Convection and
Other Instabilities

Prialnik 6
Glatzmair and Krumholz 11
Pols 3, 10



What is convection?

r“\ . - ® Ahighly efficient way of
transporting energy in the
stellar interior

® Heat carried by advection,

ool hot not diffusion, Depends linearly
on fluid speed, not on random
Highly idealized schematic. walk

Real convection is not so

ordered, but mass is conserved. _
Mass going up = mass going ® Occurs when the heat gradient

down. exceeds some critical value
required for buoyancy
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Which is denser after a
a displacement? The blob
or its surroundings?

- Consider the radial

displacement of a blob of
gas. As it rises its internal
density will decrease in
accordance with the decrease
In pressure in the surrounding
medium. In the absence of
heat exchange with its
surroundings it will expand
adiabatically.

The density in

the surrounding medium will
decrease too in accordance
with hydrostatic equilibrium.



Adiabatic expansion

Recall from Lecture 5 (equation of state) that the first
law of thermodynamics can be used to define an
"adiabatic expansion” and an adiabatic exponent.

du + Pd(lj =0
P

which given that

u :¢E

P

leads to

dlogP (6+1)

diogp ¢ '
and



Such a relation between pressure and density is called
"adiabatic". If the gas expands due to decreased pressure
on its extremities or is compressed by increased pressure
without heat flow across its boundary, this expression gives
the change in internal pressure relative to the change

In density

From our previous discussion of ¢, for ideal gas y_=5/3;

for radiation, y_=4/3.

Note that the gamma here is a local gamma y_(r), unlike

the gamma that characterizes a polytrope



Consider a rising “blob” expanding adiabatically

adiabatic
expansion

pe>p2

upward displacement

Ar
P, B

Because the hydrodynamic
time is much shorter than
the float time (v << ¢, ,q)
the pressure inside the
floating blob at a given
radius is always equal to
the external pressure at the

same radius. P, = P,, but
p. Mmay not equal p,

“e” stands here for “expanded”



dlog P =y_dlogp (adiabatic)

oP, op,
= =7,
k. p.
diabatic 'where oP_ is determined by the
o, B CXPAnSIOn axisting pressure gradient in the
: star. So dp_ = p, 1 aP Ar.
Background gradients | Fe ¥, dr
P dp j TR This will be stable against
dar’ ar convection if

upward displacement

Ar ‘5Pe‘<‘5p‘=p1—p2
o, P » but 6p_ and dp are both negative
numbers so stability = 6p_ > dp

That is, if adiabatic expansion leads

to a greater density (less density
decrease) than the surroundings, there
IS N0 convection



op_ > op for stability

5pe>dp Ar or

ar
cxpansion ¢ 1 9, Ar >—— dp it -
vy, ar dr dr dr
1d_p< 1P 1 dp and dP
pdr Paryvy,
P dp '
o are both

upward displacement

Ar 4 negative so
P, B ‘B Mg :
Yd
Mg 1

R stable if gllogl >

R dlogP v,

P =P andp_ =p .

7

if Ar is small ((p, — p)7 p unstable if
might be ~107°) dlogP 7,

dlogp 3 1



log p

S: stable gradient .
U: unstable gradient

i Pols 5.3
P, Py log P
stable if dlogp > L

dlogP v,



dlogp > 1 , but in general we don't know the

so things stable if
dlogP vy,

density gradient. Instead we have information about ar and il

dr dr
Expand dP in terms of partial derivatives. P is a function of

T, p, and u (for any EOS!)

dP:a—P] dT+a—P) dp+a—Pj du
P T.u p.T

ol ap ou
dP _(8IogPJ £+[8Iong dp. (BIogP] du
P dlogT - T dlogp ur P dlog u o M
T dp . du
_%TT-I-%I) o 1 %,u u

These values "y " are dimensionless numbers which
basically give the powers of the given quantities to which
P is sensitive.

e.g., forideal gas P pr sox,=hx,=%x,=-1

u
dlogP= dlogT + dlogp+ —dlogu



continuing:
dlogP= y.dlogT+ x dlogp+ x dlogu

dlogp dlogT dlogu
p =1-2 Ay
dlogP dlogP dlogP

dlogp _ 1 _%Tv_ﬁv
u

4

dlogP  x, x, x,

dlogT | v _dlogu

dlogP | “ dlogP

V here (not to be confused with the "grad" operator) is
a dimensionless temperature gradient describing how T

where @ V=

behaves with pressure.



