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What is convection? 

•   A highly efficient way of  
transporting energy in the  
stellar interior 
 

• Heat carried by advection, 
not diffusion, Depends linearly 
on fluid speed, not on random 
walk 
 

• Occurs when the heat gradient 
   exceeds some critical value 
   required for buoyancy 

Highly idealized schematic. 
Real convection is not so  
ordered, but mass is conserved. 
Mass going up = mass going 
down. 

Kerr (1996) 
Filamentary flows in Rayleigh-Benard convection 

(high Rayleigh number 2 x 107) 
Volume rendering of temperature structure 

Solar surface 



Consider the radial  
displacement of a blob of 
gas. As it rises its internal  
density will decrease in  
accordance with the decrease 
in pressure in the surrounding 
medium. In the absence of  
heat exchange with its 
surroundings it will expand 
adiabatically. 
 
 
The density in 
the surrounding medium will 
decrease too in accordance 
with hydrostatic equilibrium. 

Which is denser after a  
a displacement? The blob 
or its surroundings? 
   

Recall from Lecture 5 (equation of state) that the first 
law of thermodynamics can be used to define an 
"adiabatic expansion" and an adiabatic exponent.

  du + Pd
1
ρ

⎛
⎝⎜

⎞
⎠⎟
= 0

which given that 

 u =φ P
ρ

leads to

d logP
d logρ

=
φ +1( )
φ

= γ ad

and

                        P∝ ρ
φ+1
φ or P=Kρ

φ+1
φ =Kργ a   

Adiabatic expansion 

  

Such a relation between pressure and density is called
"adiabatic". If the gas expands due to decreased pressure
on its extremities or is compressed by increased pressure
without heat flow across its boundary, this expression gives
the change in  internal pressure relative to  the change 
in density  

From our previous discussion of φ, for ideal gas γ a =5 / 3; 

for radiation, γ a =4/3.  

Note that the gamma here is a local gamma γ a(r ), unlike 

the gamma that characterizes a polytrope

r 

Consider a rising “blob” expanding adiabatically 

“e” stands here for “expanded” 

Because the hydrodynamic 
time is much shorter than 
the float time (v << csound) 
the pressure inside the  
floating blob at a given  
radius is always equal to  
the external pressure at the 
same radius. Pe = P2, but 
e may not equal 2 



  

d log P = γ a d logρ  (adiabatic)

⇒
δPe

Pe

= γ a

δρe

ρe

where δPe   is determined by the 

existing pressure gradient in the 

star. So δρe =
ρe

Pe

1
γ a

dP
dr

Δr.

This will be stable against 
convection if

δρe < δρ = ρ1− ρ2

but δρe  and δρ  are both negative 

numbers so stability ⇒δρe > δρ
That is, if adiabatic expansion leads
to a greater density (less density
decrease) than the surroundings, there
is no convection

  

Background gradients
dP
dr

,
dρ
dr

r 

  

ρe = ρ1+δρe

ρ2 = ρ1+δρ

  

δρe > δρ   for stability

 δρe >
dρ
dr

Δr    or

ρe

Pe

1
γ a

dPe

dr
Δr > dρ

dr
Δr

dPe

dr
= dP

dr
1
ρ

dρ
dr

< 1
P

dP
dr

1
γ a

   dρ  and dP

                                  are both 
                                 negative so

stable if  
d logρ
d logP

> 1
γ a

unstable if 
d logρ
d logP

< 1
γ a

  

Background gradients
dP
dr

,
dρ
dr

r 

   

Pe =P  and ρe ≈ ρ
if Δr is small ((ρe − ρ) / ρ

might be 10−8)
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Figure 5.3. Schematic illustration of the Schwarzschild criterion for stability against convection. A gas
element is perturbed and displaced upwards from position 1 to position 2, where it expands adiabatically to
maintain pressure equilibrium with its surroundings. If its density is larger than the ambient density, it will
sink back to its original position. If its density is smaller, however, buoyancy forces will accelerate it upwards:
convection occurs. On the right the situation is shown in a density-pressure diagram. A layer is stable against
convection if the density varies more steeply with pressure than for an adiabatic change.

The expansion of the gas element as it rises over ∆r occurs on the local dynamical timescale (i.e.
with the speed of sound), which is typically much shorter than the local timescale for heat exchange,
at least in the deep interior of the star. The displacement and expansion of the gas element will
therefore be very close to adiabatic. We have seen in Sec. 3.4 that the adiabatic exponent γad defined
by eq. (3.56) describes the logarithmic response of the pressure to an adiabatic change in the density.
Writing as δρe and δPe the changes in the density and pressure of the element when it is displaced
over a small distance ∆r, we therefore have

δPe
Pe
= γad

δρe
ρe
. (5.40)

Here δPe is determined by the pressure gradient dP/dr inside the star because Pe = P2, i.e. δPe =
P2 − P1 = (dP/dr)∆r. Therefore the change in density δρe follows from eq. (5.40)

δρe =
ρe
Pe

1
γad

dP
dr
∆r. (5.41)

