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Preface

These lecture notes are intended for an advanced astrophysice ocaussellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goal is to provateoverview of the physics
of stellar interiors and its application to the theory of stellar structure andtewo)at a level appro-
priate for a third-year Bachelor student or beginning Master studerstiareomy. To a large extent
these notes draw on the classical textbook by Kippenhahn & Weiger0(+2@ below), but leaving
out unnecessary detail while incorporating recent astrophysicahiissand up-to-date results. At
the same time | have aimed to concentrate on physical insight rather tharnusgedvations, and
to present the material in a logical order, following in part the very luciddamewhat more basic
textbook by Prialnik (2000). Finally, I have borrowed some ideas fromtéRtbooks by Hansen,
Kawaler & Trimble (2004), Salaris & Cassissi (2005) and the recenk bydvaeder (2009).

These lecture notes are evolving and | try to keep them up to date. If yabarfinerrors or incon-
sistencies, | would be grateful if you could notify me by em@ilK.Pols@uu.nl).

Onno Pols
Utrecht, September 2011
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.6743x 108 cm’gts?
speed of light in vacuum ¢ 2.99792458< 10%cm st
Planck constant h 6.626 069x 102" erg s
radiation density constant a 7.56578x 10 erg cn3 K
Stefan-Boltzmann constanto = 1ac 5.67040x 10 °ergcnt?s 1K
Boltzmann constant k 1.380650x 10716 erg K1
Avogadro’s number Na =1/m, 6.022142x 1073 gt

gas constant R = KNa 8.31447x 10" erg gt K1

electron volt
electron charge

16021765 10 2 erg
4.80326x 1010 esu
1.44000x 107 eV cm
9.109382x 1028 g
1.6605388x 102 g
1.6726216x10%*g
1.674927 2 102 g
6.644 656 2¢< 1024 g

electron mass
atomic mass unit
proton mass
neutron mass
a-particle mass

33333%%e

Table 2. Astronomical constants, mostly from the Astronomical Atraa (2008).

Solar mass M,  1.9884x10%¢g

GM, 1.32712442< 10?5 cm® s72
Solar radius Ro 6.957x 1019 cm
Solar luminosity L 3.842x 1083 erg st
year yr 315576x 10’ s
astronomical unit AU #495978 71x 10'3 cm
parsec pc B85678x 108 cm




Chapter 1

Introduction

This introductory chapter sets the stage for the course, and brieflgtseg@me concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-year ctntreduction to stellar structure and
evolutionby F. Verbunt).

Thegoal of this course on stellar evolution can be formulated as follows:

to understand the structure and evolution of stars, and their observgiropearties,
using known laws of physics

This involves applying and combining ‘familiar’ physics from manytelient areas (e.g. thermody-
namics, nuclear physics) under extreme circumstances (high tempehagiwrdensity), which is part
of what makes studying stellar evolution so fascinating.

What exactly do we mean by a ‘star’? A useful definition for the purpdskis course is as follows:
a star is an object that (1) radiates energy from an internal souro@piscbound by its own gravity.
This definition excludes objects like planets and comets, because they domply with the first
criterion. In the strictest sense it also excludes brown dwarfs, whiglmairhot enough for nuclear
fusion, although we will briefly discuss these objects. (The secondiontexcludes trivial objects
that radiate, e.g. glowing coals).

Animportant implication of this definition is that stars masblve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain amount of time on its mtenergy supply, and
eventually dies when this supply is exhausted. As we shall see, a secdiwhtiop of the definition
is that stars can have only a limited range of masses, betw@dnand~100 times the mass of the
Sun. Thdife and deatiof stars forms the subject matter of this course. We will only briefly touch on
the topic ofstar formation a complex and much less understood process in which the problems to be
solved are mostly very fferent than in the study of stellar evolution.

1.1 Observational constraints

Fundamental properties of a star include thass M(usually expressed in units of the solar mass,
M, = 1.99 x 10%3g), theradius R(often expressed iR, = 6.96 x 10'°cm) and thduminosity L,

the rate at which the star radiates energy into space (often expredseeiB.84 x 10 ergs). The
gffective temperature & is defined as the temperature of a black body with the same energy flux
at the surface of the star, and is a good measure for the temperaturepbfatosphere. From the
definition of dfective temperature it follows that

L =4rRoTL. (1.1)



In addition, we would like to know thehemical compositiof a star. Stellar compositions are
usually expressed as mass fractiohswherei denotes a certain element. This is often simplified
to specifying the mass fraction$ (of hydrogen),Y (of helium) andZ (of all heavier elements or
‘metals’), which add up to unity. Another fundamental property isthation rateof a star, expressed
either in terms of the rotation peride}o or the equatorial rotation velocityeg.

Astronomical observations can yield information about these fundaméelial gjuantities:

e Photometric measurementild the apparent brightness of a star, i.e. the energy flux received
on Earth, in diferent wavelength bands. These are usually expressed as magratgdds;,
V, |, etc. Flux ratios or colour indice8(- V, V — I, etc.) give a measure of théfective
temperature, using theoretical stellar atmosphere modeleragmhpirical relations. Applying
a bolometric correction (which also dependsTan) yields the apparent bolometric flufso,
(inergstcm).

e In some cases thdistance dto a star can be measured, e.g. from the parallax. The Hipparcos
satellite has measured parallaxes with 1 milliarcsec accuracy of more thatat€ The lumi-
nosity then follows frormL = 4x d?f,o;, and the radius from eq. (1.1) if we have a measure of
Teg

¢ Anindependent measure of thiextive temperature can be obtained frioterferometry This
technique yields the angular diameter of a star if it ifisiently extended on the sky, i.e. the
ratio# = R/d. Together with a measurement 6, this can be seen from eq. (1.1) to yield
chgﬁ = fpoi/6°. This technique is applied to red giants and supergiants. If the distance is als
known, a direct measurement of the radius is possible.

e Spectroscopwt suficiently high resolution yields detailed information about the physical con-
ditions in the atmosphere. With detailed spectral-line analysis using stellar atenespbdels
one can determine the photospheric properties of a star:fithetiee temperature and surface
gravity (g = GM/R?, usually expressed as Igyj surface abundances of various elements (usu-
ally in terms of number density relative to hydrogen) and a measure of th@rotelocity
(vegsini, wherei is the unknown inclination angle of the equatorial plane). In addition, for
some stars the properties of th&ellar wind can be determined (wind velocities, mass loss
rates). All this is treated in more detail in the Master cours&matlar Atmospheres

e The most important fundamental property, the mass, cannot be meagaety dor a single
star. To measure stellar masses one nbausy starsshowing radial velocity variations (spec-
troscopic binaries). Radial velocities alone can only yield masses up ttoa $&u, wherei is
the inclination angle of the binary orbit. To determine absolute mass valuegeds mforma-
tion oni, either from a visual orbit (visual binaries) or from the presenceclijpses (eclipsing
binaries). In particular for so called double-lined eclipsing binaries, iichvthe spectral lines
of both stars vary, it is possible to accurately measure both the masseslarfaith 1-2 % ac-
curacy in some cases) by fitting the radial-velocity curves and the eclipsedrgk. Together
with a photometric or, better, spectroscopic determinatiomegfalso the luminosity of such
binaries can be measured with high accuracy, independent of the disforanore details see
the Master course dRinary Stars

All observed properties mentioned above are surface propertiesefdreewe need ¢heory of
stellar structureto derive the internal properties of a star. However, some direct wiadowthe
interior of a star exist:
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Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcoss stéth d measured te< 10 %
accuracy.

e neutrinos which escape from the interior without interaction. So far, the Sun is tlye(non-
exploding) star from which neutrinos have been detected.

e oscillations i.e. stellar seismology. Many stars oscillate, and their frequency spectmitains
information about the speed of sound waves inside the star, and tleesdfout the interior
density and temperature profiles. This technique has provided accareteasnts on detailed
structure models for the Sun, and is now also being applied to other stars.

The timespan of any observations is much smaller than a stellar lifetime: obsesvatio like
snapshots in the life of a star. The observed properties of an indivitiaratontain no (direct) infor-
mation about its evolution. The diversity of stellar properties (radii, luminos#ig$ace abundances)
does, however, depend on how stars evolve, as well as on intringenties (mass, initial composi-
tion). Properties that are common to a large number of stars must correspond-lived evolution
phases, and vice versa. By studying samples of stars statistically we eathifrelative) lifetimes
of certain phases, which provides another important constraint on tbieytbestellar evolution.

Furthermore, observations of samples of stars reveal certain comalatitween stellar properties
that the theory of stellar evolution must explain. Most important are relatietveden luminosity and
effective temperature, as revealed by Hertzsprung-Russell diagrgrand relations between mass,
luminosity and radius.

1.1.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important tool to test tlozytiod stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of stars in the vicinityeilm, for which the
Hipparcos satellite has measured accurate distances. This is an exampldwha-limitedsample
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45Rtb@des, left panel), and a globular
cluster, M3 (right panel).

of stars. In this observers’ HRD, the absolute visual magnitMgeis used as a measure of the
luminosity and a colour indexB(— V or V — |) as a measure for thdtective temperature. It is left
as an exercise to identify various types of stars and evolution phases HRBissuch as the main
sequence, red giants, the horizontal branch, white dwarfs, etc.

Star clusters provide an even cleaner test of stellar evolution. The starduster were formed
within a short period of time (a few Myr) out of the same molecular cloud armétbee share the same
age and (initial) chemical compositidrTherefore, to first-order approximation only the mass varies
from star to star. A few examples of cluster CMDs are given in Fig. 1.2a fgyung open cluster (the
Pleiades) and an old globular cluster (M3). As the cluster age incretagesjost luminous main-
sequence stars disappear and a prominent red giant branch armhtadriranch appear. To explain
the morphology of cluster HRDs atftkrent ages is one of the goals of studying stellar evolution.

1.1.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminosities (i.e. binary starapvpéot these quantities
against each other. This is done in Fig. 1.3 for the components of doublditlipsing binaries for
which M, RandL are all measured wit 2% accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is very tight. Most of theistiig. 1.3 are
long-lived main-sequence stars; the spread in radii for masses beivwareh2M,, results from the
fact that several more evolved stars in this mass range also satisfy the@@aey criterion. The
observed relations can be approximated reasonably well by power laws:

LeM®*®  and R« MO (1.2)

Again, the theory of stellar evolution must explain the existence and slojpees# relations.

1The stars in a cluster thus consitute a so-cadlieaple stellar population Recently, this simple picture has changed
somewhat after the discovery of multiple populations in many star clusters.
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relatifmscomponents of double-lined eclipsing
binaries with accurately measurdt] RandL.

1.2 Stellar populations

Stars in the Galaxy are divided intofidirent populations:

e Population I: stars in the galactic disk, in spiral arms and in (relatively ypapgn clusters.
These stars have ages (° yr and are relatively metal-rictZ(~ 0.5 — 1Z,)

e Population II: stars in the galactic halo and in globular clusters, with age®Cyr. These stars
are observed to be metal-poar £ 0.01- 0.12Z,).

An intermediate population (with intermediate ages and metallicities) is also seen iiskhaf the
Galaxy. Together they provide evidence for #femical evolutiorof the Galaxy: the abundance
of heavy elementsZ) apparently increases with time. This is the result of chemical enrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis of a ‘Populatiocoltkisting of the
first generation of stars formed after the Big Bang, containing only lgetraand helium and no
heavier elements (‘metal-freeZ,= 0). No metal-free stars have ever been observed, probably due to
the fact that they were massive and had short lifetimes and quickly edricbéJniverse with metals.
However, a quest for finding their remnants has turned up many very pmalstars in the halo,
with the current record-holder having an iron abundaxge= 4 x 1(T6XFQ®.

1.3 Basic assumptions

We wish to build a theory of stellar evolution to explain the observational contstrhighlighted
above. In order to do so we must make some basic assumptions:

e stars are considered to [s®latedin space, so that their structure and evolution depend only on
intrinsic properties (mass and composition). For most single stars in the Galaxy thlisi@on
is satisfied to a high degree (compare for instance the radius of the Sun evilistance to its

5



nearest neighbour Proxima Centauri, see exercise 1.2). Howewstafs in dense clusters, or
in binary systems, the evolution can be influenced by interaction with neiginigostars. In
this course we will mostly ignore these complicatirfeeets (many of which are treated in the
Master course oBinary Star3.

e stars are formed withlmomogeneous compositiamreasonable assumption since the molecular
clouds out of which they form are well-mixed. We will often assume a so-dtaljeasi-solar’
composition K = 0.70,Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity dowf #00.014. In practice there is relatively
little variation in composition from star to star, so that the initial mass is the most importan
parameter that determines the evolution of a star. The composition, in partioellaetallicity
Z, is of secondary influence but can have importdfaats especially in very metal-poor stars
(see§ 1.2).

e spherical symmetrywhich is promoted by self-gravity and is a good approximation for most
stars. Deviations from spherical symmetry can arise if non-centrat$dnecome important
relative to gravity, in particular rotation and magnetic fields. Although mang sta&robserved
to have magnetic fields, the field strength (even in highly magnetized neutrshistalways
negligible compared to gravity. Rotation can be more important, ancbthgon ratecan be
considered an additional parameter (besides mass and composition) dietgtiménstructure
and evolution of a star. For the majority of stars (e.g. the Sun) the forcelv@/are small
compared to gravity. However, some rapidly rotating stars are seen (hsroéamterferome-
try) to be substantially flattened.

1.4 Aims and overview of the course

In the remainder of this course we will:
¢ understand the global properties of stars: energetics and timescales

¢ study the micro-physics relevant for stars: the equation of state, nueksaions, energy trans-
port and opacity

¢ derive the equations necessary to model the internal structure of stars
e examine (quantitatively) the properties of simplified stellar models

e survey (mostly qualitatively) how stars offfirent masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

e discuss a few ongoing research areas in stellar evolution

Suggestions for further reading

The contents of this introductory chapter are also largely covered bgpt&hh of RuaLnik, which
provides nice reading.




Exercises

1.1 Evolutionary stages

In this course we use many concepts introduced in the inttody astronomy classes. In this exercise
we recapitulate the names of evolutionary phases. Duriadetttures you are assumed to be familiar
with these terms, in the sense that you are able to explain thgeneral terms.

We encourage you to usesgkorL & OsrtLIE, Introduction to Modern Astrophysicsr the book of the
first year course (¥kBunt, Het leven van sterrgrto make a list of the concepts printedifalic with a

brief explanation in your own words.

(a) Figure 1.1 shows the location of stars in the solar naigiind in the Hertzsprung-Russel dia-
gram. Indicate in Figure 1.1 where you would find:

main-sequence stars,

neutron stars,

the Sun, black holes,

red giants, binary stars,

horizontal branch stars, planets,

asymptotic giant branch (AGB) stars, pre-main sequenas sta
centrals star of planetary nebulae, hydrogen burning stars

white dwarfs,

helium burning stars.

(b) Through which stages listed above will the Sun evolvettfiam in chronological order. Through
which stages will a massive star evolve?

(c) Describe the following concepts briefly in your own wardfsu will need the concepts indicated
with * in the coming lectures.

ideal gas*, Jeans mass,

black body, Schwarzschild criterion,

virial theorem?*, energy transport by radiation,

first law of thermodynamics*, energy transport by convettio
equation of state, pp-chain,

binary stars, CNO cycle,

star cluster, nuclear timescale*,

interstellar medium, thermal or Kelvin-Helmholtz timeleta
giant molecular clouds, dynamical timescale*

1.2 Basic assumptions
Let us examine the three basic assumptions made in the tbéstgllar evolution:

(a) Stars are assumed to be isolated in spathe star closest to the sun, Proxima Centauri, is 4.3
light-years away. How many solar radii is that? By what fegtare the gravitational field and
the radiation flux diminished? Many stars are formed in eltssand binaries. How could that
influence the life of a star?

(b) Stars are assumed to form with a uniform compositidfhat elements is the Sun made of? Just
after the Big Bang the Universe consisted almost purely dfbgen and helium. Where do all
the heavier elements come from?

(c) Stars are assumed to be spherically symmetritthy are stars spherically symmetric to a good
approximation? How would rotatiorffact the structure and evolution of a star? The Sun rotates
around its axis every 27 days. Calculate the ratio of is therifegal acceleratiora over the
gravitational acceleratiog for a mass element on the surface of the Sun. Does rotatiaeirde
the structure of the Sun?

1.3 Mass-luminosity and mass-radius relation

(&) The masses of stars are approximately in the rar@®M, < M < 100M,. Why is there an
upper limit? Why is there a lower limit?
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(b)

(©)

(d)

Can you think of methods to measure (1) the mass, (2) tthegaand (3) the luminosity of a
star? Can your methods be applied for any star or do theyneegpécial conditions. Discuss your
methods with your fellow students.

Figure 1.3 shows the luminosity versus the mass (leff)tae radius versus the mass (right) for
observed main sequence stars. We can approximate a masgsitpnand mass-radius relation
by fitting functions of the form

L M \* R M\

= (M) ~_ (M (1.3)

Lo \Mo Lo \Mo
Estimatex andy from Figure 1.3.
Which stars live longer, high mass stars (which have moed) for low mass stars? Derive an
expression for the lifetime of a star as a function of its mé3s
[Hints: Stars spend almost all their life on the main seqedmarning hydrogen until they run

out of fuel. First try to estimate the life time as functiontbeé mass (amount of fuel) and the
luminosity (rate at which the fuel is burned).]

1.4 The ages of star clusters
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Figure 1.4. H-R diagrams of three star clusters (fromARNix).

The stars in a star cluster are formed more or less simultefeby fragmentation of a large molecular
gas cloud.

(@)
(b)

(©)

In Fig. 1.4 the H-R diagrams are plotted of the stars indldiferent clusters. Which cluster is
the youngest?

Think of a method to estimate the age of the clustersudswith your fellow students. Estimate
the ages and compare with the results of your fellow students

(*) Can you give an error range on your age estimates?



Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass conservation amgntom conservation to
derive two of the fundamental stellar structure equations. We shall sesténg are generally in a
state of almost complet@echanical equilibriumwhich allows us to derive and apply the important
virial theorem We consider the basic stellar timescales and see that most (but not alBrstalso

in a state of energy balance callégdrmal equilibrium

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all interior physical quar(sties as density,
pressureP, temperaturd’, etc) depend only on one radial coordinate. The obvious coordinateto u
in a Eulerian coordinate system is the radius of a spherical sh@l,0...R). In an evolving star,
all quantities also depend on timeWhen constructing the fierential equations for stellar structure
one should thus generally consider partial derivatives of physicaitijies with respect to radius and
time, d/0r andd/ot, taken at constartandr, respectively.

The principle of mass conservation applied to the mam®fia spherical shell of thickness ct
radiusr (see Fig. 2.1) gives

dm(r,t) = 4nr?pdr — dar?pudt, (2.1)
wherev is the radial velocity of the mass shell. Therefore one has

om 5 om 2

o Anr< p and o Anr<p . (2.2)

The first of these partial fierential equations relates the radial mass distribution in the star to the
local density: it constitutes the first fundamental equation of stellar steictdote thajp = p(r, t)

is not known a priori, and must follow from other conditions and equatiohg. Second equation of
(2.2) represents the change of mass inside a sphere of radiiesto the motion of matter through

its surface; at the stellar surface this gives the mass-loss rate (if thesteibaa wind withv > 0) or
mass-accretion rate (if there is inflow with< 0). In a static situation, where the velocity is zero, the
first equation of (2.2) becomes an ordinarffeliential equation,

Z—T = 4nr? p. (2.3)

This is almost always a good approximation for stellar interiors, as we alllategration yields

the massn(r) inside a spherical shell of radius

r
m(r) = f 4nr?pdr’.
0



m+dm

P(r+dr)

Figure 2.1. Mass shell inside a spherically symmetric
star, at radius and with thicknessd The mass of the
shell is dn = 4ar?p dr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
dr also indicated.