V is usually a positive quantity. It is related to the radial
temperature derivative by:

y_ dlogT _PdT_PdT(dP)' | H,dT
dlogP TdP Tdrldr) | T dr
1adP) " ,, -
where H,, = -l L the pressure "scale helight”,

the distance over which pressure declines by 1 e-fold

For ideal gas (only) in hydrostatic equilibrum
dP pNkT 1 NkI H, Nk

H,=—-P/ = . P =
dr uopg ug T ug




logP  x, x, X, dlogP Y o

Previously, dlogp = 1 & \Y% —QV and dlogp = 1
d g ad
For an adaibatic expansion at consant composition(V“ =0;

in the displaced gas the composition does not change)

1—%”

dlogp 1 1 x Vg |Yaa =X
g ad yad Zp lp ZT Vad%T

This is the "dimensionless adiabatic temperature gradient”

Forideal gas V_, = °/3=1_ 4.4 For stability( dlogpj 1
star

>— SO
5/3 Yo

1 &y —ﬁvu > put

%P %p %p yad

Yo mlo oy A VA |y gng| 2| 2y
Yo  ° Xr Y\ Xr) Xo ) X0 Y X, ) ™

L ZTV

Vao X, X,

ad



continuing:

Vg Gy Y Ty

X, X, X, Vaa X, X,
_ﬁv _ﬂvu > _ﬁvad

X, X, X,

_dlogT

XV =XV, > XV V= dlogP
XV + )(ﬂVu <+x.V_,

for stabiity V<V d—ﬁV Ledoux

R

and if VH = 0(or is ignored) V<V _ Schwarzschild



The dimensionless radiative temperature gradient
Is given by the chain rule and hydrostatic equilibrium and
radiative diffusion

dir _ dP dT -Gm T dlogT =~ 3 x| L(r)
dm dm dP 4xr* PdlogP  4acT° (47”2)2

_dIogT] 3 kL(r)P
d

“ dlogP ) . 16macG mT*
The Schwarzschild condition for stability becomes, e.g.
Vrad < Vad
For ideal gas for example y,=5/3, =1, x,=1
vV - Vaa =X, :2/3 _04

' YaXr 5/3
For radiation y,=4/3,x =0, x,=4

Yoa =X, 413

vV = _
“ vy x, 16/3

=0.25




Maximum luminosity for convective stability:

For stability: V_ <V __

3 P xL(r)
16racGT* m
3 N,kpxkL(r)
16racG ur® m

<V_, ~0.4 (ideal gas)

<04

3
L(r)<0.4 16acGul " m(r)
3N kpx
3
< 1.22x107 ur m(r)ergs”
Kp

e.g. u=0.61, Kp=1,T=1O6,M=M® L <1.5x10% erg s™



Where is convection important?

3
L(r)> 1.22x107"® ur m(r)ergs™
Kp

Convection will be important in regions where
the opacity is high or the energy generation is
concentrated in a small mass giving a large ratio
of L(r)/m(r). Examples:

® The cores of massive stars powered by
the CNO cycle which is very temperature
sensitive.

®* Regions of high opacity especially in
lonization zones and near stellar surfaces.
Kramers opacity increases at low T.

® The interiors of massive stars where L/M is large
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The sun — Manfred Schussler
Max Plank Insitut fur Aeronomie



The solar convection zone

m 200 Mm thick layer
in turbulent motion

m Velocities range from
100 m/s (bottom) to
10 km/s (top)

m Energy flux nearly
completely transported 3
by convective motion




Convection in the sun and massive stars
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Main sequence stars

Fhotosphere

Convection zone

> 1.5 solar masses

0.5 - 1.5 solar masses

< 0.5 solar masses




Heat transport by convection
and mixing length theory

In a region where the temperature gradient is

even slightly superadiabatic, there will be efficient
transport of energy by advection. Carrying entrained
energy and dispersing it after some distance is much
more efficient than radiative diffusion or conduction.

It turns out that the efficiency of the convection can be
simply and fairly accurately (based upon 3D simulations)
characterized by a representative length scale called the
“mixing length”. This is how far a relatively intact plume

or bubble of hot gas will rise adiabatically before dispersing
and depositing its energy by diffusive and turbulent
processes.



To conserve mass, there will also be matter falling

back down from large radii to smaller ones, but the down-
flowing matter now carries less energy than when it went up,
the difference having now been dissipated. The net heat
being transported up (per gram) is approximately the

heat capacity, c, :(g—;l_j , times the temperature difference,
P

AT, between the gas inside the convective plume and
outside of it evaluated at r+/ where r is the radius

where the transport starts and 7 _is the mixing length.