We can write ρe = ρ1 + δρe and ρ2 = ρ1 + (dρ/dr)∆r, where dρ/dr is the density gradient inside the
star. We can then express the criterion for stability against convection, ρe > ρ2, as

δρe >
dρ
dr
∆r, (5.42)

which combined with eq. (5.41) yields an upper limit to the density gradient for which a layer inside
the star is stable against convection,

1
ρ

dρ
dr
<

1
P

dP
dr

1
γad
, (5.43)

where we have replaced Pe and ρe by P and ρ, since the perturbations are assumed to be very small.
Remember, however, that both dρ/dr and dP/dr are negative. Therefore, in absolute value the sign
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stable if  

d logρ
d logP

> 1
γ a

Pols 5.3 

  

so things stable if  d logρ
d logP

> 1
γ a

, but in general we don't know the 

density gradient. Instead we have information about dT
dr

 and dP
dr

Expand dP in terms of partial derivatives. P is a function of 
T, ρ,  and µ (for any EOS!)

dP = ∂P
∂T

⎞
⎠⎟ ρ,µ

dT + ∂P
∂ρ

⎞
⎠⎟T ,µ

dρ+ ∂P
∂µ

⎞
⎠⎟ ρ,T

dµ

dP
P

= ∂logP
∂ logT

⎛
⎝⎜

⎞
⎠⎟ ρ,µ

dT
T

+ ∂logP
∂ logρ

⎛
⎝⎜

⎞
⎠⎟ µ,T

dρ
ρ
+ ∂logP

∂ logµ
⎛
⎝⎜

⎞
⎠⎟ ρ,T

dµ
µ

= χT

dT
T

+ χρ

dρ
ρ
+ χµ

dµ
µ

These values "χ "  are dimensionless numbers which 
basically give the powers of the given quantities to which
P is sensitive.

e.g., for ideal gas P ∝ ρT
µ

 so χT = 1; χρ = 1;χµ =−1

d logP = d logT + d logρ + − d logµ



  

d logP = χTd logT + χρd logρ + χµd logµ

χρ

d logρ
d logP

= 1− χT

d logT
d logP

− χµ

d logµ
d logP

d logρ
d logP

= 1
χρ

−
χT

χρ

∇ −
χµ

χρ

∇µ

where ∇≡ d logT
d logP

; ∇µ ≡
d logµ
d logP

   ∇ here (not to be confused with the "grad" operator) is
   a dimensionless temperature gradient describing how T
   behaves with pressure. 

continuing: 

  

 ∇ is usually a positive quantity. It is related to the radial 
temperature derivative by:

∇ = d logT
d logP

= P
T

dT
dP

= P
T

dT
dr

dP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

=−
HP

T
dT
dr

=∇

  where HP = − 1
P

dP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

 is the pressure "scale helight",

 the distance over which pressure declines by 1 e-fold

 For ideal gas (only)  in hydrostatic equilibrum

     HP = −P / dP
dr

=
ρNAkT

µ
1
ρg

=
NAkT
µg

;
HP

T
=

NAk
µg

  

Previously,   
d logρ
d logP

= 1
χρ

−
χT

χρ

∇ −
χµ

χρ

∇µ and 
d logρ
d logP

⎛
⎝⎜

⎞
⎠⎟ ad

= 1
γ ad

For an adaibatic expansion at consant composition(∇µ =0;

in the displaced  gas the composition does not change)

d logρ
d logP

⎛
⎝⎜

⎞
⎠⎟ ad

= 1
γ ad

= 1
χρ

−
χT

χρ

∇ad ⇒ ∇ad =
1−

χρ

γ ad

χT

=
γ ad − χρ

γ adχT

= ∇ad

This is the "dimensionless adiabatic temperature gradient"

For ideal gas ∇ad = 5 / 3 −1
5 / 3

= 0.4. For stability
d logρ
d logP

⎛
⎝⎜

⎞
⎠⎟ star

> 1
γ ad

, so

1
χρ

−
χT

χρ

∇ −
χµ

χρ

∇µ > 1
γ ad

  but

γ ad − χρ

γ adχT

= ∇ad ⇒ 1
χT

− 1
γ ad

χρ

χT

⎛

⎝
⎜

⎞

⎠
⎟ = ∇ad   and

χT

χρ

⎛

⎝
⎜

⎞

⎠
⎟

1
χT

− 1
γ ad

=
χT

χρ

⎛

⎝
⎜

⎞

⎠
⎟ ∇ad

1
γ ad

= 1
χρ

−
χT

χρ

∇ad

  

1
χρ

−
χT

χρ

∇ −
χµ

χρ

∇µ > 1
γ ad

= 1
χρ

−
χT

χρ

∇ad

−
χT

χρ

∇ −
χµ

χρ

∇µ > −
χT

χρ

∇ad

−χT∇ − χµ∇µ >− χT∇ad ∇ ≡ d logT
d logP

χT∇ + χµ∇µ < + χT∇ad

for stabiity ∇ < ∇ad −
χµ

χT

∇µ Ledoux

and if ∇µ = 0(or is ignored) ∇ < ∇ad Schwarzschild

continuing: 