Sincem(r) increases monotonically outward, we can alsorngg as our radial coordinate, instead
of r. Thismass coordinateoften denoted asy or simplym, is a Lagrangian coordinate that moves
with the mass shells:

I
m:=m :f 4nr?pdr’ (me0...M). (2.4)
0

It is often more convenient to use a Lagrangian coordinate instead déedfucoordinate. The mass
coordinate is defined on a fixed interval,e 0... M, as long as the star does not lose mass. On the
other hand depends on the time-varying stellar radRisFurthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the time derivatives thatr apfiee stellar
evolution equations (e.g. equations for the composition). We can thus wirieaitities as functions
of m,i.e.r =r(m), p = p(m), P = P(m), etc.

Using the coordinate transformation» m, i.e.

0 o or
the first equation of stellar structure becomes in terms of the coordimate
or 1
= - = 2.6
om  4nr2p (2.:6)

which again becomes an ordinarytdrential equation in a static situation.

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, which implies that gravityeiiriving force
behind stellar evolution. In the general, non-spherical case, the drandbacceleratiorg can be
written as the gradient of the gravitational potentik —V®, where® is the solution of the Poisson
equation

V2® = 4rGp.
Inside a spherically symmetric body, this reduceg te |g| = d®/dr. The gravitational acceleration
at radiusr and equivalent mass coordinaias then given by

_Gm

=7 2.7)
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Spherical shells outsideapply no net force, so thatonly depends on the mass distribution inside
the shell at radius. Note thaty is the magnitude of the vectgrwhich points inward (toward smaller
r or m).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a star, i.e. Newtorgadéaw of mechanics.

The net acceleration on a gas element is determined by the sum of alléotoeson it. In addition to

the gravitational force considered above, forces result from thespre exerted by the gas surround-

ing the element. Due to spherical symmetry, the pressure forces actingritatiy (perpendicular to

the radial direction) balance each other and only the pressure fartieg along the radial direction

need to be considered. By assumption we ignore other forces that mighside a star (Sect. 1.3).
Hence the net acceleratior="0°r /4t? of a (cylindrical) gas element with mass

dm= pdrdS (2.8)
(where d is its radial extent andSlis its horizontal surface area, see Fig. 2.1) is given by
i dm=—-gdm+ P(r)dS — P(r + dr) dS. (2.9)

We can writeP(r + dr) = P(r) + (aP/or) - dr, hence after substituting egs. (2.7) and (2.8) we obtain
theequation of motiotior a gas element inside the star:

’r Gm 10P

- = _=- 2.10

o2 r2  por (2.10)
This is a simplified from of the Navier-Stokes equation of hydrodynamiqdjebto spherical sym-
metry (see Meper). Writing the pressure gradied/dr in terms of the mass coordinate by
substituting eq. (2.6), the equation of motion is

2
P

= 2.11
ot? r2 om ( )

Hydrostatic equilibrium  The great majority of stars are obviously in such long-lived phases of
evolution that no change can be observed over human lifetimes. This meaessmo noticeable
acceleration, and all forces acting on a gas element inside the star alractly éalance each other.
Thus most stars are in a state of mechanical equilibrium which is more commdlely lepdrostatic
equilibrium(HE).

The state of hydrostatic equilibrium, setting="0 in eq. (2.10), yields the secondfféirential
equation of stellar structure:

dP Gm
a = —r—zp, (212)
or with eq. (2.6)
dP Gm

A direct consequence is that inside a star in hydrostatic equilibrium, theyseealways decreases
outwards.

Egs. (2.6) and (2.13) together determine thechanical structuref a star in HE. These are
two equations for three unknown functionsrof(r, P andp), so they cannot be solved without a
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third condition. This condition is usually a relation betwdemndp called theequation of state
(see Chapter 3). In general the equation of state depends on the temgé&ras well, so that the
mechanical structure depends also on the temperature distribution insidarttieeson its thermal
structure. In special cases the equation of state is independdntarid can be written aB =
P(p). In such cases (known as barotropes or polytropes) the mechatrigeture of a star becomes
independent of its thermal structure. This is the case for white dwarfge ahall see later.

Estimates of the central pressure A rough order-of-magnitude estimate of the central pressure can
be obtained from eq. (2.13) by setting

dp Psurt — Pc Pc
e VR m~ M, r~3R
which yields
p. . 2GM° (2.14)
C r R '

For the Sun we obtain from this estima®g ~ 7 x 105 dyn/cn? = 7 x 10° atm.
A lower limit on the central pressure may be derived by writing eq. (2.13) as

dP  Gmdm _ d(sz) Gn?

& e @~ a e 2
and thus
d Gn? Gn?

The quantity¥(r) = P+ Gn?/(8ar%) is therefore a decreasing functionrofAt the centre, the second
term vanishes because « r3 for smallr, and hence?(0) = P.. At the surface, the pressure is
essentially zero. From the fact thEtmust decrease withit thus follows that

1 GM?
"8 R
In contrastto eq. (2.14), this is a strict mathematical result, valid for aningtgdrostatic equilibrium
regardless of its other properties (in particular, regardless of its detfisitibution). For the Sun we
obtainP; > 4.4 x 10" dyn/cn?. Both estimates indicate that an extremely high central pressure is
required to keep the Sun in hydrostatic equilibrium. Realistic solar models skeogettiral density
to be 24 x 107 dyn/cn?.

b (2.16)

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibrium is violated:fést do changes
to the structure of a star occur? The answer is provided by the equatiotafn, eq. (2.10). For
example, suppose that the pressure gradient that supports the #tat goavity suddenly drops. All
mass shells are then accelerated inwards by gravity: the star starts toediidfree fall”. We can
approximate the resulting (inward) acceleration by

i~ o J
N — THE X | —
T2 ||
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whereryg is the free-fall timescale that we want to determine. Sinice- g ~ GM/R? for the entire
star, we obtain

R | R3

Of course each mass shell is accelerated affardint rate, so this estimate should be seen as an
average value for the star to collapse over a dist@&CEhis provides one possible estimate for the
dynamical timescalef the star. Another estimate can be obtained in a similar way by assuming that
gravity suddenly disappears: this gives the timescale for the outwarspesgradient to explode the
star, which is similar to the time it takes for a sound wave to travel from the ctenthe surface of

the star. If the star is close to HE, all these timescales have about the samegivaluby eq. (2.17).
Since the average densjty= 3M/(47R%), we can also write this (hydro)dynamical timescale as

R -1/2
Tdyn = G_M r5 (Gﬁ) . (218)
For the Sun we obtain a very small valuergf, ~ 1600 sec or about half an hour (0.02 days). This

is very much smaller than the age of the Sun, which is 4.6 Gy &5 x 10" sec, by 14 orders of
magnitude. This result has several important consequences for tren8uther stars:

¢ Any significant departure from hydrostatic equilibrium should very dyitdéad to observable
phenomena: either contraction or expansion on the dynamical timescalee gfahcannot
recover from this disequilibrium by restoring HE, it should lead to a collapsa explosion.

e Normally hydrostatic equilibrium can be restored after a disturbance (wecuwiiider this
dynamical stabilityof stars later). However a perturbation of HE may lead to small-scale oscil-
lations on the dynamical timescale. These are indeed observed in the Smaaydther stars,
with a period of minutes in the case of the Sun. Eq. (2.18) tells us that the puolgatiod is a
(rough) measure of the average density of the star.

e Apart from possible oscillations, stars are extremely close to hydrostatiGbemym, since
any disturbance is immediately quenched. We can therefore be confideetith(2.13) holds
throughout most of their lifetimes. Stars do evolve and are thereforeongpletely static, but
changes occur very slowly compared to their dynamical timescale. Stal®ecid to evolve
guasi-staticallyi.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is\thi@l theorem which is of vital impor-
tance for the understanding of stars. It connects two important enesgywoirs of a star and allows
predictions and interpretations of important phases in the evolution of stars.

To derive the virial theorem we start with the equation for hydrostatic eqiuifibeq. (2.13). We
multiply both sides by the enclosed voluie= %m’3 and integrate ovam:

M M
dpP Gm
4_.3 1
Zar°—dm= -2 ——dm 2.1

The integral on the right-hand side has a straightforward physical netatpon: it is thegravitational
potential energyf the star. To see this, consider the work done by the gravitational Fotoedring
a mass elemedim from infinity to radiusr:

r r
6W:f F-dr:f GTzémdr:—GTMém.

()
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The gravitational potential energy of the star is the work performed byrthetgtional force to bring
all mass elements from infinity to their current radius, i.e.

M
Eg = —f LU (2.20)
0 r
The left-hand side of eq. (2.19) can be integrated by parts:
Ps Vs
f VdP:[V-P]i—f Pdv (2.21)
Pe 0

wherec ands denote central and surface values. Combining the above expressieqs(119) we
obtain

Vs
%@mm_i;pwzg%n (2:22)

with P(R) the pressure at the surface of the volume. This expression is udedul tive pressure from
the surrounding layers is substantial, e.g. when we consider only thetarstar. If we consider
the star as a whole, however, the first term vanishes because tharprasshe stellar surface is
negligible. In that case

3 f PV = Egn (2.23)
0
or, since & = dm/p,
M
o P

This is the general form of the virial theorem, which will prove valuable ldteells us that that the
average pressure needed to support a star in HE is equ%l&@f/v. In particular it tells us that a
star that contracts quasi-statically (that is, slowly enough to remain in HE) nurebse its internal
pressure, sinciey,| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We will
show this in Ch. 3, but for the particular case of an ideal monatomic gas gyteaee. The pressure
of an ideal gas is given by

P = nkT = £k, (2.25)
pumy

wheren = N/V is the number of particles per unit volume, gnés mass of a gas particle in atomic
mass units. The kinetic energy per particlegis: %kT, and the internal energy of an ideal monatomic
gas is equal to the kinetic energy of its particles. The internal energynitenass is then
uo SKT _3P
S 2umy 2p°
We can now interpret the left-hand side of the virial theorem (eq. 2.2fijR®) dm = £ [udm =
%Eim, whereEjq is the total internal energy of the star. The virial theorem for an idealkghgsrefore

(2.26)

Eint = —%Egr (2.27)

This important relation establishes a link between the gravitational potentigyeaerd the internal
energy of a star in hydrostatic equilibrium that consists of an ideal gas.s{\&ll see later that the
ideal gas law indeed holds for most stars, at least on the main sequereeyirial theorem tells
us that a more tightly bound star must have a higher internal energy, i.e. itombstter. In other
words, a star that contracts quasi-statically must get hotter in the prddestull implications of this
result will become clear when we consider the total energy of a star inravshite.

14



Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temperature inside a star composed of ideal gas. The gravitatiergy of the star is found
from eq. (2.20) and can be written as

GM?
where« is a constant of order unity (determined by the distribution of matter in the stahyi.e
the density profile). Using eq. (2.26), the internal energy of the stBmhis= %k/(,umU)dem =
gk/(,umu)T M, whereT is the temperature averaged over all mass shells. By the virial theorem we
then obtain
- aumy G
T=-—
k

= (2.29)

wIR

Takinga ~ 1 andu = 0.5 for ionized hydrogen, we obtain for the Stin~ 4 x 10°K. This is the
average temperature required to provide the pressure that is needegptthle Sun in hydrostatic
equilibrium. Since the temperature in a star normally decreases outwardslsit Braapproximate
lower limit on the central temperature of the Sun. At these temperatureydgmdand helium are
indeed completely ionized. We shall see thiatx 10’ K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exists, whicmweitagenerally as

u=gr. (2.30)
e,

We have seen above that= % for an ideal gas, but it will turn out (see Ch. 3) that this is valid not
only for an ideal gas, but for all non-relativistic particles. On the otlerd if we consider a gas of
relativistic particles, in particular photons (i.e. radiation pressuyre) 3. If ¢ is constant throughout
the star we can integrate the left-hand side of eq. (2.23) to obtain a moreabfawe of the virial
theorem:

Eint = —;Tl;¢Egr (2-31)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational potential energy,tésal energy and its
kinetic energyExin (due to bulk motions of gas inside the star, not the thermal motions of the gas
particles):

Etot = Egr + Eint + Exin. (2.32)

The star is bound as long as its total energy is negative.

For a star in hydrostatic equilibrium we can &&f, = 0. Furthermore for a star in HE the virial
theorem holds, so th&y, andEjy; are tightly related by eq. (2.31). Combining egs. (2.31) and (2.32)
we obtain the following relations:

-3
Etot = Eint+ Egr = ¢7Eint = (1_ %¢)Egr (2-33)
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As long asp < 3 the star is bound. This is true in particular for the important case of a staisting
of an ideal gas (eq. 2.27), for which we obtain

Eiot = Eint + Egr = — Eint = %Egr <0 (2.34)

In other words, its total energy of such a star equals half of its gravitdgiamtantial energy.
From eq. (2.34) we can see that the virial theorem has the following impadtasequences:

e Gravitationally bound gas spheres musthotto maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The more compact sspieee, the more
strongly bound, and therefore the hotter it must be.

e A hot sphere of gas radiates into surrounding space, therefore m$$atose energy from its
surface. The rate at which energy is radiated from the surface igrfiaosityof the star. In
the absence of an internal energy source, this energy loss musttleeukcrease of the total
energy of the stal. = —dE;y¢/dt > 0, sinceL is positive by convention.

e Taking the time derivative of eq. (2.34), we find that as a consequériasing energy:
Egr = 2L <0,
meaning that the staontracts(becomes more strongly bound), and
Eim =L>0,

meaning that the stggets hotter— unlike familiar objects which cool when they lose energy.
Therefore a star can be said to havaegative heat capacityHalf the energy liberated by
contraction is used for heating the star, the other half is radiated away.

For the case of a star that is dominated by radiation pressure, we finhat—Eg, and there-
fore the total energ¥:,: = 0. Therefore a star dominated by radiation pressure (or more generally,
by the pressure of relativistic particles) is only marginally bound. No gnisrgequired to expand or
contract such a star, and a small perturbation would be enough to liendstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are presentin a star due to nuclear reatalang place in the interior, then
the energy loss from the surface can be compenséated.L, . = —dE,,/dt. In that case the total
energy is conserved and eq. (2.34) tells us Bagt= Eint = Egr = 0. The virial theorem therefore
states that botli; and Ey, are conserved as well: the star cannot, for example, contract and cool
while keeping its total energy constant.

In this state, known ahermal equilibrium(TE), the star is in a stationary state. Energy is radiated
away at the surface at the same rate at which it is produced by nucéediorss in the interior. The
star neither expands nor contracts, and it maintains a constant interiorregorpe We shall see
later that this temperature is regulated by the nuclear reactions themselels,isvaombination
with the virial theorem act like a stellar thermostat. Main-sequence stars likeuthare in thermal
equilibrium, and a star can remain in this state as long as nuclear reactiongppiythe necessary
energy.

16



Note that the arguments given above imply that both hydrostatic equilibriurthanahal equilib-
rium arestableequilibria, an assumption that we have yet to prove (see Ch. 7). It isveliaiasy to
understand why TE is stable, at least as long as the ideal-gas presmirnatés ¢ < 3 in eq. 2.31).
Consider what happens when TE is disturbed, e.g. vihgn> L temporarily. The total energy then
increases, and the virial theorem states that as a consequence the stexpaond and cool. Since
the nuclear reaction rates typically increase strongly with temperature t¢hef rauclear burning and
thusLnyc Will decrease as a result of this cooling, until TE is restored whenL .

2.4 The timescales of stellar evolution

Three important timescales are relevant for stellar evolution, associatedhaitiges to the mechani-
cal structure of a star (described by the equation of motion, eq. 2.1dngekl to its thermal structure
(as follows from the virial theorem, see also Sect. 5.1) and changes imifsosition, which will be
discussed in Ch. 6.

The first timescale was already treated in Sec. 2.2.1: it isdgmamical timescalgiven by
eq. (2.18),

= R\32 Mo 1/2
Tdyn ~ \’ G_M =~ 002(@) (V) dayS (235)

The dynamical timescale is the timescale on which a star reacts to a perturbatiairagtatic equi-
librium. We saw that this timescale is typically of the order of hours or less, whighns that stars
are extremely close to hydrostatic equilibrium.

2.4.1 The thermal timescale

The second timescale describes how fast changes in the thermal strfctuséar can occur. It is
therefore also the timescale on which a star in thermal equilibrium reacts whEg issperturbed.

To obtain an estimate, we turn to the virial theorem: we saw in Sec. 2.3.1 thatsthiaut a nuclear
energy source contracts by radiating away its internal energy conteatEi,; ~ —2Egr, where the

last equality applies strictly only for an ideal gas. We can thus definghérenalor Kelvin-Helmholtz

timescaleas the timescale on which this gravitational contraction would occur:

——yr (2.36)

Here we have used eq. (2.28) &g with « ~ 1.

The thermal timescale for the Sun is abols g 10’ years, which is many orders of magnitude
larger than the dynamical timescale. There is therefore no direct oliserlaevidence that any
star is in thermal equilibrium. In the late 19th century gravitational contractiapieposed as the
energy source of the Sun by Lord Kelvin and, independently, by Hammman Helmholtz. This led to
an age of the Sun and an upper limit to the age the Earth that was in conflictmetigieg geological
evidence, which required the Earth to be much older. Nuclear reactiomessirece turned out to be
a much more powerful energy source than gravitational contraction, iatiostars to be in thermal
equilibrium for most & 99 %) of their lifetimes. However, several phases of stellar evolutionngur
which the nuclear power source is absent offingnt, do occur on the thermal timescale.
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2.4.2 The nuclear timescale

A star can remain in thermal equilibrium for as long as its nuclear fuel supgly.|d he associated
timescale is called theuclear timescaleand since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), itis also the timescale on which composition changes in the stelléorimecur.

The energy source of nuclear fusion is the direct conversion of a smaetlion ¢ of the rest mass
of the reacting nuclei into energy. For hydrogen fusipry 0.007; for fusion of helium and heavier
elementsp is smaller by a factor 10 or more. The total nuclear energy supply carfahelae written
asEnuc = ¢Mnuc? = ¢ fucMc?, wheref, ¢ is that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriurh = Ly = Enue SO We can estimate the nuclear timescale as

Thuc = @: = (f’fnuc'\/I ~ 1010 ML—LO r. (2.37)
The last approximate equality holds for hydrogen fusion in a star like thev@tmhas 70 % of its
initial mass in hydrogen and fusion occurring only in the inset0 % of its mass (the latter result
comes from detailed stellar models). This long timescale is consistent with theggedlevidence
for the age of the Earth.

We see that, despite only a small fraction of the mass being available for fue®muclear
timescale is indeed two to three orders of magnitude larger than the thermal fiené3terefore the
assumption that stars can reach a state of thermal equilibrium is justified. Mioamze, we have
found:

Thnuc > TKH > Tdyn-

As a consequence, the rates of nuclear reactions determine the ptallaoésgolution, and stars may
be assumed to be in hydrostatic and thermal equilibrium throughout mostmivas.

Suggestions for further reading

The contents of this chapter are covered more extensively by Chapité 4eoer and by Chapters 1
to 4 of KipPENHAHN & W EIGERT.

Exercises

2.1 Density profile

In a star with mas$/, assume that the density decreases from the center to flaeesas a function of
radial distance, according to

r 2
o=nel1- (&) | (2.38)
wherep. is a given constant arilis the radius of the star.

(&) Findm(r).
(b) Derive the relation betweer andR.
(c) Show that the average density of the star.&pQ
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2.2 Hydrostatic equilibrium
(a) Consider an infinitesimal mass elememtidside a star, see Fig. 2.1. What forces act on this mass
element?