That is, AT is given by the difference between the temperature
gradient in the external medium times ¢ _, and the temperature
change that happens to a rising adiabatic bubble after floating
the same distance.



Heat transport = C AT

P A I CLR B VY L VAR
dr ad dr actual K dr K

ﬂ: leogT :leogT dIogP:TvdIogP
dr dr dlogP ar dr

=— HLV as previously discussed (slide 14)

P

Note:

1) The "mixing length", /7 is a characteristic scale

over which a given convection element dissipates. The
total extent of a convective region can itself be greater
(or even less) than the mixing length.



2) V connects directy to the equation of state,
pressure Is a better variable here than radius. V is
dimensionless and the log's are base "e".

at=[ 2L _pely
dr ad dr actual | K

dar leogT _T dlogT dIogP:TvdlogP

dr dr dlogP  dr dr




as the

3) We defined the reciprocal of i(fj — d|3£rJP

P\ dr

"pressure scale height" (the radial distance over which
the pressure declines by a factor of e). Almost universally
the mixing length ¢ is taken to be a (parametric) multiplier, c,

times the pressure scale height.
—1
gmz_(x(dlong _aH,

03<a <1.5

dlogP << 0
dr

, - 909P g




Then

—1
14
€m=—(x[dlogP) = oH :>H—m =—

ar P 5
AT= ﬂ — ﬂ /¢
| dr ad dr actual _| K
/
=T—2(V,,-V)=aT(V-V_,)
P
Where
V= dlog’ actual in the star
dlogP
dlogT

adiabatic from the EOS




The heat being transported per unit area is then
F=v_pAu=v_pc, AT

That is the flux is the mass flux in a given convective
element, v_p, times the excess heat content (erg/gm)

In the element compared with its surroundings.

c,, the heat capacity,can be obtained from the
SN k

equation of state but is for an ideal gas.



It remains to determine v_,the typical convective speed.

The acceleration, a, is given by

NV
P
where Ap is the density contrast between the floating

plume and its surroundings, Ap = p <0

inside p outside
As the plume floats (v_<<sound speed), it remains

In hydrostatic equilibrium like its surroundings and in
pressure equilibrium with its surroundings. So AP/P = 0.

For an ideal gas
@zozderdT_du
P p T u

so, if Au=0, -Ap/p =ATIT.



Ap AT

a=——4g —Tg where g= Gmir)

r2

Recallalso AT= ocT(V = Vad)

The typical velocity while moving a distance ¢ _= 1/2 at’

14 14 ¢ g AT
v =tmo [y gi2= |t
©t o J20, /a " \/2 (Tj

{ ag a’H_g
v, z\/ > (v—vad):\/ =(V-Y.,)

{ =oH

m P




| _ag a’H g
v, z\/ > (V—Vad):\/ =V =Y.0)

and F=pc ATv, AT=0aT(V-V,_,)
=pc,lo (V — Vad)vC
H.g

= pc,Ta? |22 (V-V )"

H_.g

L(r) = 4nr®F=4ar’pc,To?, |22 (V-V )"

Given the degree to which the actual temperature
gradient is superadiabatic, (V -V, d), this gives

the convective heat flux. Typically o=1/3 to 1.5.



How superadiabatic is the temperature
in the convection region?

H_g 3/2
L(r) =4xr*pe,Ta® | =2= (V- V,,)

Evaluate approximately for the solar convective zone, r =R _,

p~p=14gcm>, T from Virial theorem about 3 x 10° K
1 dP T _pN,KT  NKT

— g cancels in \/_
P dr ugp ug

For ideal gas and HE, HP=(

1/2
_ = N,kT 3/2
L®z4nR§)pCPT( o ] (V-V,,)

s ((2)(0.6))" (3.9x10%)

(V-Va) = (4)(m)C, (6.9 10")2(1.4)(3x 10°)[(6.02 x 10)(1.38 x 1077°)(3 x 10°)] "2

= 05'0011 =3.1x107"
—N  k

2 A
AT 8 —1. —
(V_Vad)zT ~10 for x=1;, AT= ocT(V—Vad)




How superadiabatic is a convection region?

While one might quibble about factors of 2, the deviation
from the adiabatic gradient is clearly very small. This is
generally true in other places where convection happens
as well. Exceptions: near stellar surfaces, in the outer
layers of red supergiants, and in the final stages of
massive star evolution.