   

The dimensionless radiative temperature gradient
is given by the chain rule and hydrostatic equilibrium and
radiative diffusion 

dT
dm

= dP
dm

i
dT
dP

= −Gm
4πr 4

T
P

d logT
d logP

= − 3
4ac

κ
T 3

L(r )

4πr 2( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∇rad =
d logT
d logP

⎞
⎠⎟ rad

= 3
16πacG

κL(r )P
mT 4

The Schwarzschild condition for stability becomes, e.g.
           ∇rad < ∇ad

For ideal gas for example γ a =5 / 3,χρ =1, χT = 1

∇ad =
γ ad − χρ

γ adχT

= 2 / 3
5 / 3

=0.4

For radiation γ a =4 / 3,χρ =0, χT = 4

∇ad =
γ ad − χρ

γ adχT

= 4 / 3
16 / 3

=0.25

Maximum luminosity for convective stability: 

   

For stability: ∇rad < ∇ad

3
16πacG

P
T 4

κL(r )
m

< ∇ad ~ 0.4 (ideal gas)

3
16πacG

NAkρ
µT 3

κL(r )
m

< 0.4

L(r )<0.4
16πacGµT 3m(r )

3NAkρκ

< 1.22×10−18 µT 3

κρ
m(r ) erg s−1

e.g. µ = 0.61,κρ=1,T =106 , M =M L<1.5×1033 erg s−1

Where is convection important? 

  
L(r ) > 1.22×10−18 µT 3

κρ
m(r ) erg s−1

Convection will be important in regions where  
the opacity is high or the energy generation is 
concentrated in a small mass giving a large ratio 
of L(r)/m(r).   Examples: 
•  The cores of massive stars powered by 
     the CNO cycle which is very temperature 
     sensitive. 
 
•  Regions of high opacity especially in  

ionization zones and near stellar surfaces. 
     Kramers opacity increases at low T. 
 
•  The interiors of massive stars where L/M is large 

The sun – Manfred Schussler 
Max Plank Insitut fur Aeronomie  



Convection in the sun and massive stars 

Pols, Fig 5.4 

Main sequence stars 

The sun 

Heat transport by convection  
and mixing length theory 

In a region where the temperature gradient is  
even slightly superadiabatic, there will be efficient 
transport of energy by advection. Carrying entrained  
energy and dispersing it after some distance is much 
more efficient than radiative diffusion or conduction. 
 
It turns out that the efficiency of the convection can be 
simply and fairly accurately (based upon 3D simulations) 
characterized by a representative length scale called the  
“mixing length”. This is how far a relatively intact plume 
or bubble of hot gas will rise adiabatically before dispersing 
and depositing its energy by diffusive and turbulent 
processes. 



   

To conserve mass, there will also be matter falling
back down from large radii to smaller ones, but the down-
flowing matter now carries less energy than when it went up,
the difference having now been dissipated. The net heat
being transported up (per gram) is approximately the 

heat capacity, cP =
∂u
∂T

⎛
⎝⎜

⎞
⎠⎟ P

, times the temperature difference, 

ΔT, between the gas inside the convective plume and
outside of it evaluated at  r +m where r is the radius 

where the transport starts and m is the mixing length.  

That is, ΔT is given by the difference between the temperature 
gradient in the external medium times m, and the temperature

change that happens to a rising adiabatic bubble after floating
the same  distance.    

           Heat transport = CPΔT

ΔT= dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

− dT
dr

⎛
⎝⎜

⎞
⎠⎟ actual

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
m = Δ dT

dr
⎛
⎝⎜

⎞
⎠⎟
m > 0

dT
dr

= T d logT
dr

=T d logT
d logP

d logP
dr

=T ∇ d logP
dr

=− T
HP

∇   as previously discussed (slide 14)

Note: 

1) The "mixing length", m, is a characteristic scale 
over which a given convection element dissipates. The
total extent of a convective region can itself be greater 
(or even less) than the mixing length.

   

2) ∇connects directy to the equation of state, 
    pressure is a better variable here than radius. ∇ is
    dimensionless and the log's are base "e".  

    ΔT=
dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

− dT
dr

⎛
⎝⎜

⎞
⎠⎟ actual

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
m

dT
dr

= T d logT
dr

=T d logT
d logP

d logP
dr

=T ∇ d logP
dr    

3)  We defined the reciprocal of 
1
P

dP
dr

⎛
⎝⎜

⎞
⎠⎟

 =
d logP

dr
 as the

"pressure scale height" (the radial distance over which
the pressure declines by a factor of e). Almost universally 
the mixing length m is taken to be a (parametric) multiplier, α,

times the pressure scale height. 

m =−α d logP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

= αHp

0.3 < α <1.5

  

d logP
dr

is < 0

HP =− d logP
dr

 is > 0



   

Then

 m =−α d logP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

= αHp ⇒
m

HP

= −α

ΔT= dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

− dT
dr

⎛
⎝⎜

⎞
⎠⎟ actual

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
m

= T
m

HP

∇ad −∇( )=αT ∇ −∇ad( )
Where 

                 ∇≡ d logT
d logP

actual in the star

  

                ∇ad ≡
d logT
d logP

adiabatic from the EOS   

The heat being transported per unit area is then

F=vcρ Δu=vcρcP ΔT

That is the flux is the mass flux in a given convective
element, vcρ, times the excess heat content (erg/gm)

in the element compared with its surroundings.

cP , the heat capacity,can be obtained from the 

equation of state but is 
5NAk

2
 for an ideal gas. 