(b) Newton’s second law of mechanics, or the equation of ongtstates that the net force acting on
a body is equal to its acceleration times it mass. Write dowvenetiuation of motion for the gas
element.

(c) In hydrostatic equilibrium the net force is zero and tlas glement is not accelerated. Find an
expression of the pressure gradient in hydrostatic egiuititn

(d) Find an expression for the central pressBgeby integrating the pressure gradient. Use this to
derive the lower limit on the central pressure of a star inrbgtatic equilibrium, eq. (2.16).

(e) Verify the validity of this lower limit for the case of asstwith the density profile of eq. (2.38).

2.3 The virial theorem
An important consequence of hydrostatic equilibrium ig fhénks the gravitational potential energy
Egr and the internal thermal ener@y.
(a) Estimate the gravitational enerBy; for a star with mas#! and radiuk, assuming (1) a constant
density distribution and (2) the density distribution of €2}38).

(b) Assume that a star is made of an ideal gas. What is the &iimé&irnal energy per particle for an
ideal gas? Show that the total internal enekgy, is given by:

L 2
E'm_fo (2’umup(r)T(r))4nr dr. (2.39)

(c) Estimate the internal energy of the Sun by assuming aahstensity and (r) ~ (T) = %Tc ~
5x 10PK and compare your answer to your answer for a). What is theeatigy of the Sun? Is
the Sun bound according to your estimates?

It is no coincidence that the order of magnitude Ky and Ei,; are the same This follows from
hydrostatic equilibrium and the relation is known as thévVitheorem. In the next steps we will derive
the virial theorem starting from the pressure gradient aftrm of eq. (2.12).

(d) Multiply by both sides of eq. (2.12) by and integrate over the whole star. Use integration by
parts to show that

R R
f 3P 4nr?dr = f wp%rrzdr. (2.40)
0 0

(e) Now derive a relation betwedsy, andE;n;, the virial theorem for an ideal gas.
() (*) Also show that for the average pressure of the star

1 R* 2 1Egr
<P>—v£ P 4nr dr——év,

where V is the volume of the star.

(2.41)

As the Sun evolved towards the main sequence, it contractddriugravity while remaining close to
hydrostatic equilibrium. Its internal temperature chahffem about 30 000 K to about® 10°K.

(g) Find the total energy radiated during away this conimact Assume that the luminosity during
this contraction is comparable L@, and estimate the time taken to reach the main sequence.

2.4 Conceptual questions

Lin reality Eg is larger than estimated above because the mass distribution is moretcateckto the centre.
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(a) Use the virial theorem to explain why stars are hot, iaeha high internal temperature and
therefore radiate energy.

(b) What are the consequences of energy loss for the stagialipéor its temperature?
(c) Most stars are in thermal equilibrium. What is compemggfdr the energy loss?

(d) What happens to a star in thermal equilibrium (and in hgtétic equilibrium) if the energy pro-
duction by nuclear reactions in a star drops (slowly enooghdintain hydrostatic equilibrium)?

(e) Why does this have a stabilizinffect? On what time scale does the change take place?
() What happens if hydrostatic equilibrium is violated,.ebg a sudden increase of the pressure.

(g) On which timescale does the change take place? Can yewegamples of processes in stars that
take place on this timescale.

2.5 Three important timescales in stellar evolution

(&) The nuclear timescatg,c.

i. Calculate the total mass of hydrogen available for fusieer the lifetime of the Sun, if 70%
of its mass was hydrogen when the Sun was formed, and only $38blydrogen is in the
layers where the temperature is high enough for fusion.

ii. Calculate the fractional amount of mass converted im@rgy by hydrogen fusion. (Refer to
Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in soldts, i.e. expressed in termsRfR,,
M/Mg andL/Lg.

iv. Use the mass-radius and mass-luminosity relations fainfaequence stars to express the
nuclear timescale of main-sequence stars as a functioreoh#fss of the star only.

v. Describe in your own words the meaning of the nuclear toakes

(b) The thermal timescakey.
i-iii. Answer question (a) iii, iv and v for the thermal tinede and calculate the age of the Sun
according to Kelvin.
iv. Why are most stars observed to be main-sequence stars lapndswhe Hertzsprung-gap
called a gap?
(c) The dynamical timescaleyyn.

i-iii. Answer question (a) iii, iv and v for the dynamical temcale.

iv. In stellar evolution models one often assumes that savb/e quasi-statically i.e. that the
star remains in hydrostatic equilibrium throughout. Why senmake this assumption?

v. Rapid changes that are sometimes observed in stars megt@that dynamical processes are
taking place. From the timescales of such changes - usustilfasions with a characteristic
period - we may roughly estimate the average density of the $he sun has been observed
to oscillate with a period of minutes, white dwarfs with pels of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs

(d) Comparison.

i. Summarize your results for the questions above by comgutie nuclear, thermal and dy-
namical timescales for a 1, 10 and 5 main-sequence star. Put your answers in tabular
form.

ii. For each of the following evolutionary stages indicatewhich timescale they occupre-
main sequence contraction, supernova explosion, coreoggdrburning, core helium burn-
ing.

iii. When the Sun becomes a red giant (RG), its radius willéase to 208, and its luminosity
to 3000,. Estimatergy, andrky for such a RG.

iv. How large would such a RG have to becomefg), > txy? Assume both R and L increase
at constant fective temperature.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolated from the réisé ddniverse, matter and
radiation tend towards a statetoErmodynamic equilibriumrhis equilibrium state is achieved when
suficient interactions take place between the material particles (‘collisions’patwdeen the pho-
tons and mass patrticles (scatterings and absorptions). In such a staentddlynamic equilibrium
the radiation field becomes isotropic and the photon energy distribution islokdy the Planck
function (blackbody radiation). The statistical distribution functions of ibthmass particles and
the photons are then characterized by a single temperature

We know that stars are not isolated systems, because they emit radiatigersrdte (nuclear)
energy in their interiors. Indeed, the surface temperature of the Suous &B00 K, while we have
estimated from the virial theorem (Sec. 2.3) that the interior temperature rfnihst order of 10K.
Therefore stars amotin global thermodynamic equilibrium. However, it turns out that locally within
a star, a state of thermodynamic equilibriigachieved. This means that within a region much smaller
than the dimensions of a stag(R.), but larger than the average distance between interactions of the
particles (both gas particles and photons), i.e. larger than the mean the¢hmme is a well-defined
local temperaturehat describes the particle statistical distributions.

We can make this plausible by considering the mean free path for photons:

tph = 1/kp

wherex is the opacity coficient, i.e. the fective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cross section, whigh is 0.4 cn¥/g (see
Ch. 5). The average density in the Supis: 1.4 g/cm®, which gives a mean free path of the order
of £{ph ~ 1cm. In other words, stellar matter is very opaque to radiation. The tempedifi@rence
over a distancép, i.e. between emission and absorption, can be estimated as

dT T 107

AT = afph ~ chph T 104K
which is a tiny fraction (10'1) of the typical interior temperature of 1&. Using a similar estimate,

it can be shown that the mean free path for interactions between ionizeplagades (ions and
electrons) is several orders of magnitude smaller than Hence a small region can be defined
(a ‘point’ for all practical purposes) which is £pn but much smaller than the length scale over
which significant changes of thermodynamic quantities occur. This is daltedl thermodynamic
equilibrium(LTE). We can therefore assume a well-defined temperature distributiiole ithee star.
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Furthermore, the average time between particle interactions (the mean freestimeh shorter
than the timescale for changes of the macroscopic properties. Theseftate of LTE is secured
at all times in the stellar interior. The assumption of ET&nstitutes a great simplification. It
enables the calculation of all thermodynamic properties of the stellar gas ina@étheslocal values
of temperature, density and composition, as they change from the centeestartace.

3.2 The equation of state

The equation of state (EOS) describes the microscopic properties of stelltar, for given density
o, temperaturd and compositiorX;. It is usually expressed as the relation between the pressure and
these quantities:

P =P(p, T, X) (3.1)

Using the laws of thermodynamics, and a similar equation for the internalyebirg T, X;), we can
derive from the EOS the thermodynamic properties that are needed tibeebe structure of a star,
such as the specific heatg andcp, the adiabatic exponentyand the adiabatic temperature gradient
Vad.

An example is the ideal-gas equation of state, which in the previous chaptehawe tacitly
assumed to hold for stars like the Sun:

PonkT or P=— ..
pmy

In this chapter we will see whether this assumption was justified, and how tBe&®be extended to
cover all physical conditions that may prevail inside a star. The idedbagagertains to particles that
behave according to classical physics. However, both quantum-meahand special relativistic ef-
fects may be important under the extreme physical conditions in stellar intdni@ddition, photons
(which can be described as extremely relativistic particles) can be an impsotarce of pressure.

We can define an ideal grerfectgas as a mixture of free, non-interacting particles. Of course
the particles in such a gas do interact, so more precisely we require thainteedction energies
are small compared to their kinetic energies. In that case the internalyevfetige gas is just the
sum of all kinetic energies. From statistical mechanics we can derive dipemies of such a perfect
gas, both in the classical limit (recovering the ideal-gas law) and in the quamgchanical limit
(leading to electron degeneracy), and both in the non-relativistic and relétevistic limit (e.g. valid
for radiation). This is done in Sect. 3.3.

In addition, variousron-idealeffects may become important. The high temperaturelf K) in
stellar interiors ensure that the gas will be fully ionized, but at lower tenipes(in the outer layers)
partial ionization has to be considered, with importaiiées on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gdsctrostatic interactiondetween the ions and electrons
may be important under certain circumstances (Sect. 3.6).

3.3 Equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas from the prisaybatistical mechanics. This
provides a description of the ions, the electrons, as well as the photoresdedip stellar interior.

IN.B. note the dierence between (locafermodynamic equilibriuriTgadr) = Trad(r) = T(r)) and the earlier defined,
global property othermal equilibrium(E;,; = const, orL = Lyyc).
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Let n(p) be the distribution of momenta of the gas particles ri(e) dp represents the number of
particles per unit volume with momentae [p...p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the internal energy densisrifal energy per unit
volume) and the pressure can be obtained from the following integrals:

number density n:f n(p) dp (3.2)
0
internal energy density U :f epn(p) dp = N{ep) (3.3)
0
pressure P = %f pVpN(p) dp = 2n(pvp) (3.4)
0

Heree, is the kinetic energy of a particle with momentymandyy, is its velocity. Eq. (3.2) is trivial,
and eq. (3.3) follows from the perfect-gas assumption. The presdergaheq. (3.4) requires some
explanation.

Consider a gas af particles in a cubical box with sides of lendth= 1 cm. Each particle bounces
around in the box, and the pressure on one side of the box results feomaimentum imparted by
all the particles colliding with it. Consider a particle with momentprand corresponding velocity
coming in at an anglé with the normal to the surface, as depicted in Fig. 3.1. The time between two
collisions with the same side is

a2
~ vcosd  vcosd

The collisions are elastic, so the momentum transfer is twice the momentum corhperpamdicular
to the surface,

Ap = 2pcosh. (3.9)

The momentum transferred per particle per second and peisaimerefore

Ap
A = VP cos 6. (3.6)

The number of particles in the box with € [p...p+ dp] and 8 € [6...0 + df] is denoted as
n(o, p) do dp. The contribution to the pressure from these particles is then

dP = vp co & n(9, p) do dp. (3.7)

Figure 3.1. Gas particle in a cubical box with a volume of 1&nEach

)/ collision with the side of the box results in a transfer of nestum; the
pressure inside the box is the result of the collective mdamernransfers of
L =1cm all n particles in the box.
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Since the momenta are distributed isotropically over all directions within a solitk érg and
the solid angle @ subtended by those particles withe [6...0 + d9g] equals 2z sinddd, we have
n(6, p) do = n(p) sinkdd and

dP = vpn(p) cog singdadp. (3.8)
The total pressure is obtained by integrating over all anglesq n/2) and momenta. This results
in eq. (3.4) sinC(f,fo’r/2 cog @sinfdg = fol cog 6dcosd = 3.
3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are related to their momeatdiagdo special rela-
tivity:

e =p’P+mict, g=e-mc (3.9)
and
_Oe pc
Vp = T (3.10)

We can obtain generally valid relations between the pressure and the irteengy of a perfect gas
in the non-relativistic (NR) limit and the extremely relativistic (ER) limit:

NR limit: in this case the momenfa< mg, so thate, = € - me = %pz/m andv = p/m. Therefore
(pV) = (p?/m) = 2(ep) SO that eq. (3.4) yields

P=2U (3.11)

winy

ER limit: in this casgp > mc so thate, = pcandv = c. Thereforg(pv) = (pc) = (ep), and eq. (3.4)
yields

P=1U (3.12)

wl=

These relations are generally true, oty particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chapter, the cham\gé ln)% in the relation
has important consequences for the virial theorem, and for the stabilitsrsf s

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can address the origin of thegdgddw. The mo-
mentum distributiom(p) for classical, non-relativistic particles of massin LTE is given by the
Maxwell-Boltzmanmlistribution:

n(p) dp = e P2k 4202 d . (3.13)

n
(2rmkT)?/2

Here the exponential factoe¢/KT) represents the equilibrium distribution of kinetic energies, the
factor 4rp?dp is the volume in momentum spacpy( Py, Pz) for p € [p... p + dp], and the factor
n/(2rmkT)%? comes from the normalization of the total number densityposed by eq. (3.2). (You
can verify this by starting from the standard integfﬁ e dx = % vr/a, and dfferentiating once

with respect ta to obtain the integrafo()0 gk y2 dx.)
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The pressure is calculated by uswg p/mfor the velocity in eq. (3.4):

n PP
P = 3 iy fo o &2 4 dp, (3.14)

By performing the integration (for this you need tcﬁd'rentiateff e~¢x2 dx once more with respect
to a) you can verify that this indeed yields the ideal gas law

. (3.15)

(N.B. This derivation is for a gas afon-relativisticclassical particles, but it can be shown that the
same relatior® = nkT is also valid forrelativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particles of nmas$t should be obvious that for

a mixture of free particles of fferent species, it holds for the partial pressures of each of the con-
stituents of the gas separately. In particular, it holds for both the ions anel¢ltrons, as long as
guantum-mechanicalffects can be ignored. The total gas pressure is then just the sum of partial
pressures

Pgas= Pion + Pe = i Pi + Pe = (i Ni + Ne)kT = nkT

wheren; is the number density of ions of elementith massm, = Aim, and charg&;e. Thenn; is
related to the density and the mass fractigof this element as

 Xip o Xip _1op
n = m and Nion = Z =, (3.16)

We have used here the universal gas consRaatk/m, = 8.31447x 10’ erg g1 K~1. The number
density of electrons is given by

ZXip _1p
Ne = Zn — _ = _, 3.18

© Z " Z‘ A My pemy (3.18)
which defines thenean molecular weight per free electrog As long as the electrons behave like
classical particles, the electron pressure is thus given by

1
R (3.19)
He My He

When the gas is fully ionized, we have for hydrogédn= A; = 1 while for helium and the most
abundant heavier elemeni/A; ~ % In terms of the hydrogen mass fractigrwe then get

2
T1+ X
which for the SunX = 0.7) amounts tq, ~ 1.18, and for hydrogen-depleted gas giygs- 2.
The total gas pressure is then given by
Pgas= Pion + Pe = (i + i)R/OT = 8/OT (3.21)
Mion  Me M

e (3.20)
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where themean molecular weight is given by

1 1 1 Z + 1)X

_:_+_:ZM_ (3.22)

M HMion HMe i A

It is left as an exercise to show that for a fully ionized gasan be expressed in terms of the mass
fractionsX, Y andZ as

1

N— (3.23)
3 1
2X + zY + EZ

Jii

if we assume that for elements heavier than helidmy 27 ~ 2(Z; + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with which a particle’s locatidrmomentum can
be known simultaneously is limited by Heisenberg’s uncertainty principleAkap > h. In three
dimensions, this means that if a particle is located within a volume elemétihen its localization
within three-dimensional momentum spat¥p is constrained by

AV A%p > hd, (3.24)

The quantityh® defines the volume in six-dimensional phase space of one quantum cetiufiier
of quantum statem a spatial volumé/ and with momenta € [p... p + dp] is therefore given by
Vo, o2
9(p) dp = gs 5 47p"dp. (3.25)
wheregs is the number of intrinsic quantum states of the particle, e.g. spin or polarization
The relative occupation of the available quantum states for particles in tdgnamic equilib-
rium depends on the type of particle:

o fermions(e.g. electrons or nucleons) obey the Pauli exclusion principle, whistulapes that
no two such particles can occupy the same quantum state. The fractiotesfigith energy,
that will be occupied at temperatufeis given by

1

feolen) = T (3.26)

which is always< 1.

e bosonge.g. photons) have no restriction on the number of particles per quatatenand the
fraction of states with energy, that is occupied is

1

fBE(Gp) = m, (327)

which can be> 1.

The actual distribution of momenta for particles in LTE is given by the prodfithe occupation
fraction f(ep) and the number of quantum states, given by eq. (3.25). The quardippearing in
egs. (3.26) and (3.27) is the so-callgtemical potentiallt can be seen as a normalization constant,
determined by the total number of particles in the volume considered (i.e., bghlsaaint imposed
by eg. 3.2).
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Figure 3.2. Left: Electron momentum distributiong p) for an electron density af, = 6 x 10?” cm2 (corre-
sponding tqp = 2 x 10* g/lcm3 if ue = 2), and for three dierent temperature§: = 2 x 10’ K (black lines),

2 x 10°K (red lines) and 2 10°K (blue lines). The actual distributions, governed by quamimechanics,
are shown as solid lines while the Maxwell-Boltzmann digttions for the sama. andT values are shown
as dashed lines. The dotted lingax is the maximum possible number distribution if all quantuates with
momentump are occupied.Right: Distributions in the limitT = 0, when all lowest available momenta are

fully occupied. The blue line is for the same density as inléfiepanel, while the red line is for a density two
times as high.

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, ge.= 2. According to eq. (3.25), the maximum
number density of electrons with momentyrallowed by quantum mechanics is therefore

8r

Nmax(P) dp = G Arp?dp = = p? dp. (3.28)

h3
This is shown as the dotted line in Fig. 3.2. The actual momentum distribution afaieoc(p) is
given by the product of eq. (3.28) and eq. (3.26). In the non-redétiimit we haveep = p?/2Mme,
giving
2 1 )
Ne(P)dp = 15 T 4rp?dp, (3.29)

where we have replaced the chemical potential byddgeneracy parameter = u/kT. The value of
¥ is determined by the constraint thﬁf’ ne(p) dp = ne (eq. 3.2).

The limitation imposed by the Pauli exclusion principle means that electrons eaneeitigher
pressure than predicted by classical physics (eq. 3.19). To illustratértiiigy. 3.2 the momentum
distribution eq. (3.29) is compared to the Maxwell-Boltzmann distribution forttedas, eq. (3.13),

N (p) dp = e P /2T 472 dp. (3.30)

Ne
(27mekT)3/2

The situation shown is for an electron dengity = 6 x 10?”cm™3, which corresponds to a mass
density of 2x 10* g/cm3 (assuming a hydrogen-depleted gas wigh= 2). At high temperatures,
T = 2 x 10’ K, the momentum distribution (solid line) nearly coincides with the M-B distribution
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(dashed line): none of the quantum states are fully occupi€g)(< nmax(p) for all values ofp) and

the electrons behave like classical particles. As the temperature is d=hreas afl = 2 x 10°K

(red lines), the peak in the M-B distribution shifts to smalpeand is higher (since the integral over
the distribution must equal.). The number of electrons with small valuespéxpected from clas-
sical physicsnugs(p), then exceeds the maximum allowed by the Pauli exclusion princiglg(p).
These electrons are forced to assume quantum states with Ipigtiner peak in the distributiong(p)
occurs at highep. Due to the higher momenta and velocities of these electrons, the electron gas
exerts a higher pressure than inferred from classical physics. Toalésldegeneracy pressurdf

the temperature is decreased even more, e§.at2 x 10°K (blue lines), the lowest momentum
states become nearly all filled anglp) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decreaseTohardly changes the momentum distribution, so that the electron
pressure becomes neaigependent of temperature

Complete electron degeneracy

In the limit thatT — 0, all available momentum states are occupied up to a maximum value, while
all higher states are empty, as illustrated in the right panel of Fig. 3.2. Thisoisrkascomplete
degeneracyand the maximum momentum is called #ermi momentumg Then we have

8rp?