Examining the various terms, p, T, R, L, we see that the
excess scales as

5/3
AT [ R (Pols p 70)
T M

At very high L, say 10° L ., and large R the temperature

gradient could start to become substantially superadiabatic.
This rarely happens (SN progenitors), but the theory can
also break down near stellar photospheres.



The small degree of super-adiabicity also
implies that the required convective speeds
are quite modest, very subsonic.

a’H_g
vcz\/ (V=Y.

N kT
- (v,

1/2

N kT

:104[2“ ] ~15 meters/s
u

sound

1/2
Note that this is also ~10™ (Ej ~10" ¢
p



Stellar Stability

Glatzmaier and Krumholz 11 (p 127)



Stars may become unstable for a variety of
reasons

Insensitivity of the pressure to temperature
as in a degenerate gas with a temperature
sensitive energy generation rate

Too great a component of radiation or
relativistic degeneracy pressure

Burning in too thin a shell

Opacity and recombination driven pulsations



First, why are they usually stable in the first place?
Non-degenerate gas with some small amount of radiation

N kT
CAZULIN Uy = SP urad:3E
u 3 2p p

The Virial theorem says that the pressure and binding

P=

energy are related by
P
Q=— BJ—dm
P

We can note immediately the neutral stability of a star
supported entirely by radation or relativistic particles. Then
E=U+Q
=3 j dm —3[ 2 dm =0
o P
The star has no net energy and its radius is undefined.
Such is the case with the Chandrasekhar mass white
dwarf but also stars that are too massive and too great.



But so long as ideal gas remains a significant contributor

= 3](3 Ugas urad) dm = —(2Ugas +Urad)

U :—1(Q+U
2

gas rad )

1

E:Q+Urad+UgaS:§(Q+U —U, .

o) =
What does this say about the mass-averaged temperature?
3N, k™ pT 3 NAkMT'

2 u ! "2 p

where the p in the denominator is because u is the internal

U

gas

energy per gram and

_ 1 M
= !Tdm



Conservation of energy then requires that
N k dT
g 9B _ 3, Nxdl
e dt 2 u dt

In thermal equilibrium the left hand side is zero,
but assume a small positive imbalance oL=L_ - L

dT 2 u 6L

dt 3NkM
The negative sign is important here and relates again
to the negative heat capacity of stars as imposed by
the Virial theorem.

(L, —L)T = T goes down and vice versa

The star is stable.



Instability of a degenerate gas

Obviously if the pressure is insensitive to the temperature
and the energy generation is very insensitive to the
temperature, a very unstable situation exists that is

prone to runaway. Temperature rises but there is no
expansion and cooling. Energy generation rises and
Increases the temperature still more, etc.

To examine this in a bit more detall, consider the
relation between central pressure and density we
derived for polytropes.

PC — CnGMZ/Spj/S

where C, is a slowly varying function of polytropic
index, but we might have n = 3 in mind.



Taking the time derivative and dividing by the original
equation one has

arP :[ nGM2/3] fp;/s dp,

dt 3 dt
p— [CHGMm}pj/B
dividing gives
dP 4dp,
P 3 p,
Now assume the pressure is of the form P=P, p°T® where

for ideal gas a = b = 1, for fully degenerate gas a = % to g

b=0, and so on.



A small perturbation in pressure thus perturbs the
temperature and density according to

dP. =P, (ap: T dp, +bpiT,dT)
which when divided by P_ = P, pT” gives
dP. dp, , dT.
= a +

b
PC pC 7-C
dP d
Substituting the results for the polytrope, PC :% Pe ,
c pC

d d dT
4 pc:a pc+b?‘3

and




Cases ai, = 1(£—aj ap,
T, b\3 P,
1)ldealgas-a=b =1
di, 1dp,
T 3op,

expansion (dp_ <0 )causes a decrease in T, stable

2) Degenerate gas - b <<1,a>4/3
aT, __1(,_4)dp,
T bl 3)p,

C

Expansion actully causes increased heating. a is
always > 4/3 for completely degenerate electrons.
The temperature rises causing a runaway in energy
generation that only stops when the gas has become
sufficienty non-degenerate (a < 4/3).

Examples helium flash, Type la supernovae.