  

It remains to determine vc,the typical convective speed. 

The acceleration, a, is given by

                    a =− Δρ
ρ

g

where Δρ  is the density contrast between the floating
plume and its surroundings, Δρ = ρinside − ρoutside < 0

As the plume floats (vc <<sound speed), it remains

in hydrostatic equilibrium like its surroundings and in
pressure equilibrium with its surroundings. So ΔP/P = 0. 

For an ideal gas
dP
P

=0= dρ
p

+ dT
T

− dµ
µ

        so, if Δµ=0,  -Δρ /ρ ≈ΔT/T.

   

     a=− Δρ
ρ

g = ΔT
T

g where g= Gm(r )
r 2  

Recall also     ΔT= αT ∇ −∇ad( )

The typical velocity while moving a distance m= 1/2 at2

vc =
m

t
≈

m

2m / a
= ma / 2 =

mg
2

ΔT
T

⎛
⎝⎜

⎞
⎠⎟

vc ≈
mαg

2
∇ −∇ad( ) = α 2HPg

2
∇ −∇ad( )

  m =αHP



  

vc ≈
lmαg

2
∇ −∇ad( ) = α 2HPg

2
∇ −∇ad( )

and F= ρcPΔT vc ΔT= αT ∇ −∇ad( )
= ρcPTα ∇ −∇ad( )vc

= ρcPTα
2 HPg

2
∇ −∇ad( )3/2

  L(r) = 4πr2F =4πr2ρcPTα
2 HPg

2
∇ −∇ad( )3/2

Given the degree to which the actual temperature

gradient is superadiabatic, ∇ −∇ad( ),  this gives 

the convective heat flux. Typically  α =1/3 to 1.5.

How superadiabatic is the temperature 
in the convection region? 

   

L(r) =4πr2ρcPTα
2 HPg

2
∇ −∇ad( )3/2

Evaluate approximately for the solar convective zone, r ≈R,

ρ ≈ ρ  = 1.4 g cm−3, T from Virial theorem about 3 ×  106 K

For ideal gas and HE, HP =
1
P

dP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

=
ρNAkT
µgρ

=
NAkT
µg

L ≈ 4πR
2ρcPT

NAkT
2µ

⎛
⎝⎜

⎞
⎠⎟

1/2

∇ −∇ad( )3/2

∇ −∇ad( )3/2
=

(2)(0.6)( )1/2
3.9 ×1033( )

(4)(π )CP (6.9 ×1010)2(1.4)(3 ×106)[(6.02×1023)(1.38 ×10−16)(3 ×106)]1/2

= 0.0011
5
2

NAk
= 3.1×10−12

∇ −∇ad( )≈ ΔT
T
10−8

  
for α=1;    ΔT= αT ∇ −∇ad( )

  g  cancels in 

 

While one might quibble about factors of 2, the deviation
from the adiabatic gradient is clearly very small. This is 
generally true in other places where convection happens 
as well.  Exceptions: near stellar surfaces, in the outer
layers of red supergiants, and in the final stages of 
massive star evolution. 

How superadiabatic is a convection region? 

   

Examining the various terms, ρ, T, R, L,  we see that the 
excess scales as 

          
ΔT
T

∝ L2/3 R
M

⎛
⎝⎜

⎞
⎠⎟

5/3

 At very high L, say 106  L  and large R the temperature 

gradient could start to become substantially superadiabatic.
This rarely happens (SN progenitors), but the theory can
also break down near stellar photospheres.

(Pols p 70) 

The small degree of super-adiabicity also  
implies that the required convective speeds 
are quite modest, very subsonic.  

  

vc =
α 2HPg

2
∇ −∇ad( )

≈
NAkT

2µ
∇ −∇ad( )

= 10−4 NAkT
2µ

⎛
⎝⎜

⎞
⎠⎟

1/2

~ 15 meters/s

Note that this is also ~10−4 P
ρ

⎛
⎝⎜

⎞
⎠⎟

1/2

≈ 10−4 csound



Stellar Stability 

Glatzmaier and Krumholz 11 (p 127) 

Stars may become unstable for a variety of  
reasons 
 
•  Insensitivity of the pressure to temperature 

as in a degenerate gas with a temperature 
sensitive energy generation rate 
 

•  Too great a component of radiation or 
relativistic degeneracy pressure 
 

•  Burning in too thin a shell 
 

•  Opacity and recombination driven pulsations 

First, why are they usually stable in the first place? 
Non-degenerate gas with some small amount of radiation 
 

  

P =
ρNAkT

µ
+ 1

3
aT 4 ugas =

3
2

P
ρ

urad = 3
P
ρ

The Virial theorem says that the pressure and binding 
energy are related by 

           Ω= − 3
P
ρ

dm
0

M

∫
We can note immediately the neutral stability of a star
supported entirely by radation or relativistic particles. Then

E = U +Ω

= 3
P
ρ

dm
0

M

∫ − 3
P
ρ

dm
0

M

∫ =0

The star has no net energy and its radius is undefined.
Such is the case with the Chandrasekhar mass white 
dwarf but also stars that are too massive and β too great.