Ne(p) = B for p < pr, (3.31)

ne(p) = 0 for p > pg. (3.32)

The Fermi momentum is determined by the electron density through eq. (S%Ffpim(p) dp = ne,

which yields

3 \1/3
ne)

Pr = h(gr

The pressure of a completely degenerate electron gas is now easy totearsiog the pressure
integral eq. (3.4). It depends on whether the electrons are relativrstioto In thenon-relativistic
limit we havev = p/mand hence

(3.33)

PF Grp? 8n h2 (3\*°
=1 PV odp= —22 5 = ° 5/3
Pe 3j(; e dp T5ime PF 20m: (n) ne™’”. (3.34)
Using eq. (3.18) fong this can be written as
o 5/3 2 3\23
Pe = KnR (—) with KNR = 53 (—) = 1.0036x 1013 [CgS]. (335)
He 20me my~ \ 7

As more electrons are squeezed into the same volume, they have to ocdepysth larger mo-
menta, as illustrated in Fig. 3.2. Therefore the electron pressure insnedbalensity, as expressed
by eq. (3.35).

If the electron density is increased further, at some point the velocity ohtist energetic elec-
trons, pr/me, approaches the speed of light. We then have to replaeep/m by the relativistic
kinematics relation (3.10). In thextremely relativistidimit when the majority of electrons move at
relativistic speeds, we can take- c and

1/3
PF 8rc 8rc hc(3
Pe = % j; p3 dp= p4 a (_) ne4/3a (3.36)

h3 12 F T 8 i\n
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He 8mu/ Vs

In the ER limit the pressure still increases with density, but with a smaller emp@mstead of%).
The transition between the NR regime, eq. (3.35), and the ER regime, €6), (8.8mooth and can
be expressed as a functionxf pr/meC, see Mieber Sec. 7.7. Roughly, the transition occurs at a
densitypy given by the conditiorpe ~ meC, which can be expressed as
3
8r({meC
oo~ ey () (3.39)

3\ h

The relation betweeR, andp for a completely degenerate electron gas is shown in Fig. 3.3.

Partial degeneracy

Although the situation of complete degeneracy is only achievdd-at0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when the temperatufiedestly low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degeneracy paramete0 in eq. (3.29). In
that case egs. (3.35) and (3.37) can still be used to calculate the presgood approximation.

The transition between the classical ideal gas situation and a state of sagegedacy occurs
smoothly, and is known gsartial degeneracyTo calculate the pressure the full expression eq. (3.29)
has to be used in the pressure integral, which becomes rather compliclageidt&gral then depends
ony, and can be expressed as one of the so-c&éethi-Dirac integrals, see Meper Sec. 7.7 for
details (the other Fermi-Dirac integral relates to the internal energy dedyityThe situation of
partial degeneracy correspondsite- O.

Wheny < 0 the classical description is recovered, i.e. eq. (3.29) becomes theddwitzmann
distribution. In that case/{e(P*/2mekD-v 4 1) = g (P*/2mekD+v gnd therefore

3
2w e yoln—"e
RC T (2rmekT)32 2(2mekT)372

29



This only holds fory < 0, but more generally it can be shown thiat= y(ne/T%3). We have to
consider (partial) degeneracyyif= 0, i.e. if

3/2
o 22mmekT)¥2

e 5 (3.39)

The limit of strong (almost complete) degeneracy is reached wherroughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become so high that the mddmbaome degenerate
and exert a (much) higher pressure than they would if they behavegiceltyg Since in the limit of
strong degeneracy the pressure no longer depends on the tempdhasudegeneracy pressure can
hold the star up against gravity, regardless of the temperature. Treeefiegenerate star does not
have to be hot to be in hydrostatic equilibrium, and it can remain in this statecfoesen when it
cools down. This is the situation imhite dwarfs

The importance of relativity is that, when a degenerate star becomes moraat@ng the density
increases further, the pressure increases less steeply with densgynaBhimportant consequences
for massive white dwarfs, and we shall see that it implies that there is a maximass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very) importantsnatgeneracy of thens
is not. Since the ions have mas&e8000 larger than electrons, their momerpia=( v2me) are much
larger at energy equipartition, and the condition (3.39) above (withreplaced bymg,) implies
that much higher densities are required at a particular temperature. dticpréhis never occurs:
before such densities are reached the protons in the atomic nuclei wilfredpte electrons, and
the composition becomes one of (mostly) neutrons. Degenerawyutfonsdoes become important
when we consider neutron stars.

3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particles that carry monaentuherefore exert
pressure when they interact with matter. In particular photons@senswith gs = 2 (two polarization
states), so they can be described by the Bose-Einstein statistics, ed}. (i@ humber of photons is
not conserved, they can be destroyed and created until thermodynguniibreum is achieved. This
means that = 0 in eq. (3.27) and hence

2

Photons are completely relativistic with = pc = hv, so in terms of frequencytheir distribution in
LTE becomes th@lanck functiorfor blackbody radiation:

8t V2dv
3 kT 1

Applying egs. (3.2) and (3.3) one can show that the photon number dansithe energy density of
radiation are

n(v) dv = (3.41)

Mph = f n(p)dp=b T3 (3.42)
0
Una= [ penpidp=aT* (3.43)
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whereb = 20.3 cni3 K3 anda is the radiation constant

8rok4
a= 1;—3(:3 — 7.56x 10" B ergcm K4,
Since photons are always extremely relativisBcs %U by eq. (3.12) and theadiation pressurds
given by

Prag = 3aT* (3.44)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure and radiasarpy
P = Prag + Pgas= Prad + Pion + Pe.

whereP;yqis given by eq. (3.44) anBjo, by eq. (3.17). In generdde must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3.19), and in the limits ofnedativistic and
extremely relativistic degeneracy by egs. (3.35) and (3.37), respBctilf the electrons are non-
degenerate then the pressure can be written as

p=laT*+ gpm (3.45)

If the electrons are strongly degenerate their pressure dominates awef the (classical) ions, so in
that casePjg,, can be neglected in the total pressure.
The fraction of the pressure contributed by the gas is customarily exgrass, i.e.

Pgas= P and Prada= (1-B)P. (3.46)

3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dominate #tmeaqi state at dierent
temperatures and densities. In Fig. 3.4 the boundaries between thesesragimotted schematically
in the logT, logp plane.

e The boundary between regions where radiation and ideal-gas praksuinate is defined by
Prad = Pgas giving T/p/® = 3.2 x 10’u~Y/3 whenT andp are expressed in cgs units. (Verify
this by comparing egs. 3.21 and 3.44.) This is a line with s%)i:rethe logT vs logp plane.

¢ Similarly, the boundary between the regions dominated by ideal-gas presgiinon-relativistic
degenerate electron pressure can be defind@yteal = Penr @s given by eq. (3.35), giving
T/p?® = 1.21x 10°% 43> (again withT andp in cgs units). This is a line with slopgin the
log T-logp plane.

e The approximate boundary between non-relativistic and relativistic @egey is given by
eq. (3.38)p = 9.7 x 1Pue g/cm®.

¢ At high densities the boundary between ideal gas pressure and extrefaéiystic degeneracy
is found by equating egs. (3.21) and (3.37), giviig'/® = 1.50x 107 uig ¥ (with T andp in
Cgs units), again a line with slop%

As shown in Fig. 3.4, detailed models of zero-age (that is, homogeneousseguence stars with
masses between 0.1 and 1@ cover the region where ideal-gas pressure dominates the equation
of state. This justifies the assumptions made in Ch. 2 when discussing the \@daéth and its
consequences for stars, and when estimating temperatures in the steliar. inter
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Figure 3.4. Left: The equation of state for a gas of free particles in thellplggp plane. The dashed lines are
approximate boundaries between regions where radiatesspre, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degegataminate, for a compositiok = 0.7 andZ = 0.02.
Right: Detailed structure models for homogeneous main-sequéaicseds 01...100M, have been added (solid
lines). The IM; model is well within the ideal-gas region of the equationtats. In the 0., star electron
degeneracy pressure is important, except in the outerddgielowp andT). In stars more massive than IR,
radiation pressure becomes important, and it dominatdwisurface layers of the 100, model.

3.4 Adiabatic processes

It is often important to consider processes that occur on such a slgrhidrodynamical) timescale
that there is no heat exchange with the environment; such processadiapatic To derive the
properties of stellar interiors under adiabatic conditions we need selieralodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst law of thermodynamics states that the amount of heat absorbed by a sy€¥¢m the
sum of the change in its internal energiyJ) and the work done on the systedW = P&V). The
second lawof thermodynamics states that, for a reversible process, the changedpyeatjuals the
change in the heat content divided by the temperature. Entropy is a stakleaunlike the heat
content. For a unit mass (1 gram) of matter the combination of these laws capressed as

dg=Tds=du+ Pdv:du—Ezdp. (3.47)
P

Here dj is the change in heat conteny & the change in internal energy € U/p is the specific
internal energy, i.e. per gramgjs the specific entropy (i.e. the entropy per unit mass)aadl/p is
the volume of a unit mass. Note that dnd & are exact dferentials, whereasyds not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabatic derivativeséfid to write the equation of
state in dfferential form, i.e.

P dT &

p AT +Xp?a (3.48)
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whereyt andy, are defined as

dlogP T (0P
= ==_ = — (= 3.49
AT (a IogT)p’Xi P (6T )p,xf (3:49)
dlog P) 0 (GP)
—[==_ =Z(=] . 3.50
o (alogp Tx  P\dp/rx (320

The subscrip; means that the composition is held constant as well. In a general equatitteof s
xT andy, can depend ol andp themselves, but if they are (approximately) constant then we can
write the equation of state in power-law form:

P = Popte TAT.

For example, for an ideal gas without radiation we have= y, = 1, while for a radiation-dominated
gasyT =4 andy, = 0.

3.4.1 Specific heats

The specific heats at constant volumeand at constant pressueg for a unit mass of gas follow
from eq. (3.47):

dg ou P(adp
o= (gt), = (57), - 2(a%), 25
where a partial derivative taken at constaig the same as one taken at constarfor an ideal gas,
with u = U/p = 2P/p, we obtain from eq. (3.21) the familiar reself = 3R/u. For a radiation-
dominated gas, eq. (3.43) yields = 4aT3/p. Using thermodynamic transformations and some
algebraic manipulation (see Appendix 3.A), it follows quite generally thatdbeific heats are related
by
2
Cp—Cy = ——. (353)
eT xp
For an ideal gas this amountsde — cy = R/u, and thereforep = %’R/,u. For a radiation-dominated
gasy, = 0 and hencep — co: indeed, sincd;q Only depends oif, a change in temperature cannot
be performed at constant pressure.
The ratio of specific heats is denotedyas

c P 2

= , 3.54
Cv pPTO Xp (3:59

Y

so thaty = 2 for an ideal gas.

Expressions for dy Itis often useful to have expressions for the change in heat corqéatid3.47)
in terms of variations off andp or T andP. Making use of the specific heats one can derive (see
Appendix 3.A)

xT dP

dg = Tds = cydT —)(TEde = cpdlT —=— —. (3.55)
Y Xo P
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3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic changes is meastivedd-callecdiabatic
derivatives Two of these have special importance for stellar structure:

 Theadiabatic exponeRty.q measures the response of the pressure to adiabatic compression or
expansion, i.e. to a change in the density. It is defined as

dlog P) (3.56)
ad

yad:(@logp

where the subscript 'ad’ means that the change is performed adiabatibatlys, at constant
entropy. Ifyaq is constant the® « p”ad for adiabatic changes. As we shall see lajgg,is
related to thelynamical stabilityof stars.

e Theadiabatic temperature gradieid defined as

_(0logT
Vad = (3 log P)ad (3.57)

It is in fact another exponent that describes the behaviour of the tatopemunder adiabatic
compression or expansioil (c« PVad if Vqis constant), which turns out to be important for
stability againstonvection

The adiabatic exponent For an adiabatic process] = 0 in eq. (3.47) and therefore
du = Ez do. (3.58)
P

We have seen in Sect. 3.3.1 that for a perfect gas of free particles theainémergy density is
proportional toP, in both the NR and ER limits. For such a simple system we can therefore write, as
we did in Sect. 2.3,

u=4¢ P (3.59)
P

with ¢ a constant (betweegl and 3). If we diferentiate this and substitute into eq. (3.58) we obtain
for an adiabatic change

dP ¢+ 1do
i =+ 3.60
P ¢ p (3.60)
Therefore, according to the definition afy (eq. 3.56),
1 .
Yad = % (for a simple, perfect gas) (3.61)

2In many textbooks one finds instead the adiabatic expordants,, andI'; introduced by Chandrasekhar. They are
defined, and related tg,g andV,q, as follows:

i (et w2 (gt

_(alogP

1=

6|ng)ad:yad7 Io-1 - Vi 3=

Vad
They obey the relation

rn I
-1 I,-1
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¢ for non-relativisticparticles (e.g. a classical ideal gas, NR degenerate elecmﬁsg and
thereforeyaq = 2

o for extremely relativistigarticles (e.g. photons, ER degenerate electrgns)3 and therefore
Yad = %
o for a mixture of gas and radiation @ 8 < 1) andor moderately relativistic degenerate elec-
trons,3 < yad < 3
For a general equation of state, described by eq. (3.48), one daa (ke Appendix 3.A)
P 2
oToy XT .
Thereforey,qis related to the ratio of specific heats (eq. 3.94y,= v x,. They’s are equal ify, = 1
(as in the case of an ideal gas).

Yad = Xp t+ (3.62)

The adiabatic temperature gradient By writing eq. (3.56) as B/P = yaqdo/p for an adiabatic
change, and eliminatindo with the help of eq. (3.48), we obtain a general relation between the
adiabatic temperature gradiéndy and the adiabatic exponepiy:

Vad = s (3.63)
YadX'T

This gives the following limiting cases:

o for an ideal gas without radiatios (= 1) we haveyt = x, = 1, which together withyaq = g

givesVaq = £ = 04.

o for a radiation-dominated gag € 0) yt = 4 andy, = 0 so thatV,q = %1 = 0.25.

For a general equation of state one has to consider the general saprés v,q (€q. 3.62) in
eqg. (3.63). From the expression af ih terms of @ and dP (3.55) it follows that

P xT
Vad= — —. 3.64
ad pTCp X ( )
This means that for a generanadiabatic process we can write eq. (3.55) as
T
dg=cp (dT —Vad B dP), (3.65)

which will prove to be a useful relation later on.

We give some important results without derivations, which can be foun&wKChapters 13.2
and 16.3 or in Hnsen Chapter 3.7:

o for a mixture of gas and radiation with9 8 < 1, V44 andyaq both depend o and take on
intermediate values, i.e.Zb < Vg < 0.4.

o for a non-relativistic degenerate gas, we have to consider that althteagjtoes dominate the
pressure, there is a (tiny) temperature dependence due to the ion gagwusitbe taken into
account in calculating and thereforév,q. After some manipulation it can be shown that in
this caséV,q = 0.4, as for the ideal classical gas.

o for an extremely relativistic degenerate gas one also has to considetiltative electrons are
relativistic, the ions are still non-relativistic. It turns out that in this liWig = 0.5.
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3.5 lonization

We have so far implicitly assumed complete ionization of the gas, i.e. that it coalstse atomic
nuclei and free electrons. This is a good approximation in hot stellar irgendrereT > 10°K
so that typical energigsT are much larger than the energy needed to ionize an atom, i.e. to knock
off a bound electron. In the cooler outer layers of a star, however, wetoesonsider theartial
ionizationof the elements. In this case quasi-static changes of the state varjabledT) will lead
to changes in the degree of ionization. This can have a ldfgeten the thermodynamic properties
of the gas, e.g. ofiyg andVg.

In LTE the number densities of ionized and neutral species are determjiried $aha equation

I']r+1n U 2(27TmekT)3/2
A T h3
wheren, andn;,; indicate the number densitiesrofndr + 1 times ionized nuclej; is the ionization
potential, i.e. the energy required to removettii bound electron, ang, andu, .1 are the partition
functions. The partition functions dependDibut can in most cases be approximated by the statistical
weights of the ground states of the bound species. (This equation cagrilbeddfrom statistical
mechanics, e.g. see K&W Chapter 14.1.)

g /KT (3.66)

3.5.1 lonization of hydrogen

As an example, we consider the simple case where the gas consists onlyroféry. Then there
are just three types of particle, electrons and neutral and ionized dslravithuy = Up = 2 and
U+ = Up = 1. We write their number densities as andng so that

Ene — —(27rmekT)3/2 @ XH/KT
No h3
whereyy = 136eV. The gas pressure is given Byas = (No + N, + ne) KT and the density is
o = (ng + ny) my. Thedegree of ionizatiots defined as

(3.67)

X = n0”++n+ (3.68)
so thatPgascan be written in terms of the degree of ionization
Pgas= (1+ X) RoT (3.69)
We can then rewrite Saha’s equation as
X @ KPR (3.70)

1-x2 Pgas
We see that the degree of ionization increases Wjths expected since more atoms are broken up by
the energetic photons. Howeveardecreases with gas pressure (or density) whénkept constant,
because this increases the probability of recombination which is propdritdna From eq. (3.69)
we see that the mean molecular weight 1/(1 + X) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate theféect on the thermodynamic properties of the gas, we note that in the case of pa
tial ionization the internal energy has a contribution from the available pokeng#agy of recombina-
tion. Per unit volume this contribution is equaktpyy, SO per unit mass it equats yn/o = Xyn/My.

Thus
o= 3P,

XH 3 XH
> XR = §(1+ X)RT'FXE. (371)
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Figure 3.5. The adiabatic temperature gradiénjy plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hyerogas, for three values of the density 14,0
107 and 108 g/cm®). When hydrogen is partially ionize®,q is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of ioromati= 0.5, close to the minimum oV,4. As the
density increases, a higher temperature is needed to readaine ionization degree. The right panel shows
how V4 varies with temperature in a detailed stellar model Mgl between the surface (&t~ 6000 K) and

the centre (af ~ 1.5 x 10’ K). Apart from the hydrogen ionization zone around k() a second depression
of V.q around 18K is seen which is due to the firéHe ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar terappges and densities. Note that the region where
T < 10°K comprises only the outer 1% of the mass of the Sun. (The diditie shows howV 4 would vary
with T in this model if the composition were pure hydrogen, as waaragd in the left panel.)

A small increase in temperature increases the degree of ionization, whidtsre a large amount of
energy being absorbed by the gas. In other wordsspleeific heabf a partially ionized gas will be
much larger than for an unionized gas, or for a completely ionized gas (lattkecasex = 1 so that
the second term in eq. (3.71) becomes a constant and therefore intgleva

Now consider what happens if the gas is adiabatically compressed. Sfastimgeutral hydro-
gen, for whichV,q = 0.4, the temperature initially increasessc P4, Further compression (work
done on the gas) increasgsbut when partial ionization sets in most of this energy goes into raising
the degree of ionization (second term of eq. 3.71) and only little into raisingethperature (first
term). In other wordsT increases less strongly with with, and thereforé&v,g < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that under typical condligireaches a minimum
value of~ 0.1 whenx ~ 0.5. As the gas becomes almost fully ioniz8tq rises back to 0.4. The
variation of V44 with temperature for a pure hydrogen gas is shown in the left panel oBEdgor
different values of the density.