Thin shell instability
Letr, =r +dr dr <<r, om<<M

and om<<m(r,, _,)

The pressure in the shell is give by

M R
Gm(r) Gm(r)p
P=- dm = - ar
J 4rr’ M I r’

M(rgpen) F'she

Change the pressure in the thin zone slightly, e.g., by burning.
This leads to a new outerradius r,,_ =r +dr+or

=oldr, +or (orstill <<r, )

M Gm(r) or B " Gm(r)

P+oP= - j 7am == 1+ — J 4

M(ghen) 477:(/’ + 5r) rShe” M("spen) 47rr
~ 1_4i P  (the integral is -P)

rshell

1_|_5_'l:)z*]_4i:>5—F):—4i

P r P r

shell shell

dm



oP or
- =—4— The mass does not change

P r

shell when the zone expands

but m = 4zr? p dr = 4zr’ (p+ 8p)(dr + 6r)

1
p+op = par_ _ (1+gj zp(1—g]

dr+8r dr ar
So op _or_ orly, 10Pr,,
p ar Fey OF 4 P dr
5P _ 40p dr
PPy
ar <<r, . SO %D Is small even if %p IS large



oP _ op dr
P p rshell
Using the same representation of the EOS as before,
6_P — 36_p + b 57— 6_pi

P=P p° T? — =4
° p T IO rshell
So that
3 [3_41] __ 8T
p rshell T
6_7- — 1 4i —a
T b rshell

Since a and b are positive numbers and dr << M

thin shells are always unstable. The instability is
removed when dr becomes large or the fuel runs out.



Examples:

® Asymptotic Giant Branch Stars

Prialnik p 163 11.2

001 Rg 100-500 R ~1 pe?
0.5-1.0 Mg 0.1-few Mg
~0.05 Rg
0.001-0.02 Mg

® (Classical novae

® X-ray bursts on neutron stars



Dynamical instability

The instabilities discussed so far manifest over
a long time — typically the nuclear time, but there
are other more violent instabilities that affect
hydrostatic equilibrium.

Quite basically, when a star, or a portion of a star
contracts, its pressure goes up but so too does the
force of gravity. If gravity goes up sufficiently faster
than pressure, then an unbalanced state remains
unbalanced and may collapse even faster. If on the
other hand pressure goes up faster, the star when
compressed will expand again and perhaps
oscillate, but it is stable against collapse.



Very roughly:
dP _ Gm(r)

= = P o«cm?r™
m TTr

Also p «<m/ r’ so for hydrostatic equilibrium P o« m*°p*"°.

If the density changes due to expansion or contraction,
leading to new pressure and density, P' and p', hydrostatic
equilibrum demands

4/3
Pl_ e
[ P j ( p j
If the pressure increases more than this,

\ . 4/3
l.e., ('D ) > [ﬂ) there will be a restoring
P p

force that will lead to expansion. If it is less, the contraction

will continue and perhaps accelerate.



Now consider an adiabatic compression:

P=Kp"’

1 1 ]/
NCEC
P p
D\ \4/3
If, for a given mass, [&j > (K) one has stabillity,
p p

hydrostatic equilibrium is satisfied. If not, things are unstable.

Thus if y> % the star is stable and if y < % it is not.

This is a global analysis and doesn't necessarily apply
to small regions of the star but illustrates the importance
of y=4/3. We will return to this later.



Glatzmaier and Krumholz treat this more correctly using perturbation
theory.

The force equation is

- Gm_14dP
r?  par
Now multiply by dm
dmi =-C™ gm — 4nr? dP
r
Initially forces are balanced and
=-C™ 4m — 4nr? dP
r

But perturb and include r. A change in r by or causes changes in P and
p sothatr, —r +or, P, - P +0P, p, — p,+dp, so

bl kT )

o



Keep only first order terms  (1+¢)" =1+ ne

sty [j";rﬂzdmM{foi“‘i[ﬂzd{*’o[“ifﬂ

o

dm 7 = [1—ZQJG—Tdm - £1+2ﬂ+‘;—’3]4m§ dP.

rO rO rO 0

but 0=-"dm — 4nr? dP, o

e

2Gm Sr dm — [ g+ 6—P}4nr02 dP,

3

o

To go further we must assume a behavior for P(p). Assume,

dm or =

rO 0

because the time scale is too short for heat transport, that the
compression is adiabatic, i.e., P =K p”.
Then since log P = log K+v log p

dIongﬁzydlogpzy@
P p
dP dp

Pyp



Also linearizing

dm= 4rr’pdr

2
dm=A4r|r 1+ﬁ P 1+6_p ar 1+Q
0 r 0 p 0 r
i 0 0 0

~ 47| 1 (1+ 2r_5rﬂp° (1 + S—pjdro [1+ %)
i 0 Po 0

~ 4rrlp,dr, [1 = 201 - or + %P ~ ) =47r’p,dr, [1+ Sor ~ 5p)
rO rO pO rO ’OO
But dm is precisely 47r’p.dr, so
& __36r _10P
o h TR
oP 3yor
P