But so long as ideal gas remains a significant contributor 

  

Ω = − 3
2
3

ugas +
1
3

urad

⎛
⎝⎜

⎞
⎠⎟0

M

∫ dm = − 2Ugas +Urad( )
Ugas = − 1

2
(Ω +Urad )

E = Ω +Urad +Ugas =
1
2

(Ω +Urad ) = −Ugas

What does this say about the mass-averaged temperature?

Ugas = 3
2

NAk
µ

ρT
ρ0

M

∫ dm = 3
2

NAkMT
µ

where the ρ in the denominator is because u is the internal
energy per  gram and 

T = 1
M

T dm
0

M

∫



Conservation of energy then requires that  

  
Lnuc − L = dE

dt
= − 3

2
M

NAk
µ

dT
dt

In thermal equilibrium the left hand side is zero, 
but assume a small positive imbalance L=Lnuc - L 

  

dT
dt

= − 2
3

µ
NAk

δL
M

The negative sign is important here and relates again 
to the negative heat capacity of stars as imposed by  
the Virial theorem. 

  (Lnuc − L) ↑ ⇒ T goes down and vice versa

The star is stable. 

Instability of a degenerate gas 

Obviously if the pressure is insensitive to the temperature 
and the energy generation is very insensitive to the  
temperature, a very unstable situation exists that is 
prone to runaway. Temperature rises but there is no  
expansion and cooling. Energy generation rises and  
increases the temperature still more, etc. 
 
To examine this in a bit more detail, consider the  
relation between central pressure and density we 
derived for polytropes. 

  Pc = CnGM 2/3ρc
4/3

where Cn is a slowly varying function of polytropic  
index, but we might have n = 3 in mind. 

  

Taking the time derivative and dividing by the original 
equation one has

                  
dP
dt

= CnGM 2/3⎡⎣ ⎤⎦
4
3
ρc

1/3 dρc

dt
P = CnGM 2/3⎡⎣ ⎤⎦ ρc

4/3

dividing gives

                 
dP
P

= 4
3

dρc

ρc

Now assume the pressure is of the form P= P0ρ
aT b  where 

for ideal gas a = b = 1, for fully degenerate gas a = 
4
3

 to 
5
3

,

b = 0, and so on. 
  

 A small perturbation in pressure thus perturbs the 
temperature and density according to 

dPc =P0 aρc
a−1Tc

bdρc + bρc
aTc

b−1dT( )
which when divided by Pc = P0ρc

aTc
b  gives

dPc

Pc

= a
dρc

ρc

+b
dTc

Tc

Substituting the results for the polytrope, 
dPc

Pc

= 4
3

dρc

ρc

,

4
3

dρc

ρc

= a
dρc

ρc

+b
dTc

Tc

and

 
dTc

Tc

= 1
b

4
3
− a

⎛
⎝⎜

⎞
⎠⎟

dρc

ρc



  

 Cases 
dTc

Tc

= 1
b

4
3
− a

⎛
⎝⎜

⎞
⎠⎟

dρc

ρc

1) Ideal gas - a = b = 1
dTc

Tc

= 1
3

dρc

ρc

       expansion (dρc < 0 )causes a decrease in T, stable

     2) Degenerate gas -  b << 1, a >4/3
dTc

Tc

=− 1
b

a − 4
3

⎛
⎝⎜

⎞
⎠⎟

dρc

ρc

       Expansion actully causes increased heating. a is 
       always ≥ 4/3 for completely degenerate electrons.
       The temperature rises  causing a runaway in energy 
       generation that only stops when the gas has become 
       sufficienty non-degenerate (a < 4/3).  

       Examples helium flash, Type Ia supernovae.

Thin shell instability 

  

Let rshell  = r0 + dr dr << r0 δm <<M
                                                         and δm <<m(rshell )

The pressure in the shell is give by

           P = -
Gm(r )
4πr 4

m(rshell )

M

∫ dm = -
Gm(r )ρ

r 2
rshell

R

∫ dr

Change the pressure in the thin zone slightly, e.g., by burning.  
This leads to a new outer radius rshell = r0 + dr +δ r
=  old rshell +δ r (δ r still << rshell )

P +δP = − Gm(r )
4π (r +δ r )4

m(rshell )

M

∫ dm ≈− 1+ δ r
rshell

⎛

⎝⎜
⎞

⎠⎟

−4
Gm(r )
4πr 4

m(rshell )