The decrease Of 54 in partial ionization zones can inducenvectionn the outer layers of stars,
as we shall see in Ch. 5. Similarly it can be shown thgtdecreases in partial ionization zones, from
% toyad # 1.2 whenx ~ 0.5. This has consequences for the stability of stars, as we shall also see.
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______________________________ Figure 3.6. Schematic depiction of

the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from KipPENHANHN & W EIGERT.

3.5.2 lonization of a mixture of gases

In a mixture of gases the situation becomes more complicated because mépyjppared species
have to be considered, the densities of which all depend on each aker.¢s K&W Chapter 14.4-
14.5). However the basic physics remains the same as considered abtwe $imple case of pure
hydrogen. The fect on the thermodynamic properties is that &g.can show additional deviations
below 0.4 at diferent temperatures, especially where helium (the second-most abehet@ent in
stars) is partially ionized. This is illustrated in Fig. 3.5b which shows the variaifoviyq with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As p increases indefinitely, the Saha equation gives 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becomes incernect the average distande
between ions becomes less than an atomic radius. In this situation the ionizatign srsuppressed
(there are fewer bound excited states; see Fig. 3.6), a situation knqweszsire ionization

Consider the case of hydrogen: the volume per H atoming $o thatd = (%”nH)‘m. Pressure
ionization sets in whed < ag = 5x 10-2 c¢m (the Bohr radius). This implies

NH 2
Fa0®
orp=nymy =39 cnt3. Other elements are pressure-ionized at similar values of the density, within
an order of magnitude. At densitigs10 g cnt?, therefore, we can again assume complete ionization.
Fig. 3.7 shows the approximate boundary in the density-temperature dibgtasen neutral and
ionized hydrogen according the Saha equatiopferl g cnT3, and as a result of pressure ionization

at higher densities.

3.6 Other dfects on the equation of state

3.6.1 Coulomb interactions and crystallization

We have so far ignored thetect of electrostatic or Coulomb interactions between the ions and elec-
trons in the gas. Is this a reasonable approximation, i.e. are the interacéagiesnindeed small
compared to the kinetic energies, as we have assumed in Sect. 3.3?

The average distance between gas particles (with rAas$ is d ~ (%’Tn)‘l/3 wheren is the
number densityn = p/(Am,). The typical Coulomb energy per particle (with cha®@ is ec ~
Z%€?/d, while the average kinetic energy dgn = ng. The ratio of Coulomb energy to kinetic
energy is usually called the Coulomb paramé&igrdefined as

7% 7% 4mp
~ dkT kT \3Am,

1/3

2 1/3
2275 10° Z_ P
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Figure 3.7. The equation of state in the
p, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
in Fig. 3.4, between regions where ra-
diation, ideal gas and degenerate elec-
trons dominate the pressure. The solid
line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
equation, and where hydrogen becomes
pressure-ionized at high density. The
dashed lines show where the Coulomb
interaction parametdrc equals 1, above
which Coulomb interactions become im-
portant, and wherd'c = 170, above
which the ions form a crystralline lat-
tice. Above the dash-dotted line' e
pairs play an important role in stellar in-
teriors.

where in the last equality the numerical factor is in cgs units. We see that iBbuftteractions
increase in importance at high densities or low temperatures. Roughly,rGloimteractions start to
become important in stellar interiors whEg = 1.
To estimate the typical value &% in stellar interiors we approximaje ~ p = M/(%”F\ﬁ), and
we approximatd by the average temperature estimated from the virial theofem]T ~ 5 R
(eq. 2.29). Ignoring factors of order unity, we get

-2/3

Z2 (M

1AM GM

(3.73)

The ratioZ?/A*?3 depends on the composition, and represents an average over the eatstitl
the gas. In stars mostly composed of hydrogeny 1 andZ ~ 1, and we find that in the Sun the
Coulomb energy contributes of the order of 1 % to the particle energiehérd has a similaffect

on the pressure). We are therefore justified in ignoring Coulomb interacitiogtars similar to or
more massive than the Sun. However, eq. (3.73) shows that in low-mas£stalomb interactions
can start to contribute significantly. This can also be seen by comparing.Bignd Fig. 3.7, where
the location of the conditiofic = 1 is indicated in the-T diagram. Detailed models of low-mass
stars need to take thisfect into account. FoM < 10°3 M, the Coulomb energies dominate. Such
objects are not stars but planets (Jupiter's mass is abodtMg). Calculations of the structure of
planets requires a much more complicated equation of state than for stars.

Crystallization

If Tc > 1 the thermal motions of the ions are overwhelmed by the Coulomb interactionbis|In
situation the ions will tend to settle down into a conglomerate with a lower energyhén words
they will form a crystalline lattice. Detailed estimates indicate that this transition telkes at a
critical value ofl’'c ~ 170. This condition is also indicated in Fig. 3.4 for a pure hydrogen gas. In
reality, this situation will never occur in hydrogen-rich stellar interiors,ittein take place in cooling
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white dwarfs (in which the temperature gradually decreases with time while tigtgl@eemains
constant). White dwarfs are usually composed of carbon and oxygen, this case we have to
take into account the composition which raises the temperature at which thgioramccurs (the
‘melting’ temperature) by a factat?/AY3 according to eq. (3.72).

Finally we note that crystallization only occurs in the region where the electom strongly
degenerate. You may verify that the Coulomb interaction energy betwesrosle and ionsZ€?/d)
is always smaller than the typical electron energ&/eme). The electrons therefore behave as a free
degenerate gas, even if the ions form a crystalline structure.

3.6.2 Pair production

A very different process can take place at very high temperatures and relatwetielwsities. A
photon may turn into an electron-positron pair if its enénggxceeds the rest-mass energy of the pair,
hv > 2mec?. This must take place during the interaction with a nucleus, since otherwisemhame
and energy cannot both be conserved. Pair production takes platgpical temperaturkT ~ hy =
2mec?, or T ~ 1.2 x 10'19K. However, even al ~ 10°K the number of energetic photons in the tail
of the Planck distribution (eg. 3.41) is large enough to produce a large erumile' e~ pairs. The
newly created positrons tend to be annihilated quickly by the inverse redetione™ — 2y), as a
result of which the number of positrons reaches equilibrium. At a few tim&& 1@epending on the
electron density, the number of positrons is a significant fraction of the auoflelectrons.

Pair production is similar to an ionization process: an increase in temperaddeettean increase
in the number of particles at the expense of the photon energy (andiggkesEherefore pair produc-
tion gives rise to a decrease of the adiabatic gradigrand ofV,q, similar to partial ionization. This
is the main importance of pair production for stellar evolutionfliéets the stability of very massive
stars in advanced stages of evolution (when their temperature may rdaeb iraexcess of fK)
and can trigger their collapse.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 7sefid and by Chapters 13 to 16 of
KrpenaauN & WEIGERT. HOwever, a more elegant derivation of the equation of state, which is also
more consistent with the way it is derived in these lecture notes, is givenapt&h3 of Hnsen,
KawaLer & TriMmBLE. EXplicit expressions for many of the results that are only mentioned herbe
found in this book.

Exercises

3.1 Conceptual questions
These questions are intended to test your understandirfgedécttures. Try to answer them without
referring to the lecture notes.

(&) What do we mean blpcal thermodynamic equilibriunLTE)? Why is this a good assumption
for stellar interiors? What is the fierence between LTE artermal equilibrium(as treated in
Ch. 2)?

(b) In what type of stars does degeneracy become importanttiportant in main-sequence stars?
Is it more important in high mass or low mass MS stars?
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(c) Explain qualitatively why for degenerate matter, thegsure increases with the density.

(d) Why do electrons become relativistic when they are cosga® into a smaller volume? Why does
the pressure increase less steeply with the density inalsis?

(e) In the central region of a star we find free electrons amd.ioWhy do the electrons become
degenerate first? Why do the ions never become degenerataciicpf?
3.2 Mean molecular weight

Derive a general expression for the mean molecular weigahabnized gas, as a function of composi-
tion X, Y, Z. Assume that, for elements heavier than H, nuclei are coaethbosequal number of protons
and neutrons, so that the nuclear chatgis half of the mass numbe.

3.3 Thep - T plane

Consider a gas of ionized hydrogen. In theT plane compute the approximate boundary lines between
the regions where:

(a) radiation pressure dominates,
(b) the electrons behave like a classical ideal gas,

(c) the electrons behave like a degenerate gas,
(d) the electrons are relativistically degenerate.

3.4 The pressure of a gas of free particles
In this exercise you will derive some important relatioranfirthis chapter for yourself.
(a) Suppose that the particles in a gas have momenta distlitasn(p) dp. Show that the pressure
can be expressed by eq. (3.4).

(b) For classical particles in LTE, the momentum distribatis given by the Maxwell-Boltzmann
distribution, eq. (3.13). Calculate the pressure usind®4). Does the result look familiar?

(c) Show that for a gas of free, non-relativistic partickes: %U (eq. 3.11), wherdJ is the internal
energy density. Show that in the extremely relativistictifh= %U (eq. 3.12).

(d) Electrons are fermions with 2 spin states. Explain wtey iaximum number of electrons per
volume with momentunp can be written as eq. (3.28).

(e) In the extreme case of complete degener@cy» 0, the electrons fill up all available quantum
states up to a maximum, the Fermi momentum. Show that

1
3ne\3
=h[=
Pr ( B )
(f) Show that the pressure as function of the density for anaetativistic degenerate electron gas can
be written as

X
e
He

and derive an expression fgr andx.

(g) Show that the pressure as function of the density for amrmely relativistic degenerate electron
gas can be written as

y
—
He
and derive an expression figg andy.
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(h) Photons are bosons, and the distribution of their moanisrgiven by the Planck function (eq. 3.27).
Show that in this case

Uo T4
(Hint: to derive an expression for the proportionality caméa, you might want to use Mathe-
matica or a list of standard integrals.)
(i) Now use (c) to show that the radiation pressure is giveRQy= %aT“.

3.5 Adiabatic derivatives

(a) Use the first law of thermodynamics to show that, for aalidas in an adiabatic process,
P o prad (3.74)

and give a value for the adiabatic exponggt
(b) Use the ideal gas law in combination with eq. (3.74) tosshmat

dinT
2= (d In P)adid =04

(c) The quantityV,q is referred to as thadiabatic temperature gradientNormally you would use
the term ‘gradient of a quantiti)’ for dA/dr, or if you use mass coordinates instead of radius
coordinates, d/dm. Do you understand why,q can be referred to as a temperature ‘gradient’?

(d) (*) Show that for a mixture of an ideal gas plus radiatitthre adiabatic exponent is given by
_ 32-24p - 3p2
Yad = —24_ 218 >
wheres = Pgad/P.
(Hints: write down the equation of state for the mixture iffeliential form as in eq. (3.48), and

expressyt andy, in terms ofg. Then apply the first law of therrmodynamics for an adiabatic
process.)

(e) (*) Whatis the value of,qin the limit where radiation dominates and where pressunailates?
Does this look familiar?

3.6 lonization dfects

(a) The particles in an ionized gas are charged and therafatergo electrostatic (Coulomb) inter-
actions. Why can can we nevertheless make the ideal-gas pssnnm most stars (i.e. that the
internal energy of the gas is just the sum of the kinetic @eergf the particles)? For which stars
do Coulomb interactions have a significafieet?

(b) Why does the gas in the interior of a star become pressaieed at high densities?

(c) Explain qualitatively why partial ionization leads Y4 < Vadidear = 0.4, in other words: why
does adiabatic compression lead to a smaller temperatneaise when the gas is partly ionized,
compared to a completely ionized (or unionized) gas?
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3.A Appendix: Themodynamic relations

In this Appendix we derive some of the thermodynamic refeithat were given without proof in Chapter 3.

The first law of thermodynamics states that the heat addethtsa element of gas is the sum of the change
in its internal energy and the work done by the mass elemeking the element to be of unit mass, we can
wite this as

dg=du+ Pdv=du- Ez do, (3.75)
P

because the volume of a unit massis 1/p. We can write the change in the internal energy of a unit mass i
terms of the changes in the state variablesidp) as

ou ou

The change in the entropy per unit mass=ddq/T, is therefore
dg 1(ou 1({du P

Becausesis a function of stated?s/dpdT = 8%s/dT dp, which means that

dp. (3.77)

i [ e [ 7
T aTop o7 |T P21 [ (3.78)

1 6u & 1[au] P
6pT

where the)/dT on the right-hand side should be taken at congialiYorking out the right-hand side allows us
to eliminate the second derivative wfgiving

1 (au) P 1 (ap)
T2 01 ~ o212 et laT |
T2\ 0p Lop T2  p?T\0T ,
With the definition ofyt (eq. 3.49) we can write)P/dT), = y1 P/T, and thus

ou

P
%) -a-mf o7

Specific heats

The definitions of the specfic heats at constant volume anoinestant pressure are
dq ou
(d—.l_] = [6—1_) ) (3.80)
v P

dq) [au) P (ap]

= == -=|=Z1. (3.81)
(dT o aT ), P2\ 0T o

To work out an expression fap, we need du/dT)p and Qp/dT)p. To start with the latter, we use theffdir-
ential form of the equation of state (3.48). At constant pues d® = 0 this gives

do dT dp O XT
=t — = = =24 .82
X o XTT [GTJP T xp (3.82)

Cy

Cp

To obtain an expression fof§/oT)p we use eq. (3.76), which we can write as
du_(au) () &
dr = |oT - \dp)p dT
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and therefore

au] (8u) [6u] [ap] [au] xT P

= == +|5]| |= + (r - (3.83)
[(‘)T o oT A 9p ) 9T |, Xp oT

To obtain the last equality we used egs. (3.79) and (3.8®mFhe definitions (3.80) and (3.81) we thus arrive
at the following relation betweetp andcy:

Cp—Cy=—— (384)

which is eq. (3.53).

Expressions for dq

It is useful to be able to write the change in heat content afikmass in terms of the changes in the state
variables. Eqg. (3.77) already shows hogvisl written in terms ofT andp, i.e.

dg=Tds=cydT — y7 32 do, (3.85)
P

making use of (3.79) and (3.80). It is often useful to expdess terms of T andP, rather tharp. To do this
we write ¢ with the help of eq. (3.48),

dpP dT
do = X_p =) —XT ?) (3.86)
so that
P(dpP T 2P 1
dq:chT—)ﬂ—(d——XTd )_(cv+)i—)dT—)ﬂ—dP. (3.87)
Xp P\ P T Xp PT Xp P
The terms with parentheses in the last equality are simplaccording to (3.84), and therefore
P
dq = Tds=cpar - AT 9P (3.88)
Xp P
Adiabatic derivatives
Eq. (3.88) makes it easy to derive an expression for the atiatemperature gradient (3.57),
dinT
Vad = [d ™ P]ad. (3.89)

An adiabatic change i and P means the changes take place at constant with dy = 0. Hence (3.88)
shows that

This means
P xr
Vad = ﬁ);_p : (3.91)
which is eq. (3.64). With the help of this expression we cao alrite (3.88) as
dg=cp [dT —Vad ; dP). (3.92)
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To derive an expression for the adiabatic exponent (3.56),

dinP
Yad = (d in ) ) (3.93)
p ad
we use (3.85) and (3.88) and set4d 0 in both expressions. This gives
P 1
dT=——xrdo and d=—"Tdp
pCy PCP Xp

Eliminating dI' from both expressions gives

P _ce o R (dInP) o

cm\,x"; dlnpsza/\/p'
This means
Cp
Yad= —Xp =Y Xp |- (3.94)
Cv

wherey = cp/cy is the ratio of specific heats. Using eq. (3.84) this can aéswilitten as
P

pToy

which is eq. (3.62).

xt%, (3.95)

Yad = Xp T
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Chapter 4

Polytropic stellar models

As mentioned in Sec. 2.2, the equation of hydrostatic equilibrium can be sibltleel pressure is
a known function of the densityy = P(p). In this situation the mechanical structure of the star is
completely determined. A special case of such a relation betReenlp is thepolytropic relation

P=Kp” (4.1)

whereK andy are both constants. The resulting stellar models are knoynolgsopic stellar models
or simply polytropes. Polytropic models have played an important role in theibetdevelopment
of stellar structure theory. Although nowadays their practical use hatyrbegn superseded by more
realistic stellar models, due to their simplicity polytropic models still give useful irisigo several
important properties of stars. Moreover, in some cases the polytropiiorelsa good approximation
to the real equation of state. We have encountered a few examples obpay#quations of state
in Chapter 3, e.g. the pressure of degenerate electrons, and thelesepressure and density are
related adiabatically.

In this brief chapter — and the accompanying computer practicum —we wiiledie analytic the-
ory of polytropes and construct polytropic models, and study to which ddrstiars they correspond,
at least approximately.

4.1 Polytropes and the Lane-Emden equation

If the equation of state can be written in polytropic form, the equations for oagmuity (dn/dr,
eg. 2.3) and for hydrostatic equilibriumPRddr, eq. 2.12) can be combined with eq. (4.1) to give a
second-order dierential equation for the density:

1 d 2 y-2 dp 47TG
_ == 4.2
pr2dr (r dr Ky (4.2)
The exponeny is often replaced by the so-called polytropic inagxvhich is defined by
1 1
n—m or ’y—l+ﬁ (43)

In order to construct a polytropic stellar model we have to solve eq. tégdther with two boundary
conditions which are set in the centres O:

dr

wherep. is a parameter to be chosen, or determined from other constraints.

p(0)=p; and (d—p) =0, (4.4)
r=0

46



Table 4.1. Numerical values for polytropic models with indax

n %y On pelp Nn Wh

0 2.44949 4.89898 1.00000 ... 0.119366

1 3.14159 3.14159 3.28987 0.63662 0.392699
15 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54,1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84

5 00 1.73205 00 00 00

In order to simplify eq. (4.2), we define two new dimensionless variablgslated to the density)
andz (related to the radius) by writing

pP= pC\Nn7 (45)

1/2

. 1 _

r=az with «a = nLKpé/” o (4.6)
4nG

This choice ofe ensures that the constam{sand 4G are eliminated after substitutirrgandp into
eqg. (4.2). The resulting second-ordefféiential equation is called theane-Emden equation

1d dw

A polytropic stellar model can be constructed by integrating this equation algvii@m the centre.
The boundary conditions (4.4) imply that in the centze=(0) we havew = 1 and dv/dz = 0. For
n < 5 the solutionnv(2) is found to decrease monotonically and to reach zero at finitez,, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. Theerogptions are = 0,
1 and 5, for which the solutions are:

n=0: W(Z):1—§ 7= V6, (4.8)

n=1: w(2) = LQZ Z1 =m, (4.9)
-1/2

n=5: w(®@-= (1 + §) Z5 = oo. (4.10)

The casa = 0 (y = o) corresponds to a homogeneous gas sphere with constant gengitjowing
eqg. (4.5). The solution fan = 5 is peculiar in that it has infinite radius; this is the case fonall 5,
while for n < 5 z, grows monotonically witm. For values of other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see thengzanying computer
practicum). Table 4.1 lists the value mffor different values of, as well as several other properties
of the solution that will be discussed below.
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4.1.1 Physical properties of the solutions

Once the solutiorw(2) of the Lane-Emden equation is found, eq. (4.5) fixes the relative density
distribution of the model, which is thus uniquely determined by the polytropic imde®iven the
solution for a certaim, the physical properties of a polytropic stellar model, such as its mass and
radius, are then determined by the paramdteandp., as follows.

