm

and r
dr
dt

=
d
dt
r 2

2
⎛
⎝⎜

⎞
⎠⎟

Gm
r 2

dr
dt

= − d
dt

Gm
r

⎛
⎝⎜

⎞
⎠⎟

So

P
0

M

∫
d
dt

1
ρ

⎛
⎝⎜

⎞
⎠⎟

dm = − d
dt

Gm
r0

M

∫ dm+ 1
2

d
dt
r 2 dm = Ω+ T

0

M

∫

Continuing: 

   

So all together
U+ Ω + T = Lnuc −L

which expresses succinctly (and obviously) the conservation
of energy for the star. Power generated or lost on the right
balances the change in internal, gravitational, and kinetic
energies on the left.
    Suppose the star is static so that T=0, and the Virial
Theorem also applies so U = -1/2 Ω (for an ideal gas)

Then

                    
1
2
Ω = Lnuc −L

This is interesting. 

   
1
2
Ω = Lnuc −L               remember Ω  is negative

•  If Lnuc = L then the star is in a state of balanced 
power. Over long period of time it neither expands 
or contracts. It is in thermal and dynamic equilibrium 
 

•   If Lnuc > L, more energy is being generated by  
nuclear reactions than is being radiated.  &

    becomes less negative. The star expands to  
    absorb the excess 
 
•   If Lnuc < L, the star is radiating more energy than  
     nuclear reactions are producing. If possible, the 
     star makes up the deficiency by contracting to  
    a more tightly bound state.  becomes more negative 

   

Also interesting is the solution for U  in the same
situation. Then

                   U = - 1
2
Ω = L − Lnuc

In the absence of nuclear energy input, the star increases
its internal energy (heat) as it radiates. The more a star,
supported by ideal gas pressure, radiates, the hotter it
gets. The heat capacity is defined by C(T) = Δq/ΔT where 
Δq is the energy flowing into or out of the matter. Here ΔT
is positive when Δq is negative. We say that stars have a 
"negative heat capacity". The origin of the energy is gravity.
 



The Kelvin Helmholtz time scale 

   

The time scale for adjusting to an imbalance in 
energy generation (historically Lnuc  = 0) is the Kelvin
Helmholtz timescale

                                τKH =
Ω
Ω

≈ Ω
2L

Ω=− Gm
r0

M

∫ dm =− Gm(r )
r0

R

∫ 4πr 2ρ(r ) dr

=−αGM 2

R
  where α  depends on ρ(r )

I

   

For the sun the constant density expression gives

τKH ()=
3GM

2

10RL
=2.95×1014 s=9.3 My

but the actual sun is far from constant density and the 
actual value is closer to 30 My. We will obtain a better
value when we study polytropes later.

Kelvin Helmholtz time scale for the sun 

   

 This is (roughly) the time the sun could shine without nuclear
reactions at  its present  radius and  luminosity.
   In fact, if the radius is allowed to change gravity could 
power the sun or any star much longer. Even keeping the 
luminosity the same the sun could, in principle, continue
to contract until it became  a white dwarf. Taking a 
white dwarf radius of ~5000 km, τKH could be increased 

to 1.3 Gy, but then the sun wouldnot look like it does 
(with the same luminosity it would radiate in the ultraviolet).

  Taking this to the absurd limit (not allowed by quantum

mechanics for a 1 M  star), Ω~Mc2,  for a black hole

τKH ~1013  years. Gravity, natures weakest force, can, in 

the end provide more power than any other source 
including nuclear reactions.

One could in principle explain the modern sun 
without recourse to nuclear reactions by allowing  
it to become extremely centrally condensed (e.g., a  
black hole at the center). But this would be quite 
inconsistent with  
 
•  Stellar physics and known equations of state 

 
•  The solar neutrino experiments 



Other places the Kelvin Helmholtz time scale enters: 

•  Star formation – it is the time required for a 
protostar to settle down on the main sequence 
and ignite nuclear burning 
 

•  The time scale between major nuclear burning 
stages where degeneracy does not enter in,  
e.g., between helium depletion and carbon 
ignition in a massive star 
 

•  The time a proto-neutron star requires to release 
its binding energy as neutrinos. During this  
time it can power a supernova  