M

∫ dm

≈ 1− 4
δ r
rshell

⎛

⎝⎜
⎞

⎠⎟
P (the integral is -P)

1+ δP
P

≈1− 4
δ r
rshell

⇒ δP
P

= − 4
δ r
rshell

  

δP
P

= − 4
δ r
rshell

but δm = 4πr0
2 ρ dr = 4πr0

2 (ρ+δρ)(dr +δ r )

ρ+δρ = ρdr
dr +δ r

= ρ 1+ δ r
dr

⎛
⎝⎜

⎞
⎠⎟

−1

≈ ρ 1− δ r
dr

⎛
⎝⎜

⎞
⎠⎟

So           
δρ
ρ

≈ − δ r
dr

=− δ r
rshell

rshell

dr
= 1

4
δP
P

rshell

dr
δP
P

= 4
δρ
ρ

dr
rshell

dr << rshell so 
δP
P

 is small even if 
δρ
ρ

 is large 

The mass does not change 
when the zone expands 

  

δP
P

= 4δρ
ρ

dr
rshell

Using the same representation of the EOS as before,

P=P0ρ
a  Tb δP

P
= aδρ

ρ
+ bδT

T
= 4δρ

ρ
dr

rshell

So that 

                   δρ
ρ

 a − 4 dr
rshell

⎛

⎝⎜
⎞

⎠⎟
= − bδT

T

δT
T

= 1
b

4 dr
rshell

− a
⎛

⎝⎜
⎞

⎠⎟

Since a and b are positive numbers and dr << rshell

thin shells are always unstable. The instability is 
removed when dr becomes large or the fuel runs out.



Examples: 
 
•  Asymptotic Giant Branch Stars 
 
 
 
 
 
 
 
 
 

•  Classical novae 
 

•  X-ray bursts on neutron stars 

Thus the second dredge-up has a qualitatively similar, but much more dramatic effect that the first
dredge-up phase that occurred on the RGB.

An additional important effect of the second dredge-up is the reduction of the mass of the H-
exhausted core, thus limiting the mass of the white dwarf that remains. Effectively, the occurrence of
second dredge-up thus increases the upper initial mass limit, Mup, of stars that produce white dwarfs.

The thermally pulsing AGB phase

As the He-burning shell approaches the H-He discontinuity, its luminosity decreases as it runs out of
fuel. The layers above then contract somewhat in response, thus heating the extinguished H-burning
shell until it is re-ignited. Both shells now provide energy and a phase of double shell burning begins.
However, the shells do not burn at the same pace: the He-burning shell becomes thermally unstable
and undergoes periodic thermal pulses, discussed in detail in Sec. 11.1.1. This phase is thus referred
to as the thermally pulsing AGB (TP-AGB).

The structure of a star during the TP-AGB phase is schematically depicted in Fig. 11.2. The
thermally pulsing phase of the AGB has a number of salient properties:

• The periodic thermal pulses alternate with mixing episodes and give rise to a unique nucleosyn-
thesis of (among others) 12C, 14N, and elements heavier than iron (Sec. 11.1.2). This process
gradually makes the stellar envelope and atmosphere more carbon-rich.

• Similar to the RGB, the stellar properties mainly depend on the size of the degenerate CO core.
In particular there is a tight core mass-luminosity relation,

L = 5.9 × 104L"
(

Mc
M"
− 0.52

)

, (11.1)

which is not as steep as the RGB relation (10.2).

C, O
He

H, He

~0.05
0.001−0.02

100−500
0.1−few

0.01
0.5−1.0

.R

.R
.M

.M
.R

.M
~1 pc?

deg. core

envelope
convective

stellar wind

CS envelope

He burning

H burning

Figure 11.2. Schematic structure of
an AGB star during its thermally puls-
ing phase. The CO core is degenerate
and very compact, and is surrounded
by two burning shells very close to-
gether in mass coordinate. The con-
vective envelope by contrast is very ex-
tended and tenuous, having a radius
104–105 times the size of the core.
This loosely bound envelope is gradu-
ally eroded by the strong stellar wind,
which forms a dusty circumstellar enve-
lope out to several hundreds of stellar
radii. The convective envelope, stellar
atmosphere and circumstellar envelope
have a rich and changing chemical com-
position driven by nucleosynthesis pro-
cesses in the burning shells in the deep
interior.
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Dynamical instability 

The instabilities discussed so far manifest over 
a long time – typically the nuclear time, but there 
are other more violent instabilities that affect  
hydrostatic equilibrium. 
 
Quite basically, when a star, or a portion of a star  
contracts, its pressure goes up but so too does the 
force of gravity. If gravity goes up sufficiently faster  
than pressure, then an unbalanced state remains 
unbalanced and may collapse even faster. If on the  
other hand pressure goes up faster, the star when  
compressed will expand again and perhaps 
oscillate, but it is stable against collapse. 