The radius of a polytropic model follows from eq. (4.6):

(n + 1)K T/z (1-n)/2n
-~ | Pc

R=am=1""75

Zn. (4.11)

The mass$n(2) interior toz can be obtained from integrating eq. (2.3), using egs. (4.5), (4.6Yand (

aZ 5 3 dW
m(z) = Arrcpdr = —4napc 77 —. (4.12)
0 dz
Hence the total mass of a polytropic model is
DK (5
M = drap. 0 = 4n| DT DK T g (4.13)
AnG
where we have define@l,, as
dw
O = (— 22—) . (4.14)
dz/),_,
By eliminatingo. from egs. (4.11) and (4.13) we can find a relation betwdeR andK,
1
K = Ny GMMDMRE-M/ with N, = (@7 @/ An-3)n, (4.15)

n+1

Numerical values oB, and N, are given in Table 4.1. From the expressions above we see that
n = 1 andn = 3 are special cases. For= 1 the radius is independent of the mass, and is uniquely
determined by the value df. Conversely, fom = 3 the mass is independent of the radius and
is uniquely determined b¥. For a givenK there is only one value o1 for which hydrostatic
equilibrium can be satisfied if = 3.

The average density = M/(%nl‘«ﬁ) of a polytropic star is related to the central density by
egs. (4.11) and (4.13) as

_ 3dw 30,
zdz

_(o3awy 36 (4.16)
P )Z:an Z P

Hence the ratigpc/p, i.e. the degree of central concentration of a polytrope, only depemdseo
polytropic indexn. This dependence is also tabulated in Table 4.1. One may invert this relation to
find the central density of a polytropic star of a given mass and radius.

The central pressure of a polytropic star follows from eq. (4.1), wharhbe written as

P. = Kp((:n+1)/n.
In combination with (4.15) and (4.16) this gives

GM? z

Pe = Wh——  with Wy=—>" 4.17
e "7 4n(n + 1)®2 (4.17)

R
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Note that in our simple scaling estimate, eq. (2.14), we found the same progdit§ié®. « GM?/R?,
where the proportionality constaw, is now determined by the polytropic index(see Table 4.1).
We can eliminatér in favour ofp. to obtain the very useful relation

_ (4m)13 0-2/3

Pc=CaGM¥3p¥3  with  C, ——©n

: (4.18)

where you may verify that the consta®y is only weakly dependent am unlike W, in (4.17).
We give without derivation an expression for the gravitational potentiatgy of a polytrope of
indexn:
3 GMm?
Eqp=—— ——. 4.19
=57 R (4.19)

(The derivation can be found in K&W Sec. 19.9 anddder Sec. 24.5.1.)

4.2 Application to stars

Eq. (4.15) expresses a relation between the congtaint eq. (4.1) and the mass and radius of a
polytropic model. This relation can be interpreted in two veiffedent ways:

e The constanK may be given in terms of physical constants. This is the case, for exampée, f
star dominated by the pressure of degenerate electrons, in either thelatristic limit or the
extremely relativistic limit. In that case eq. (4.15) defines a unique relationelegtthe mass
and radius of a star.

¢ In other cases the constakit merely expresses proportionality in eq. (4.1), Keis a free
parameter that is constant in a particular star, but may vary from star tdrsthis case there
are many dterent possible values &l andR. For a star with a given mass and radius, the
corresponding value df for this star can be determined from eq. (4.15).

In this section we briefly discuss examples for each of these two interpretatio

4.2.1 White dwarfs and the Chandrasekhar mass

Stars that are so compact and dense that their interior pressure is daehlipategenerate electrons
are known observationally aghite dwarfs They are the remnants of stellar cores in which hydrogen
has been completely converted into helium and, in most cases, also heliln@dmeftised into carbon
and oxygen. Since the pressure of a completely degenerate electrisragasction of density only
(Sec. 3.3.5), the mechanical structure if a white dwarf is fixed and is imdiepé of temperature. We
can thus understand some of the structural properties of white dwanfigags of polytropic models.
We start by considering the equation of state for a degenerate, noiséaelectron gas. From
eg. (3.35) this can be described by a polytropic relation with 1.5. Since the corresponding
is determined by physical constants, eq. (4.15) shows that such a pelyboibpys a mass-radius
relation of the from

Roc M7/3, (4.20)

More massive white dwarfs are thus more compact, and therefore hagaer density. Above a

certain density the electrons will become relativistic as they are pushed ightr Imomenta by the

Pauli exclusion principle. The degree of relativity increases with deraitytherefore with the mass
of the white dwarf, until at a certain mass all the electrons become extrentadiyistic, i.e., their
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speedve — c. In this limit the equation of state has changed from eq. (3.35) to eq. (3W8igh
is also a polytropic relation but with = 3. We have already seen above thanaa 3 polytrope is
special in the sense that it has a unique mass, which is determinkdabd is independent of the
radius:

K 3/2
M = 4703 (—) . (4.21)
nG
This value corresponds to an upper limit to the mass of a gas sphere irstatdrequilibrium that
can be supported by degenerate electrons, and thus to the maximum possiblor a white dwarf.
Its existence was first found by Chandrasekhar in 1931, after whizntinthiting mass was named.
Substituting the proper numerical values into eq. (4.21), Witorresponding to eq. (3.37), we obtain
the Chandrasekhar mass

Mch = 5.836152 Mo (4.22)

White dwarfs are typically formed of helium, carbon or oxygen, for whigh= 2 and therefore
Mch = 1.46 Mg. Indeed no white dwarf with a mass exceeding this limit is known to exist.

4.2.2 Eddington’s standard model

As an example of a situation wheke is not fixed by physical constants but is essentially a free
parameter, we consider a star in which the pressure is given by a mixtideabfgas pressure and
radiation pressure, eq. (3.45). In particular we make the assumption¢hatit3 of gas pressure to
total pressure is constant, i.e. has the same value in each layer of theirstarPgs = P we can
write

1
P=—- ng, (4.23)
B u
while also
_ Prad _ aT4
1-8= b = 3p- (4.24)

Thus the assumption of constghimeans thaff* o« P throughout the star. If we substitute the
complete expression far* into eq. (4.24) we obtain

1/3

4
P= (2% 1/3—43 ) o3, (4.25)
which is a polytropic relation witim = 3 for constang. Since we are free to choogdetween 0 and
1, the constarK is indeed a free parameter dependengon

The relation (4.25) was derived by Arthur Eddington in the 1920s fordmsolus ‘standard model’.
He found that in regions with a high opacity(see Ch. 5) the ratio of local luminosity to mass coor-
dinatel/mis usually small, and vice versa. Making the assumptionghat is constant throughout
the star is equivalent to assuming tigats constant (again, see Ch. 5). Indeed, for stars in which
radiation is the main energy transport mechanism this turns out to be apptelyitnae, even though
it is a very rough approximation to the real situation. Nevertheless, thegteunf stars on the main
sequence wittM > Mg, is reasonably well approximated by that oha= 3 polytrope. Since the
mass of an = 3 polytrope is given by eq. (4.21), we see from eq. (4.25) that theranggme relation
between the madd of a star ang. The relative contribution of radiation pressure increases with the
mass of a star. This was also noted by Eddington, who pointed out that the Iimraiitgd of known
stellar masses corresponds to valueg thfat are significantly dierent from O or 1.
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Suggestions for further reading

Polytropic stellar models are briefly covered in Chapter 24.5 efd¥k and treated more extensively
in Chapter 19 of Kepenuanrn & WeIGerT and Chapter 7.2 of kksen.

Exercises

4.1 The Lane-Emden equation

(a) Derive eq. (4.2) from the stellar structure equationsiass continuity and hydrostatic equilib-
rium. (Hint: multiply the hydrostatic equation by/p and take the derivative with respect to

r).

(b) What determines the second boundary condition of eq),(#e4, why does the density gradient
have to vanish at the center?

(c) By making the substitutions (4.3), (4.5) and (4.6), ekethe Lane-Emden equation (4.7).
(d) Solve the Lane-Emden equation analytically for the sase 0 andn = 1.

4.2 Polytropic models
(a) DeriveK andy for the equation of state of an ideal gas at a fixed temperatuga non-relativistic

degenerate gas and of a relativistic degenerate gas.

(b) Using the Lane-Emden equation, show that the masshilisivh in a polytropic star is given by
eg. (4.12), and show that this yields eq. (4.13) for the totass of a polytrope.

(c) Derive the expressions for the central dengityand the central pressuRg as function of mass
and radius, egs. (4.16) and (4.17).

(d) Derive eq. (4.18) and compute the constanfor several values af.

4.3 White dwarfs
To understand some of the properties of white dwarfs (WDs) tat by considering the equation of
state for a degenerate, non-relativistic electron gas.
(&) What is the value oK for such a star? Remember to consider an appropriate valine ahean
molecular weight per free electroan.

(b) Derive how the central density depends on the mass of a non-relativistic WD. Using this with
the result of Exercise 4.2(b), derive a radius-mass rel&®ie R(M). Interpret this physically.

(c) Use the result of (b) to estimate for which WD masses thagivistic efects would become im-
portant.

(d) Show that the derivation of R = R(M) relation for the extreme relativistic case leads to a uaiqu
mass, the so-calle@handrasekhar mas€alculate its value, i.e. derive eq. (4.22).

4.4 Eddington’s standard model

(a) Show that for constagtthe virial theorem leads to

Etot = /_;Egr = —Z'f;ﬁEint, (4.26)

for a classical, non-relativistic gas. What happens in tnédi3 — 1 and3 — 0?
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(b) Verify eq. (4.25), and show that the corresponding amd€ depends o and the mean molec-
ular weightu as

2.67x 10 (1-p\"°
K= ZE B :
(c) Use the results from above and the fact that the massmfaB polytrope is uniquely determined

by K, to derive the relatioM = M(B, u). This is useful for numerically solving the amount of
radiation pressure for a star with a given mass.

(4.27)
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Chapter 5

Energy transport in stellar interiors

The energy that a star radiates from its surface is generally replerfisiladsources or reservoirs
located in its hot central region. This represents an outward energytflexery layer in the star,
and it requires anfiective means of transporting energy through the stellar material. Thisdranisf
energy is possible owing to a non-zero temperature gradient in the stéle ifiation is often the

most important means of energy transport, and its is always present, itkeranly means. In stellar
interiors, where matter and radiation are always in local thermodynamic egquiiifChapter 3) and

the mean free paths of both photons and gas particles are extremely smajly @meat) can be

transported from hot to cool regions in two basic ways:

e Random thermal motions of the particles — either photons or gas particles progess that
can be calledheat dffusion In the case of photons, the process is knowradsative djfusion
In the case of gas particles (atoms, ions, electrons) it is usually dadkecconduction

e Collective (bulk) motions of the gas particles, which is knowmasvection This is an impor-
tant process in stellar interiors, not only because it can transpodyenery dficiently, it also
results in rapid mixing. Unfortunately, convection is one of the least utmmtsngredients of
stellar physics.

The transport of energy in stars is the subject of this chapter, which il les to two additional
differential equations for the stellar structure.

5.1 Local energy conservation

In Chapter 2 we considered the global energy budget of a star, tedug the virial theorem. We
have still to take into account the conservation of energy on a local sctie stellar interior. To do
this we turn to the first law of thermodynamics (Sect. 3.4), which states thattdreahenergy of a
system can be changed by two forms of energy transfer: heat atd By f we denote a change in

a quantityf occurring in a small time intervalt. For a gas element of unit mass the first law can be
written as (see eq. 3.47)

P
ouU = 6q+ — 6p. (5.1)
o

The first term is the heat added or extracted, and second term nefsrése work done on (or per-
formed by) the element. We note that compressign ¥ 0) involves an addition of energy, and
expansion is achieved at the expense of the element’s own energy.

Consider a spherical, Lagrangian shell inside the star of constantAmasShanges in the heat
content of the shellsQ = g Am) can occur due to a number of sources and sinks:
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Figure 5.1. Energy generation and heat flow into and
out of a spherical mass shell.

e Heat is added by the release of nuclear energy, if available. The rad@ict nuclear energy
is produced per unit mass and per second is writtea,@s The details of nuclear energy
generation will be treated in Chapter 6.

e Heat can be removed by the release of energetic neutrinos, whicledsmaythe stellar interior
without interaction. Neutrinos are released as a by-product of sonteamueactions, in which
case they are often accounted fogjg.. But neutrinos can also be released by weak interaction
processes in very hot and dense plasmas. This type of neutrino giosdplays a role in late
phases of stellar evolution, and the rate at which these neutrinos takeaesmy per unit mass
is written ase,.

¢ Finally, heat is absorbed or emitted according to the balance of heat flowdésg into and out
of the shell. We define a new variable, flbeal luminosity | as the rate at which energy in the
form of heat flows outward through a sphere of radigsee Fig. 5.1). In spherical symmetry,
| is related to the radial energy fli (in erg st cm2) as

| = 4212 F. (5.2)

Therefore at the surfade = L while at the centrd = 0. Normally heat flows outwards,

in the direction of decreasing temperature. Therefoie usually positive, but under some
circumstances (e.g. cooling of central regions by neutrino emission)cheaflow inwards,
meaning that is negative. (We note that the energy flow in the form of neutrinos is treated
separately and isotincluded in the definition off and of the stellar luminositiz.)

We can therefore write:
6Q = enucAMSt — €, AMét + I(m) 6t — I(m+ Am) 6t,

with I[(m+ Am) = I(m) + (dl/om) - Am, so that after dividing byAm,

5q = (fnuc— € — a_rn) ot. (53)

Combining egs. (5.3) and (5.1) and taking the liatit> 0 yields:

al ou  Pdp

a—mzfnuc—fv—a"'ﬁa (5.4)
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This is the third equation of stellar evolution. The terms containing time derigadike often com-
bined into a functiorey:

o = M, Pop

T ot p2at
0s

= 1= 5.5
5 (5.5)
wheresis the specific entropy of the gas. One can then write
ol
a—rn = €nuc— & + fgr (56)

If gr > 0, energy is released by the mass shell, typically in the case of contradtign<I0, energy
is absorbed by the shell, typically in the case of expansion.

In thermal equilibrium(see Sec. 2.3.2), the star is in a stationary state and the time derivatives
vanish gy = 0). We then obtain a much simpler stellar structure equation,

di

am = €nuc — €. (5_7)

If we integrate this equation over the mass we obtain

M M
L = f Enucdm - f €y dm = Lnuc - LV (58)
0 0

which defines the nuclear luminosity,,c and the neutrino luminositly,. Neglecting the neutrino
losses for the moment, we see that thermal equilibrium implieslthat L, that is, energy is
radiated away at the surface at the same rate at which it is producedcaanueactions in the
interior. This is indeed what we defined as thermal equilibrium in Sec. 2.3.2.

5.2 Energy transport by radiation and conduction

We have seen that most stars are in a long-lived state of thermal equilibrivajch energy gen-
eration in the stellar centre exactly balances the radiative loss from tleesuiVhat would happen
if the nuclear energy source in the centre is suddenly quenched? $herais: very little, at least
initially. Photons that carry the energy are continually scattered, albariskre-emitted in random
directions. Because stellar matter is vepaqueto radiation, the photon mean free pdpj is very
small (typicallyfph ~ 1cm< R,, see Sect. 3.1). As a result, radiation is trapped within the stellar
interior, and photons €use outwards very slowly by a ‘random walk’ process. The time it takes ra
diation to escape from the centre of the Sun by this random walk processyisly 10 years, despite
the fact that photons travel at the speed of light (see Exercise 5.8ngék in the Sun’s luminosity
would only occur after millions of years, on the timescale for radiative greegnsport, which you
may recognise as the Kelvin-Helmholtz timescale for thermal readjustment.

We also estimated in Sec. 3.1 that the temperatuferdince over a distandgy is only AT ~
10*K. This means that the radiation field is extremely close to black-body radiatitmUv =
uo = aT* (Sec. 3.3.6). Black-body radiation is isotropic and as a result no negyem@nsport
would take place. However, a small anisotropy is still present due to thediative temperature
differenceAT/T ~ 10°L This small anisotropy is enough to carry the entire energy flux in the Sun
(see Exercise 5.1). These estimates show that radiative energy mtainsgiellar interiors can be
described as a flusion process. This yields a great simplification of the physical description
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5.2.1 Heat dffusion by random motions

Fick's law of diffusion states that, when there is a grad®ntin the density of particles of a certain
type, the dffusive fluxJ —i.e. the net flux of such particles per unit area per second — is given by

J=-DVn with D=3l (5.9)

HereD is thediffusion cogficient which depends on the average particle velogignd their mean
free path?. The origin of this equation can be understood as follows.

Consider a unit surface area and patrticles crossing the surface in ditbetion. Letz be a
coordinate in the direction perpendicular to the surface. The numberrti¢les crossing in the
positivez direction (say upward) per unit area per second is

dN
EIEnU,

The factor} comes from the fact that half of the particles cross the surface in onetidire and
because their motions are isotropic the average velocity perpendicular sarfaee is%J(this can
be proven in the same way as the fac%oappearing in the pressure integral eq. 3.4). If there is a
gradient in the particle density along thélirection,dn/dz, then the particles moving upwards with
mean free patli on average have a densitfz— ¢) and those moving down on average have a density
n(z + ¢). Therefore the net particle flux across the surface is

J=ton@z-0-Ltun@z+o) = %5-(—25‘;—2) = —%175@.
Eq. (5.9) is the generalisation of this expression to three dimensions.

Suppose now that, in addition to a gradient in particle density, there is a gradithe energy
densityU carried by these particles (e.g. photons or gas particles). Then byggsntiere is a net
flux of energy across the surface, since the particles moving ‘up’ erage carry more energy than
those moving ‘down’. Therefore a gradient in the energy der8ldygives rise to a net energy flux

F=-DVU, (5.10)

Since a gradient in energy density is associated with a temperature gratiert,(0U/dT)y VT =
Cv VT, we can write this as an equation for heat conduction,

F=-KVT with K=3utCy, (5.11)

whereK is theconductivity This description is valid for all particles in LTE, photons as well as gas
particles.

5.2.2 Radiative dffusion of energy

For photons, we can take = c andU = aT%. Hence the specific heat (per unit volumeg =
dU/dT = 4aT3. The photon mean free path can be obtained from the equation of radratiséer,
which states that the intensity of a radiation beam (in a medium without emission) is diminished
over a lengtts by

%
ds

wherex, is the mass absorption diieient or opacity cofficient (in cnf g=1) at frequency. The
mean free path is the distance over which the intensity decreases by adbetavhich obviously

= —xply, (5.12)
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depends on the frequency. If we make a proper average overefieigs (see Sec. 5.2.3), we can
write

1
boh = —. (5.13)
Kp

The quantityk is simply called thepacity We can then compute the radiative conductivity

acT®
Krad = %_’ (5.14)
Kp

such that the radiative energy flux is

acT®
Frad = —Krad VT = —% VT. (5.15)
Kp

In spherical symmetric star the flux is related to the local luminoBity; = /4712 (eq. 5.2). We can
thus rearrange the equation to obtain the temperature gradient

oT 3kp |
- __>F 5.16
or 16racT3r? (5.16)
or when combined with eq. (2.6) fér /om,
oT 3 «l
- - 5.17
om 64r2acr4T3 (.17)

This is the temperature gradient required to carry the entire luminbbiyyradiation. It gives the
fourth stellar structure equation, for the case that energy is transporhetly radiation. A star, or a
region inside a star, in which this holds is said to beaidiative equilibrium or simplyradiative

Eq. (5.17) is valid as long a&n < R, i.e. as long as the LTE conditions hold. This breaks
down when the stellar surface, the photosphere, is approached: thigiie the photons escape, i.e.
tpnh 2 R. Near the photosphere theffision approximation is no longer valid and we need to solve
the full, and much more complicated, equations of radiative transfer. Thie suthject of the study
of stellar atmospheresFortunately, the LTE conditions and thdfdsion approximation hold over
almost the entire stellar interior.