  

As the star contracts, so long as it remains approximately
an ideal gas,  the Virial Theorem  (or hydrostatic equilibrium) 
implies:

U=− Ω
2
⇒ 3

2µ
NAkTM = α GM 2

2R
; or Pc ∝

GMρ
R

T ∝ M
R

but ρ ∝ M
R3

So T ∝ M2/3ρ1/3

As the the star contracts, the temperature rises as the cube
root of the density and, for a given density, is less in stars of 
smaller mass.
We will make these argumentsmore quantitative later 

nuclear 

Kelvin Helmholtz 

Kelvin Helmholtz 

Kelvin Helmholtz 

nuclear 

nuclear 

  

Evolution of the central 
density and temperature of
15 M  and 25 M  stars

The nuclear time scale 

As we shall see later nuclear fusion – up to the  
element iron is capable of releasing large energies 
per gram of fuel (though well short of mc2). 
 
Roughly the energy release during each phase is 
the fraction of the star that burns times 
 
        Fuel                     fraction mc2 

 
    Hydrogen                     7 x 10-3 
    Helium                          7 x 10-4 
    Carbon                         1 x 10-4 
    Oxygen                        3 x 10-4  
    Silicon                          1 x 10-4 
       



   

One can also define a nuclear time scale

               τ nuc =
Mqnuc

L
but everywhere except the main sequence, one must
be quite cautious as to what to use for L and M because
more than one fuel may be burning at a give time and
neutrinos can carry away appreciable energy. Also
only a fraction of the star burns, just that part that is hot
enough. For the sun if 10% burns

τ nuc ≈
0.1( ) 0.007c2( ) M( )

L
= 10Gy

which is fortuitously quite close to correct.

The nuclear time scale There are several things to notice here. 
 
First the energy yield is a small fraction of the rest 
mass energy. It just comes from shuffling around 
the same neutrons and protons inside different 
nuclei. The number of neutrons plus protons is 
being conserved. No mass is being annihilated. 
 
Less energy is produced once helium has been  
made. The binding energies of neutrons and 
protons in helium, carbon, oxygen and silicon 
are similar, all about 8 MeV/nucleon.  
More energy is released by oxygen  
burning simply because the oxygen abundance 
is about 5 times the carbon abundance. 
 
We shall see later that the nuclear time scale can 
be greatly accelerated by neutrino losses 

In a random walk, how 
far are you from the  
origin in n steps, and 
how long did it take  
to get there? 

Radiation diffusion 
time scale 

=3 cm2 

  
x3 = 3 cm

Random walk: 



The thermal time scale 

The average of s itself is zero 

  

s i

s =

   

τ dif ( ) ≈R
2

c
= (6.9 ×1010)2

(0.1)(3 ×1010

⎛
⎝⎜

⎞
⎠⎟
=1.6×1012  sec

or about 50,000 years. 
A more accurate value is 170,000 years

http://adsabs.harvard.edu/full/1992ApJ...401..759M 

Ordering of Time scales  

To summarize we have discussed 4 time scales 
that characterize stellar evolution. 
 
•  Hydrodynamical time – 446/1/2 to 2680/1/2 sec  

– the time to adjust to and maintain hydrostatic  
equilibrium. Also the free fall or explosion time scale 
 

•  Thermal – R2/lc – the time to establish thermal 
equilibrium if diffusion dominates (it may not) 
 

•  Kelvin-Helmholtz – GM2/(2RL) – the time to adjust  
structure when the luminosity changes. 
 

•  Nuclear – qnucM /L – the time required to fuse a  
    given fuel to the next heavier one 

  

In general, and especially on the main sequence
              τHD << τ therm <τKH <τ nuc

There are however interesting places where this ordering
breaks down:

τ therm ~τKH ~τ nuc    during the late stages of massive 

                                                star evolution
      τHD ~τ nuc for SN Ia; for explosive 

                                                nucleosynthesis in SN II
There are also other relevant time scales for e.g., 
rotational mixing, angular momentum transport, 
convective mixing, etc. Usually a phenomenon can 
be characterized and its importance judged by examining
the relevant time scales.