Very roughly: 

  

dP
dm

= − Gm(r )
4πr 4 ⇒ P ∝m2r −4

Also ρ ∝m / r 3 so for hydrostatic equilibrium P ∝m2/3ρ4/3.
If the density changes due to expansion or contraction,
leading to new pressure and density, P' and ρ', hydrostatic
equilibrum demands

P '
P

⎛
⎝⎜

⎞
⎠⎟

= ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

4/3

If the pressure increases more than this, 

i.e., 
P '
P

⎛
⎝⎜

⎞
⎠⎟

> ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

4/3

there will be a restoring

force that will lead to expansion. If it is less, the contraction
will continue and perhaps accelerate.

Now consider an adiabatic compression: 

  

P=Kργ

So      
P '
P

⎛
⎝⎜

⎞
⎠⎟

= ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

γ

ρ ' > ρ

If, for a given mass, 
ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

γ

> ρ '
ρ

⎛
⎝⎜

⎞
⎠⎟

4/3

 one has stability, 

hydrostatic equilibrium is satisfied. If not, things are unstable.

Thus if γ > 4
3

 the star is stable and if γ < 4
3

 it is not.

This is a global analysis and doesn't necessarily apply
to small regions of the star but illustrates the importance
of γ =4/3.  We will return to this later.



Glatzmaier and Krumholz treat this more correctly using perturbation  
theory.  

   

The force equation is

                  r = -
Gm
r 2 − 1

ρ
dP
dr

Now multiply by dm

dmr = -
Gm
r 2 dm − 4πr 2 dP

Initially forces are balanced and 

0=-
Gm
r 2 dm − 4πr 2 dP

But  perturb and include r . A change in r by δr causes changes in P and
ρ   so that r0 → r0+δr, P0 → P0+δP, ρ0 → ρ0+δρ,  so

dm d 2

dt 2 r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= -
Gm

r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 dm − 4π r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

d P0 1+ δP
P0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

dm d 2

dt 2 r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= -
Gm

r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 dm − 4π r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

d P0 1+ δP
P0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dm δ r = 1− 2
δ r
r0

⎛

⎝⎜
⎞

⎠⎟
Gm
r0

2 dm − 1+ 2
δ r
r0

+ δP
P0

⎛

⎝⎜
⎞

⎠⎟
4πr0

2 dP0

but   0=-
Gm
r0

2 dm − 4πr0
2 dP0      so

dm δ r = 2Gm
r0

3 δ r dm − 2
δ r
r0

+ δP
P0

⎛

⎝⎜
⎞

⎠⎟
4πr0

2 dP0

To go further we must assume a behavior for P(ρ). Assume, 
because the time scale is too short for heat transport, that the 

compression is adiabatic, i.e., P = K ργ .
 Then since log P = log K+γ log ρ

d logP = dP
P

= γ d logρ = γ dρ
ρ

dP
P

= γ dρ
ρ

Keep only first order terms   (1+ ε)n ≈1+ nε

Also linearizing 

  

dm= 4πr 2ρdr

dm=4π r0 1+ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

ρ0 1+ δρ
ρ0

⎛

⎝⎜
⎞

⎠⎟
dr0 1+ δ r

r0

⎛

⎝⎜
⎞

⎠⎟

≈ 4π r0
2 1+ 2δ r

r0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ρ0 1+ δρ

ρ0

⎛

⎝⎜
⎞

⎠⎟
dr0 1+ δ r

r0

⎛

⎝⎜
⎞

⎠⎟

≈ 4πr0
2ρ0dr0 1+ 2δ r

r0

+ δ r
r0

+ δρ
ρ0

+ ....
⎛

⎝⎜
⎞

⎠⎟
=4πr0

2ρ0dr0 1+ 3δ r
r0

+ δρ
ρ0

⎛

⎝⎜
⎞

⎠⎟

But dm is precisely 4πr0
2ρ0dr0  so 

δρ
ρ0

= − 3δ r
r0

= 1
γ

δP
P0

δP
P0

= − 3γ δ r
r0

   

δP
P0

= − 3γ δ r
r0

dm δ r = 2Gm
r0

3 δ r dm − 2
δ r
r0

+ δP
P0

⎛

⎝⎜
⎞

⎠⎟
4πr0

2 dP0

= 2Gm
r0

3 δ r dm − 4πr0
2 2

δ r
r0

− 3γ δ r
r0

⎛

⎝⎜
⎞

⎠⎟
dP0

= 2Gm
r0

2 dm − 4πr0
2 2− 3γ( )dP0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δ r
r0

But for the unperturbed configuration we had 
Gm
r0

2 dm = − 4πr0
2 dP0

So

                    dm δ r =   − 4πr0
2 4 − 3γ( )dP0

⎡⎣ ⎤⎦
δ r
r0

 

=
Gm
r0

2 dm 4 − 3γ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δ r
r0



   

dm δ r =
Gm
r0

2 dm 4 − 3γ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δ r
r0

δ r = − 3γ − 4( )Gm
r0

3 δ r

This is an equation for a harmonic oscillator. It has solution

δ r = Aeiω t ω = ± 3γ − 4( )Gm
r0

3

If ω  is real, get oscillatory motion. If ω is imaginary (γ <
4
3

) get 

exponential growth or decay on a time scale

τ  1
iω


1

Gρ
i.e., a hydrodynamic time scale

Kippenhahn and 
Weigert 34.1 

Dynamic Instabilities 

•  Especially for stars with  near 4/3, the nuclear 
energy generation may oscillate periodically.  
Compression leads to heating which leads to 
expansion and cooling but the net energy yield 
in a cycle is positive so the instability persists. 
This is called the epsilon instability 
 