In hydrostatic equilibrium, we can combine egs. (5.17) and (2.13) as follows

d_T_E d_T__GmI dlogT
dn  dm dP  4ar4 P dlogP

so that we can define the dimensionlesdiative temperature gradient

(5.18)

_(dlogT 3 «P
4= \dlogP) ., 16racGmT?

This describes the logarithmic variation Bfwith depth (where depth is now expressed by fihes-
sure for a star in HE if energy is transported only by radiation.
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5.2.3 The Rosseland mean opacity

The radiative dfusion equations derived above are independent of frequergince the fluxF is
integrated over all frequencies. However, in general the opacitficieatx, depends on frequency,
such that the& appearing in eq. (5.16) or (5.17) must represent a proper avevagé&equency. This
average must be taken in a particular way.

If F, dvrepresents the radiative flux in the frequency intervat |- dv], then eq. (5.10) must be
replaced by

oy,

F,=-D,VU,=-D, —VT 5.19
oT ( )
where
c
D, = ict, = : 5.20
3C 3Kvp ( )
The energy density, in the same frequency interval follows from eq. (3.41),= hv n(v),
8rh V3

which is proportional to the Planck function for the intensity of black-baatjiation. The total flux
is obtained by integrating eq. (5.19) over all frequencies,

c (™ 1aU
F=—— ——Ldv|VT. 22
[Spfo K 0T dV] (5.22)
This is eq. (5.11) but with conductivity
c (™ 10U,
Krad = g‘j; K_v aT dv. (5.23)

Comparing with eq. (5.14) shows that the proper average of opacity apé@aes in eq. (5.16) or
(5.17)is

1 1 > 190U,
Z‘Rfo T (5.24)

This is the so-calledRosseland mean opacityrhe factor 4T2 appearing in eq. (5.24) is equal to
f0°°(6UV/6T) dv, so that the Rosseland mean can be seen as the harmonic meamtbfweighting
function 90U, /dT. (The weighting function has a maximum lat ~ 4kT, as can be verified by
differentiating eq. (5.21) with respectTo and subsequently with respectitd

We can interpret the Rosseland mean in another way. The integrand(df24). also appears in
the expression (5.19) for the monochromatic flé, when combined with (5.20). The Rosseland
mean therefore favours the frequency range where the flux is largehér words, i« represents the
averagdransparencyof the stellar gas.

5.2.4 Conductive transport of energy

Collisions between the gas particles (ions and electrons) can also treimspbrUnder normal (ideal
gas) conditions, however, the collisional conductivity is very much smalker the radiative con-
ductivity. The collisional cross sections are typically 3- 10-2°cn? at the temperatures in stellar
interiors, giving a mean free path for collisions that is several ordensaghitude smaller thafpp.
Furthermore the average particle velocity= v3kT/m < c. So normally we can neglect heat
conduction compared to radiativefdision of energy.
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However, the situation can be quiteffdrent when the electrons become degenerate. In that
case both their velocities increase (their momenta approach the Fermi momeetu®ecs 3.3.5)
and, more importantly, their mean free paths increase (most of the quantisnofcghase space
are occupied, so an electron has to travel further to find an empty cetramgfer its momentum).

At very high densities, whete > (pn, electron conduction becomes a much mdfient way of
transporting energy than radiativeffdision (see Sec. 5.3). This is important for stars in late stages
of evolution with dense degenerate cores and for white dwarfs, in wiiiciheat electron conduction
results in almost isothermal cores.

The energy flux due to heat conduction can be written as

Fea=-Kea VT (5.25)
such that the sum of radiative and conductive fluxes is
F = Frad+ Fcd = —(Krad + Keg) VT. (5.26)

We can define aonductive opacity.q by analogy with the radiative opacity, if we write the conduc-
tivity in the same form as eq. (5.14),

4acT?®
cd = .
3Kcd P

(5.27)

Then we can write the combined flux due to radiation and conduction in the samas$ the radiative
flux, eq. (5.15),

4acT3 . 1 1 1
VT with = — 4= (5.28)

F=-
3kp K Krad Kcd

This result simply means that the transport mechanism with the largest fluxomihate, that is, the
mechanism for which the stellar matter has the highest transparencyx défined as in eq. (5.28),
the stellar structure equation (5.17) also accounts forfileets of conduction, if present.

5.3 Opacity

The opacity cofficientx appearing in eq. (5.17) determines the flux that can be transportediby rad
tion for a certain temperature gradient, or more to the point, how large the tetupegradient must
be in order to carry a given luminositypy radiation. Therefore is an important quantity that has a
large dfect on the structure of a star.

5.3.1 Sources of opacity
In the following subsections we briefly describe thffatient physical processes that contribute to the
opacity in stellar interiors, and give some simple approximations.

Electron scattering

An electromagnetic wave that passes an electron causes it to oscillatedatd naother directions,
like a classical dipole. This scattering of the incoming wave is equivalent teffthet of absorption,
and can be described by the Thomson cross-section of an electron
8 € \?
go= L (—) — 6.652x 1025 cn? (5.29)
3 \mec?
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The associated opacity déeient is due to the combined cross-section of all electrons in a unit mass
of gas, which is obtained by dividingr, by p/ne = uemy,

Oe

- 0.20 (1+ X) cn?/g (5.30)

Kes =
Me

Since the electron scattering opacity is independent of frequency, thiesston also gives the
Rosseland mean. In the last equality we have assumed that the gas is conipferelg so that

ue = 2/(1 + X) (eq. 3.20). Electron scattering is an important opacity source in an iogaethat is

not too dense. When the degree of ionization drops (typically WherL0* K in hydrogen-rich gas)

the electron density becomes so small that the electron scattering opacityhigysteduced below
eg. (5.30).

When the photon energy becomes a significant fraction of the rest maiss efectronhy 2
0.1mec?, the exchange of momentum between photon and electron must be takercouat{€omp-
ton scattering). This occurs at high temperature, since the Planck futa®a maximum &ty =
4.965kT (Wien’s law), i.e. wherkT = 0.02m.c? or T = 108 K. At such temperatures the electron
scattering opacity is smaller than given by eq. (5.30).

Free-free absorption

A free electron cannot absorb a photon because this would violate momaniimnergy conser-
vation. However, if a charged ion is in its vicinity, absorption is possible ezaf the electro-
magnetic coupling between the ion and electron. Tigie-free absorptioris the inverse process of
bremsstrahlung, where an electron emits a photon when it passes by aadtgwath an ion.

The full derivation of the absorption cfiient for this process is a quantum-mechanical problem.
However, an approximate calculation has been done classically by Krarherslerived that the
absorption ficiency of such a temporary electron-ion system is proportion#}%o3, wherez; is
the charge of the ion. To obtain the cross-section of a certain, itiis has to be multiplied by the
electron density, and by the time during which the electron and ion will be close enough for the
coupling to occur. This can be estimated from the mean velocity of the eleciren@kT/me)/?, so
thatAt o« 1/ o« T-Y2, j.e. oz o NeTY2Z;2y=3. The opacity cofficient follows by multiplying the
cross section by /p, wheren; is the ion number density, and summing over all ions in the mixture:

Ne 24+-1/2_ -3
Ky ff 0C — nzZ<T v .

In a completely ionized gase/p = 1/(uemy) = (1+ X)/2my. Following Sec. 3.3.3, the sum over ions
can be written a8 Nz = (o/my) 3 (XZ2/A) = (o/my) (X + Y + B), whereB = ;.5 (XiZi%/A) is
the contribution of elements heavier than helium. As long as their abundanoalis sne can take
X +Y + B~ 1to areasonable approximation.

When we take the Rosseland mean, the fagtdtbecomes a factoF 2 (this can be verified by
performing the integration of eq. 5.24 with < v~¢, see Exercise 5.2). We thus obtain

ki oc p T2, (5.31)

An opacity law of this form is calle&ramers opacity Putting in the numerical factors and the
compositional dependence for an ionized gas, the following approximptession is obtained,

ki ~ 3.8x 107?21+ X)p T2 cné/qg. (5.32)

N.B. This formula should be used with caution: it can give some insight in sinipdifgpproaches
but should not be used in serious applications. One omission is a corréation for quantum-
mechanical ffects, the so-called Gaunt factyy.
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Bound-free and bound-bound absorption

Bound-free absorption is the absorption of a photon by a bound elestrereby the photon energy
exceeds the ionization energyf the ion or atom. Computing the opacity due to this process requires
carefully taking into account the atomic physics of all the ions and atomsrriesihe mixture, and

is thus very complicated. Classical considerations, similar to those fofrire@bsorption, show that
the frequency dependence is again~3, as long a$w > yion. Therefore, in rough approximation the
total bound-free opacity is also of the Kramers form. A very approximatadta is

Kkpf & 4.3x 10 (L+ X)Z pT~772 cné/g. (5.33)

Again one should use this formula with caution. It should certainly not béieapfor T < 10*K
because most of the photons are not energetic enough to ionize theredegtiole at very highr
most species are fully ionized so the bound-free opacity is smaller thah.88) 6uggests. Keeping
these limitations in mind, the bound-free opacity is seen to depend directly on thliciig Z. One
thus has, very approximatekss ~ 10°Zx«gz. We may thus expect bound-free absorption to dominate
over free-free absorption fa@ > 1073,

Bound-bound absorption is related to photon-induced transitions betveeed states in atoms or
ions. Although this is limited to certain transition frequencies, the processcdfidient because the
absorption lines are strongly broadened by collisions. Again, the computstimpacity is complex
because one has to include a detailed treatment of line profiles under aavidty wf conditions.
Bound-bound absorption is mainly important for< 10°K, at higher temperatures its contribution
to the total opacity is small.

The negative hydrogen ion

An important source of opacity in relatively cool stars (e.g. in the solar giheos) is formed by
bound-free absorption of the negative hydrogen ion MNeutral hydrogen is easily polarized by a
nearby charge and can then form a bound state with another electrognihization potential of
0.75eV. The resulting His very fragile and is easily ionized at temperatures of a few thousand K.
However, to make the ion requires the presence of both neutral hydesgkfree electrons. The free
electrons come mainly from singly ionized metals such as Na, K, Ca or Al. Thadtirey opacity

is therefore sensitive to metallicity and to temperature. A very approximate farimiuhe range
T~(@-6)x10°K, p ~ (10~ 105 g/cm® and 0001 < Z < 0.02 is

z
K ~ 25 1@31(0—02) P2 T9 en?/g (5.34)

At very low metal abundance afut T < 3000 K the H opacity becomes irfEective. AtT > 10°K
most of the H has disappeared and the Kramers opacity and electron scattering take ove
Molecules and dust

In cool stars withTer < 4000 K opacity sources arising from molecules and (at even lower temper-
atures) dust grains become dominant. Here one has to deal with complicdezllmochemistry

and dust formation processes, which still contains a lot of uncertaintyerMdiist grains form, at

T <1500K, they are veryfeective absorbers in the outer atmospheres of very cool stars.

Conductive opacities

As we saw in Sec. 5.2.4, energy transport by means of heat conduati@so be described by means
of a conductive opacity cdigcient x.q. Under ideal gas conditions, conduction is veryfiioéent

61



compared to radiative transport of energyy (> «rad). Therefore we only need to consider the case
of a degenerate electron gas. In this case the following approximation holds

03 i Z°PXi /A (T/10°K)?
(1+X)2 (po/10Pg/cmd)2
At high densities and low temperatures, the conductive opacity becomgesmaetl because of the

large electron mean free path in a highly degenerate gas. This is whyestatgentellar regions are
highly conductive and rapidly become isothermal.

Keg ~ 44% 1 n/g. (5.35)

5.3.2 A detailed view of stellar opacities

In generalx = «(p, T, X;) is a complicated function of density, temperature and composition. While
certain approximations can be made, as in the examples shown above yéhesegedly too simplified
and inaccurate to apply in detailed stellar models. An additional complication ithéh&osseland
mean opacity (eq. 5.24) is not additive: the opacity of a mixture of gases$amply equal to the sum

of the opacities of its components. Instead, one first has to add the fi®gdependent opacities,

ky = 3 Xikyj and then integrate overto calculate the Rosseland mean.

In practical stellar structure calculations one usually interpolates in prgated opacity tables,
e.g. as calculated in the 1990s by the OPAL project. An example is shown iB.Eifpr a quasi-solar
mixture of elements. One may recognize the various regions in the densityrtdompeplane where
one of the processes discussed above dominates. At low density artdrijggratures has a constant
value given by electron scattering. Opacity increases towards higéied lowerT due to free-free
and bound-free absorptions. Fbr< 10*K opacity decreases drastically due to recombination of
hydrogen, the main opacity source here is theibh. At lower temperatures stilk rises again
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Figure 5.2. Rosseland mean opacities as a functiom ahdp, for a mixture of elements representative of solar
abundancesX = 0.7,Z = 0.02), calculated by the OPAL project for high temperaturestanJ. Ferguson for
low temperatures (lo§ < 3.8). The left panel shows curves of legin cnm?/g) versus temperature for several
values of the density, labelled by the value of o@in g/cm?). The right panel shows contour lines of constant
logk in thep-T plane, in steps of 1.0 betweer and 5, over the region in temperature and density for which
the radiative opacity has been calculated. The thick lineslatailed structure models for main-sequence stars
of 1, 10 and 10M,, as in Fig. 3.4.
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due to molecules and dust formation. Finally, at very high density the opadiiynsnated by the
conductivity of degenerate electrons and decreases strongly witlagiege (just visible in the upper
right corner of Fig. 5.2). It should be clear that there is much more steigtuthe functiork(p, T)
than in the simple power-law approximations, such as the Kramers law. Theridgag and bumps
show that the Kramers law is a rather poor approximation of the actual opacity

For comparison, interior structure models for main-sequence starsfefedit masses are also
shown. The opacity in the interior of aM,, star is dominated by free-free and bound-free absorption,
and is very high (up to fcn?/g) in the envelope, at temperatures betweehdtl 10 K. In the
surface layers the opacity rapidly decreases due to thegdcity. More massive stars are located
at lower densities than the Sun, and generally have much lower opacitiesriertielopes. In the
most massive stars the opacity is dominated by electron scattering, atdod highT. However,
even here one has to deal with additional opacity bumps, most prominentlgétdue to bound-free
transitions of Fe at lo§j ~ 5.3.

Note that the chemical composition, in particular the metalligitgan have a largefiect onk.
This provides the most important influence of composition on stellar structure.

5.4 The Eddington luminosity

We have seen that radiative transport of energy inside a star requieesperature gradienddr,
the magnitude of which is given by eq. (5.16). Sifgy = %aT“, this means there is also a gradient
in the radiation pressure:

dPrag _ 4. 7adT _ _xp |

dr 3 dr 4nc r2’
This radiation pressure gradient represents an outward force due netfiux of photons outwards.
Of course, for a star in hydrostatic equilibrium this outward radiation farast be smaller than the

inward force of gravity, as given by the pressure gradient nepefseHE, eq. (2.12). In other words,

(5.36)

WPrag _ (AP K 1 _Gmp
dr dr /e 4ncrz - r2
This gives an upper limit to the local luminosity, which is known as the (Idgédtington luminosity
4ncG
| < ZOM (5.37)

This is the maximum luminosity that can be carried by radiation, inside a star io$tatic equilib-
rium.

The inequality expressed by eq. (5.37) can be violated in the case of kaxge heat flux (largb,
which may result from intense nuclear burning, or in the case of a velydpgcityx. As we saw in
Sec. 5.3, high opacities are encountered at relatively low temperataegdhe ionization temperature
of hydrogen and helium (and for example in the outer layers of the Sargudh cases hydrostatic
equilibrium (eq. 2.13) and radiative equilibrium (eq. 5.17) cannot hold lsameously. Therefore, if
the star is to remain in HE, energy must be transported b¥ferdnt means than radiativefidision.
This means of transport nvection the collective motion of gas bubbles that carry heat and can
distribute it dficiently. We shall consider convection in detail in Sec. 5.5. It will turn outélaa (5.37)
is a necessary, but not afBaient condition for a region of a star to be stable against convection.

The surface layer of a star is always radiative, since it is from hetestieagy escapes the star in
the form of photons. Applying eq. (5.37) at the surface of the stat M) we get

47cGM
L < Ledq = ”CK , (5.38)
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whereck is the opacity in the photosphere. Violation of this condition now means violatidry-of
drostatic equilibrium: matter is accelerated away from the star by the photssupee giving rise to
violent mass loss. The Eddington luminosity expressed by eq. (5.38) is alcsitidlar luminosity
that cannot be exceeded by a star in hydrostatic equilibrium. If we asgumbe approximately
constant (in very luminous main-sequence stars the opacity is dominatedchpmlscattering, so
this is not a bad assumption) thegyq is only dependent oM. It can be expressed as follows

Leqq = 3.8 % 104(Mﬂ)(0‘34—m‘2/g) Lo. (5.39)

o) K

The value of 0.34 cAlg corresponds to the electron scattering opacityder 0.7.

Since Lgyq is proportional toM, while stars (at least on the main sequence) follow a mass-
luminosity relationL o« M* with x > 1 (Sec. 1.1.2), this implies that for stars of increasing mass
L will at some point exceellggg. Hence, we can expectaaximum mast® exist for main-sequence
stars. Note that the existence of a steep mass-luminosity relationXwit) can be derived directly
for stars in which energy transport occurs by radiation (see Exescdsend also Sec. 7.4), without
having to assume anything about how energy is generated.

5.5 Convection

For radiative difusion to transport energy outwards, a certain temperature gradiergdsdegiven
by eq. (5.16) or eq. (5.17). The larger the luminosity that has to be cathiethrger the temperature
gradient required. There is, however, an upper limit to the temperatadiegt inside a star — if this
limit is exceeded an instability in the gas sets in. This instability leads to cyclic magiasnotions
of the gas, known asonvection Convection can be regarded as a type of dynamical instability,
although (as we shall see later in this section) it does not have disruptigeguences. In particular,
it does not lead to an overall violation of hydrostatic equilibrium. Convectifects the structure of
a star only as anficient means of heat transport and as fiicient mixing mechanism.

In Sec. 5.4 we already derived an upper limit to the luminosity that can betreted by radiation.
We will now derive a more stringent criterion for convection to occurebasn considerations of
dynamical stability.

5.5.1 Ciriteria for stability against convection

So far we have assumed strict spherical symmetry in our description of &tédeors, i.e. assuming
all variables are constant on concentric spheres. In reality there wiliad! fluctuations, arising
for example from the thermal motions of the gas particles. If these small patims do not grow
they can safely be ignored. However, if the perturbations do grow theygive rise to macroscopic
motions, such as convection. We therefore need to considdlytiamical stabilityof a layer inside a
star against such perturbations.

Consider a mass element that, due to a small perturbation, is displaced sjpwarsmall distance
as depicted in Fig. 5.3. At its original position (at radijghe density and pressure argand Py,
and at its new positionr (+ Ar) the ambient density and pressure ageand P,. Since pressure
decreases outwardB; < P; and the gas element will expand to restore pressure equilibrium with its
surroundings. Hence the pressure of the gas element at positiéta 2iB,, but its new density after
expansiorpe is not necessarily equal 9. If pe > p2, the gas element will experience a net buoyancy
force downwards (by Archimedes’ law), which pushes it back towasdsriginal position. Then the
small perturbation is quenched, and the situation is stable. On the otherithane, o, then there is
a net buoyancy force upwards and we haveiastablesituation that leads to convection.
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Figure 5.3. Schematic illustration of the Schwarzschild criterion &ability against convection. A gas
element is perturbed and displaced upwards from positian dosition 2, where it expands adiabatically to
maintain pressure equilibrium with its surroundings. #f density is larger than the ambient density, it will
sink back to its original position. If its density is smajlaowever, buoyancy forces will accelerate it upwards:
convection occurs. On the right the situation is shown inressig-pressure diagram. A layer is stable against
convection if the density varies more steeply with presshae for an adiabatic change.