oP _ 3yor
P r

0 0

2Gm

ro

= 25 5 dm — 4mr? [ 5r—3y5r)dpo

or dm — [2ﬂ+i—P)4nr dP,

rO 0

dm or =

rO rO rO
2Gm or
= { —— m - 4rr?(2- 3y)dPO} —
0 0
But for the unperturbed configuration we had
CM m = — 4nr? dP,
rO
So
or

dm &F = | - 4nr?(4-3y)dP, | =

rO
_ | Gm or
- | Fomte-an]



. G or
dm &F = [TTdm(4—3y):|Z
5i":—(3}/—4)€—T§r

This is an equation for a harmonic oscillator. It has solution
Gm

3
rO

5r=Ae” o=t \/(3;/ —4)

If w is real, get oscillatory motion. If w is imaginary (y<%) get

exponential growth or decay on a time scale

1 1
T~— ~
i® Gp

l.e., @ hydrodynamic time scale




Kippenhahn and
Weigert 34.1




Dynamic Instabilities

® Especially for stars with y near 4/3, the nuclear
energy generation may oscillate periodically.
Compression leads to heating which leads to
expansion and cooling but the net energy yield
In a cycle is positive so the instability persists.
This is called the epsilon instability

® Heat transport depends on the temperature
gradient and opacity. If this combination behaves
In such a way as to trap heat when the gas in the
outer layers of a star is compressed and heated
and release it when the gas expands and cools,
then the star may be subject to the kappa
instability



Pulsational instability by the k¥ mechanism requires that
(Pols Chap 10, esp p 158)
dlogk
dlogP

>0

or

dlogx |  odlogx +E)Iogr< dlogT
dlogP ) . dlogP ) dlogT ), dlogP

=k, +k.V_ >0
For Kramer's opacity k < pT>° and if P «< pT x, =1

and k. =-4.5,V_ =0.4, so the condition is
not generally satisfied.



Two notable exceptions:

H™ opacity where the opacity depends on a
positive power of the temperature (Mira variables)

Kramer's opacity but V_ <0.23 as in ionization zones
(Cepheid variables and RR-Lyrae stars)

There are two important ionization zones:
HIl—HIl and He I-Hell both near 15,000 K

He ll-Helll (i.e., He™) near 40,000 K
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Pols 3.5 — suppression
of the adiabatic index

_dlogT
“  dlogP

by partial ionization
of a pure hydrogen
gas. D returns to its
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If the ionization zone lies very close to the surface —
and generally in a region that is already convective,

it has little effect. Not enough mass (or heat capacity)
participates. This is the case for T+ > 7500 K

If the ionization zone is located too deep, at high
density, the effect of partial ionization is diminished.
The adiabatic gradient is not greatly supressed and
the heat trapped is not enough to drive an
oscillation of the heavy overlying material.

This happens if T < 5500 K

Between 5500 and 7500 K, instability can ccur.



http://www.atnf.csiro.au/outreach/education/senior/astrophysics/variable pulsating.html




Period-luminosity relation for Cepheids

As we showed previously when y<4/3, the
instability is dynamical

G —1/2 1
T =[(3’}/—4)r—£n] ~ Gﬁ

0

For more massive Cepheids the radius is larger
and the average density less, hence the period is
longer

Also Cepeids obey a mass luminosity relation somewhat
like main sequence stars. So brighter Cepheids have longer
periods.

Obtaining a good match with the observations remains
a challenge.



6 Beaulicu et al.: Mass-luminosity relations from the Magellanic Clouds 2001 A&A
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Equivalence to Glatzmaier Chap 11

3/2

F=pc,Ta®\[112gH,(V-V,,)

—1
N kT
Substituting, for ideal gas and HE, HP:(%Z_I:] =4
HG

HE]
F= po.Ta?\[i12gH, (V- )"
-t 5] (a( )]
e[ o 5]




2
H
Vc = \/a Pg(vad_v)
5[de
ar
2

v — o‘H HP5 dT

¢ 2 T ar

o 57

For an ideal gas and hydrostatic equilibrium

N kT N kT
HP=P4EE):9A A
dr ugp  ug

2

H
V_Vad = TP

)

y - OCZHPQHP5£ :aNAk T5 dT
© 2 T dr u \\2g \ dr

which is Glatzmaier if 5=1/2