•  Heat transport depends on the temperature 
gradient and opacity. If this combination behaves 
in such a way as to trap heat when the gas in the  
outer layers of a star is compressed and heated  
and release it when the gas expands and cools,  
then the star may be subject to the kappa  
instability   

Pulsational instability by the κ  mechanism requires that  
(Pols Chap 10, esp p 158)

d logκ
d logP

>0

or

              
d logκ
d logP

⎞
⎠⎟ ad

= ∂logκ
∂logP

⎞
⎠⎟T

+ ∂logκ
∂logT

⎞
⎠⎟ P

d logT
d logP

=κ P + κT∇ad > 0

For Kramer's opacity κ ∝ ρT−3.5 and if P ∝ ρT κ P = 1

and κT = − 4.5,∇ad ≈ 0.4, so the condition is 

not generally satisfied.



  

Two notable exceptions:

           H− opacity where the opacity depends on a 
           positive power of the temperature    (Mira variables)

           Kramer's opacity but ∇ad <0.23 as in ionization zones
            (Cepheid variables and RR-Lyrae stars)

There are two important ionization zones:

        H I→H II and He I→HeII both near 15,000 K

     He II→HeIII (i.e., He++ )  near 40,000 K   

Pols 3.5 – suppression 
of the adiabatic index 
 
 
 
 
by partial ionization 
of a pure hydrogen 
gas. D returns to its 
standard ideal gas 
value when the  
hydrogen is either  
neutral or fully ionized 

  
Δad = d logT

d logP

Ionization in  
the outer layers 
of the sun. The  
second shallow 
depression is  
He+ turning into 
He++ 

If the ionization zone lies very close to the surface – 
and generally in a region that is already convective,  
it has little effect. Not enough mass (or heat capacity) 
participates. This is the case for Teff > 7500 K 
 
If the ionization zone is located too deep, at high  
density, the effect of partial ionization is diminished.  
The adiabatic gradient is not greatly supressed and 
the heat trapped is not enough to drive an  
oscillation of the heavy overlying material.  
This happens if Teff < 5500 K 
 
Between 5500 and 7500 K, instability can ccur. 
 



http://www.atnf.csiro.au/outreach/education/senior/astrophysics/variable_pulsating.html 

Period-luminosity relation for Cepheids 

  

As we showed previously when γ <4/3, the 
instability is dynamical

τ   = 3γ − 4( )Gm
r0

3

⎛

⎝⎜
⎞

⎠⎟

−1/2

~ 1
Gρ

For more massive Cepheids the radius is larger
and the average density less, hence the period is
longer

Also Cepeids obey a mass luminosity relation somewhat 
like main sequence stars. So brighter Cepheids have longer
periods. 

Obtaining a good match with the observations remains 
a challenge. 
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F=ρcPTα
2 1/ 2gHp ∇ −∇ad( )3/2

Substituting, for ideal gas and HE, HP =
1
P

dP
dr

⎛
⎝⎜

⎞
⎠⎟

−1

=
NAkT
µg

 

∇=
HP

T
dT
dr

⎛
⎝⎜

⎞
⎠⎟

∇ −∇ad( )= NAk
µg

δ dT
dr

⎛
⎝⎜

⎞
⎠⎟

F = ρcPTα
2 1/ 2gHp ∇ −∇ad( )3/2

= ρcPTα
2 NAkT

2µ
⎛
⎝⎜

⎞
⎠⎟

1/2
NAk
µg

δ dT
dr

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

3/2

= ρcP

NAk
µ

⎛
⎝⎜

⎞
⎠⎟

2
T
g

⎛
⎝⎜

⎞
⎠⎟

3/2
α 2

2
δ dT

dr
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

3/2

 

Equivalence to Glatzmaier Chap 11 



  

vc ≈
α 2HPg

2
∇ad −∇( )

∇ −∇ad =
HP

T
δ dT

dr
⎛
⎝⎜

⎞
⎠⎟

vc =
α 2HPg

2
HP

T
δ dT

dr
⎛
⎝⎜

⎞
⎠⎟

=αHP

g
2T

δ dT
dr

⎛
⎝⎜

⎞
⎠⎟

For an ideal gas and hydrostatic equilibrium

      HP = P / dP
dr

⎛
⎝⎜

⎞
⎠⎟
=
ρNAkT
µgρ

=
NAkT
µg

vc =
α 2HPg

2
HP

T
δ dT

dr
⎛
⎝⎜

⎞
⎠⎟
= α

NAk
µ

T
2g

δ dT
dr

⎛
⎝⎜

⎞
⎠⎟

which is Glatzmaier if β=1/2