The expansion of the gas element as it rises awvasccurs on the local dynamical timescale (i.e.
with the speed of sound), which is typically much shorter than the local timefscdieat exchange,
at least in the deep interior of the star. The displacement and expanstbe ghs element will
therefore be very close to adiabatic. We have seen in Sec. 3.4 that thatadéexponeny,q defined
by eq. (3.56) describes the logarithmic response of the pressure tiadaticichange in the density.
Writing asépe andsPe the changes in the density and pressure of the element when it is displaced
over a small distancar, we therefore have

%Pe = Yad%- (5.40)
e Pe
HeredPe is determined by the pressure gradieR{dr inside the star becaus® = Py, i.e. 6P =
P, — P, = (dP/dr) Ar. Therefore the change in denséiye follows from eq. (5.40)

pe 1 dP
We can writeoe = p1 + dpe andp2 = p1 + (do/dr) Ar, where @/dr is the density gradient inside the
star. We can then express the criterion for stability against convegtionp-, as

@
dr

which combined with eq. (5.41) yields an upper limit to the density gradient faciwa layer inside
the star is stable against convection,
1do 1dP 1

AR (5.43)

Spe > —= A, (5.42)

where we have replacdel andpe by P andp, since the perturbations are assumed to be very small.
Remember, however, that botp/dr and d°/dr are negative. Therefore, in absolute value the sign
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of eq. (5.43) reverses, which means that the density gradient mustedgerthan a critical value,
determined byy,g. If we divide (5.43) by &/dr we obtain the general criterion for stability against
convection, which is depicted on the right-hand side in Fig. 5.3,

dlogp 1
d10gP ~ yad (5.44)

If condition (5.44) is violated then convective motions will develop. Gas msthat, due to
a small perturbation, are slightly hotter than their surroundings will move apsporting their heat
content upwards until they are dissolved. Other bubbles may be slightlgr¢ban their environment,
these will move down and have a smaller heat content than their surrosndtgen these bubbles
finally dissolve, they absorb heat from their surroundings. Thezefmth the upward and downward
moving convective bubbledfectively transport heat in the upward direction. Hence thererista
upward heat fluxeven though there is no net mass flux, since upward and downwardgrimuitles
carry equal amounts of mass. This is the principle behind convectivdérhaaport.

The Schwarzschild and Ledoux criteria

The stability criterion (5.44) is not of much practical use, because it ingawenputation of a density
gradient which is not part of the stellar structure equations. We wouldratve a criterion for the
temperature gradient, because this also appears in the equation foveagisport. We can rewrite
eg. (5.44) in terms of temperature by using the equation of state. We writeuhdayof state in its
general, dferential form (eq. 3.48) but now also take into account a possible variatmmposition.
If we characterize the composition by the mean molecular weighenP = P(p, T, 1) and we can
write

dP daTr do du

FzXT? +XpF +X’u/_l , (545)

with yt andy,, defined by egs. (3.49) and (3.50), gndis defined as

dlogP
Xﬂ=( g) : (5.46)
o, T

dlogu

For an ideal gag, = —1. With the help of eq. (5.45) we can write the variation of density with
pressure through the star as

dlogp il— dIogT_ dlogu
dlogP  x, XT dlogP ~** dlogP

1
= — A -x1V—xuVW). (5.47)
Xp

Here we have introduced, by analogy with eq. (5.18), the sym®bois dlogT/dlogP andV, =
dlogu/dlogP. These quantities represent the actual gradients of temperature androfmo&ecular
weight through the star, regardifas the variable that measures depth. In the displaced gas element
the composition does not change, and from eq. (3.63) we can write

1 1
— = —(1-x1Vad).
Yad Xp

so that the stability criterion (5.44) becomes

V< Va- v, (5.48)
XT
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If all the energy is transported by radiation tHer: V,,qas given by eq. (5.18). Hence we can replace
V by V,aqin eg. (5.48) and thus arrive at thedoux criterionwhich states that a layer is stable against
convection if

Viad < Vaa— £V, | (Ledoux) (5.49)
XT

In chemically homogeneous layevg = 0 and eq. (5.49) reduces to the simflehwarzschild crite-
rion for stability against convectidn

Viad < Vad (Schwarzschild) (5.50)

N.B. Note the diference in meaning of the varioWssymbols appearing in the above criteriyqg
andV, represent apatialgradient of temperature and mean molecular weight, respectively. On the
other handyV,q represents the adiabatic temperature variation in a specific gas elemergainga
change in pressure.

For an ideal gas(r = 1, x, = —1) the Ledoux criterion reduces to

Viad < Vad+ V. (5.51)

The mean molecular weight normally increases inwards, because in dagger nuclear reactions
have produced more and more heavy elements. Therefore noially0, so that according to the
Ledoux criterion a composition gradient has a stabilizifiga. This is plausible because an upwards
displaced element will then have a highethan its surroundings, so that even when it is hotter than
its new environment (which would make it unstable according to the Schebdld sriterion) it has a
higher density and the buoyancy force will push it back down.

Occurrence of convection

According to the Schwarzschild criterion, we can expect convectiondorot

3 P«
Viad= =————=—— > Vaa 5.62
4= TracGTam (6-52)

This requires one of following:

¢ A large value ofk, that is, convection occurs in opaque regions of a star. Examples are the
outer envelope of the Sun (see Fig. 5.2) and of other cool stars,4®opacity increases with
decreasing temperature. Since low-mass stars are cooler than hightanaswe may expect
low-mass stars to have convective envelopes.

e Alarge value of/m, i.e. regions with a large energy flux. We note that towards the centre of a
starl/m =~ ey by eq. (5.4), so that stars with nuclear energy production that is strpegled
towards the centre can be expected to have convective cores. Weesh#tlat this is the case
for relatively massive stars.

\We can relate the convection criterion to the Eddington limit derived in Sdc.By writing V,,q in terms ofl, lggq
(defined in eq. 5.37) anB,q = (1 — B)P we can rewrite the Schwarzschild criterion for stability as

I <4(1-pB)Vadledd

(see Exercise 5.6). Fgr> 0 andV,q > 0.25 we see that convection already sets in before the Eddington limit isagach
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Figure 5.4. The variation ofV4q (red, solid line) andv,,q (blue, dashed line) with radius in two detailed
stellar models of M, and 4M,, at the start of the main sequence. The solar-mass model haxy davge
opacity in its outer layers, resulting in a large valueVfy which gives rise to a convective envelope where
Viad > Vag (indicated by gray shading). On the other hand, tiM.,4dmodel has a hotter outer envelope with
lower opacity so tha¥,,q Stays small. The large energy generation rate in the ceowaesults in a larg¥ g
and a convective core extending over the inne.4In both modelsv, 4 ~ 0.4 since the conditions are close

to an ideal gas. In the surface ionization zones, how&gr< 0.4 and a thin convective layer appears in the
4 Mg model.

e A small value ofV,q, which as we have seen in Sec. 3.5 occurs in partial ionization zones at
relatively low temperatures. Therefore, even if the opacity is not vegelahe surface layers
of a star may be unstable to convection. It turns out that stars of all masseshallow surface
convection zones at temperatures where hydrogen and helium ardyantized.

These &ects are illustrated in Fig. 5.4.

5.5.2 Convective energy transport

We still have to address the question how much energy can be transppdedvection and, related

to this, what is the actual temperature gradiiriside a convective region. To answer these questions
properly requires a detailed theory of convection, which to date remaiesyadifficult problem in
astrophysics that is still unsolved. Even though convection can be simulateetically, this requires
solving the equations of hydrodynamics in three dimensions over a huge ofmength scales and
time scales, and of pressures, densities and temperatures. Such simaleitverefore very time-
consuming and still limited in scope, and cannot be applied in stellar evolution@@dms. We have

to resort to a very simple one-dimensional ‘theory’ that is based on restfmates, and is known as
themixing length theoryMLT).

In the MLT one approximates the complex convective motions by blobs of gasrével up or
down over a radial distana&, (the mixing length), after which they dissolve in their surroundings
and lose their identity. As the blob dissolves it releases its excess heat toasralings (or, in the
case of a downward moving blob, it absorbs its heat deficit from its sndiags). The mixing length
{m is an unknown free parameter in this very schematic model. One presumég thaif the order
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of the local pressure scale height, which is the radial distance over Weghressure changes by an
e-folding factor,

dr P
dinP| "~ pg’
The last equality holds for a star in hydrostatic equilibrium. The assumptiorfithat Hp is not
unreasonable considering that a rising gas blob will expand. Suppibsiniy a convective region in
a star, about half of a spherical surface area is covered by risig blod the other half by sinking
blobs, the expanding rising blobs will start covering most of the surfee after rising over one or
two pressure scale heights.

p= (5.53)

The convective energy flux

Within the framework of MLT we can calculate the convective energy fluxi, thie corresponding
temperature gradient required to carry this flux, as follows. After risirey a radial distancé;, the
temperature dierence between the gas element (e) and its surroundings (s) is

dT dT dar
W)e Ll P A(E)gm.
Here dr'/dr is the ambient temperature gradientT (dr). is the variation of temperature with radius
that the element experiences as it rises and expands adiabatically(dhar) is the diference
between these two. We can writd in terms ofV andV 4 by noting that

AT:Te—TS:[(

dT dinT dinT dIinP T dT T
@ o " TdmPp o~ mey A (E)e‘_H_pVad’
noting that the -’ sign appears becaus®r < 0 in eq. (5.53). Hence
AT =T m (V = Vag). (5.54)
Hp

The excess of internal energy of the gas element compared to its stimgamsAu = cpAT per
unit mass. If the convective blobs move with an average velagityhen the energy flux carried by
the convective gas elements is

Fconv = UCpAU = UCpCPAT (555)
We therefore need an estimate of the average convective velocity. lifffeeetice in density between
a gas element and its surroundingajs then the buoyancy force will give an acceleration
Ap AT
a=-—~(QJ—,
g P g T
where the last equality is exact for an ideal gas for witch oT andAP = 0. The blob is accelerated
over a distancé, i.e. for a timet given by{m = %atz. Therefore its average velocityig ~ {m/t =

\3ma, that is
., AT tm’g
Uc X Qfmg? X _2Hp (V - Vad)- (5-56)

Combining this with eqg. (5.55) gives
2

14 [
Fconv = pCpT (H_n;) %g Hp (V - Vad)g/z- (5-57)

The above two equations relate the convective velocity and the conventivgy flux to the so-called
superadiabaticityv — V4, the degree to which the actual temperature gradiexceeds the adiabatic
value.
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Estimate of the convective temperature gradient

Which value ofV — V44is required to carry the whole energy flux of a star by convectionkFp&y =
|/47r?? To make a rough estimate, we take typical values for the interior making ube wirial
theorem and assuming an ideal gas:

— 3M — u GM 5R P R GM
cp= 2 T EEY 2R R = /_= /_T~ |EM
PEP= hRe R R P 2u gre o u R

noting that the last expression is also approximately equal to the average spsoundss in the
interior. We then obtain, neglecting factors of order unity,

3/2
M/GM
I:conv ~ @(?) (V - Vad)3/2- (5-58)

If we substituteFcony = | /4712 ~ L/R2 then we can rewrite the above to

LR
v ()

2/3
PR

&N (5.59)

Putting in typical numbers, i.e. solar luminosity, mass and radius, we obtain ltbeifg rough
estimate for the superadiabaticity in the deep interior of a star like the Sun

V — Vag~ 1078

Convection is sofficient at transporting energy that only a tiny superadiabaticity is requirbis
means thaFony > Fraq in coOnvective regions. A more accurate estimate yi&ldsVag ~ 107> —
107, which is still a very small number. We can conclude that in the deep stellaiointee actual
temperature stratification is nearly adiabatic, and independent of the déthiestbeory. Therefore
a detailed theory of convection is not needed for energy transporiyection and we can simply
take

g—; - —% gv with V=V (5.60)

However in the outermost layers the situation i$atient, because < p andT < T. Therefore
Fconv IS much smaller and the superadiabaticity becomes substaitial ¥V,q). The actual tem-
perature gradient then depends on the details of the convection thedhin We context of MLT,
the T-gradient depends on the assumed value®f= ¢n/Hp. In practice one often calibrates de-
tailed models computed with fiierent values of, to the radius of the Sun and of other stars with
well-measured radii. The result of this procedure is that the best matctainet forany, ~ 1.5-2.

As the surface is approached, convection becomes vefiycieat at transporting energy. Then
Fconv < Frag SO that radiation féectively transports all the energy, ald~ V54 despite convection
taking place. Thesefects are shown in Fig. 5.5 for a detailed solar model.

5.5.3 Convective mixing

Besides being anficient means of transporting energy, convection is also a V@igient mixing
mechanismWe can see this by considering the average velocity of convective egll$5.56), and
taking £y ~ Hp and v/gHp =~ v, SO that

Uc R Us \/V - Vad. (561)
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Figure 5.5. The variation 0V4 (red, solid line) an&,,q (blue, dashed line) in the same detailed model ;1

as shown in Fig. 5.4, but now plotted against Btather than radius to focus on the outermost layers (where
the pressure gradient is very large). The thick green limsvsithe actual temperature gradi®tThe partial
ionization zones are clearly visible as depressiongj{compare to Fig. 3.5b). The convection zone stretches
from logP ~ 14 to 5 (indicated by a gray bar along the bottom). In the detsior (for logP > 8) convection

is very dficient andV = V.4 Higher up, at lower pressures, convection becomes lesseandfficient at
transporting energy and requires a largegradient,V > V.q. In the very outer part of the convection zone
convection is very inficient andv = V4.

Becausé —V,qis only of the order 1¢° in the deep interior, typical convective velocities are strongly
subsonic, by a factor 1073, except in the very outer layers wheVe- Vaq is substantial. This is
the main reason why convection has no disrupti¥eats, and overall hydrostatic equilibrium can be
maintained in the presence of convection.

By substituting into eq. (5.61) rough estimates for the interior of a staryd.e. VGM/R and
eq. (5.59) forV — V,q, we obtainue ~ (LR/M)Y3 ~ 5 x 10%cnys for a star like the Sun. These
velocities are large enough to mix a convective region on a small timescale.aflestimate the
timescale on which a region of radial side= qRis mixed asrmix ~ d/vc ~ q(R°M/L)Y/3, which
is ~ g x 10" sec for solar values. Depending on the fractional exteot a convective region, the
convective mixing timescale is of the order of weeks to months. Hefpge<x 1k < Thue SO that
over a thermal timescale, and certainly over a nuclear timescale, a coevegfion inside a star will
be mixed homogeneously. (Note that convective mixing remains ¥Bcyeat in the outer layers of a
star, even though convection becomedtingnt at transporting energy.)

This has important consequences for stellar evolution, which we will erteoin future chapters.
Briefly, the large #iciency of convective mixing means that:

e A star in which nuclear burning occurs incanvective corevill homogenize the region in-
side the core by transporting burning ashes (e.g. helium) outwards eh@efg. hydrogen)
inwards. Such a star therefore has a larger fuel supply and cardatadifietime compared to
the hypothetical case that convection would not occur.

o A star with a deegonvective envelopsuch that it extends into regions where nuclear burning
has taken place, will mix the burning products outwards towards the surfahis process
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(often called ‘dredge-up’), which happens when stars become ratsg@an therefore modify
the surface composition, and in such a star measurements of the suidadaiates provide a
window into nuclear processes that have taken place deep inside the star.

Composition changes inside a star will be discussed in the next chapter.

5.5.4 Convective overshooting

To determine the extent of a region that is mixed by convection, we need torloakclosely at what
happens at the boundary of a convective zone. According to theegBesehild criterion derived in
Sec. 5.5.1, in a chemically homogeneous layer this boundary is located atrtheeswherev,,g =

Vag At this point the acceleration due to the buoyancy foece,g(V — Vaq), vanishes. Just outside
this boundary, the acceleration changes sign and a convective buililide wtrongly braked — even
more so when the non-mixed material outside the convective zone has gd@mdrhence a lower
density. However, the convective eddies have (on average) aaronslocity when they cross the
Schwarzschild boundary, and will’ershooby some distance due to their inertia. A simple estimate
of this overshooting distance shows that it should be much smaller tharsaresale height, so that
the Schwarzschild criterion should determine the convective bound#eyapcurately. However the
convective elements also carry some heat and mix with their surroundintigtbothV — V44 and

the u-gradient decrease. Thus also ttigeetive buoyancy force that brakes the elements decreases,
and a positive feedback loop can develop that causes overshootingndteto penetrate further and
further. This is a highly non-linearfiect, and as a result the actual overshooting distance is very
uncertain and could be substantial.

Convective overshooting introduces a large uncertainty in the extent efdnegions, with im-
portant consequences for stellar evolution. A convectively mixed catddisubstantially larger will
generate a larger fuel supply for nuclear burning, and tifiests both the hydrogen-burning lifetime
and the further evolution of a star. In stellar evolution calculations ondlyqsametrizes thefeect
of overshooting by assuming that the distadggby which convective elements penetrate beyond the
Schwarzschild boundary is a fixed fraction of the local pressure beadht,d,y = aoyHp. Hereagy
is a free parameter, that can be calibrated against observations @eteiCd).

Suggestions for further reading

The contents of this chapter are also covered by Chapters 3, 5 and &ofrylby Chapters 4, 5, 7
and 17 of Kepennann and by Chapters 4 and 5 ofalken.

Exercises

5.1 Radiation transport
The most important way to transport energy form the intesicthe star to the surface is by radiation,
i.e. photons traveling from the center to the surface.

(a) How long does it typically take for a photon to travel fréne center of the Sun to the surface?
[Hint: estimate the mean free path of a photon in the cengigibns of the Sun.] How does this
relate to the thermal timescale of the Sun?
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(b) Estimate a typical value for the temperature gradi@ntdd. Use it to show that the fference in
temperaturéd\T between to surfaces in the solar interior one photon mearpéht,, apart is

aT
AT = lngr ~ 2% 107*K.

In other words the anisotropy of radiation in the stellaeridr is very small. This is why radiation
in the solar interior is close to that of a black body.

(c) Verify that a gas element in the solar interior, whichiaées as a black body, emits 6 x
10%%ergeni?st.
If the radiation field would be exactly isotropic, then thensaamount of energy would radiated
into this gas element by the surroundings and so there wauittbnet flux.

(d) Show that the minute deviation from isotropy betweenswdaces in the solar interior one photon
mean free path apartat- R,/10 andT ~ 107 K, is suficient for the transfer of energy that results
in the luminosity of the Sun.

(e) Why does the diusion approximation for radiation transport break down mitie surface (pho-
tosphere) of a star is approached?

5.2 Opacity

(a) Identify the various processes contributing to the d@paxs shown in Fig. 5.2, and thE andp
ranges where they are important.

(b) Compare the opacity curve for lpg= —6 in the left panel of Fig. 5.2 to the approximations given
in Sec. 5.3.1 for (1) electron scattering, (2) free-freeogson, (3) bound-free absorption and (4)
the H ion. How well do these approximations fit the realistic opacurve?

(c) Calculate (up to an order of magnitude) the photon mesafath in a star of U, at radii where
the temperature is 1&, 10°K and 1@ K, using the right panel of Fig. 5.2.

(d) Suppose that the frequency-dependent opacitfficamt has the form, = xgv~*. Show that the
Rosseland mean opacity depends on the temperature ds®.

5.3 Mass-luminosity relation for stars in radiative equilibrium

Without solving the stellar structure equations, we canatly derive useful scaling relations. In this
guestion you will use the equation for radiative energydpamt with the equation for hydrostatic equi-
librium to derive a scaling relation between the mass andutiménosity of a star.

(a) Derive how the central temperatuiie, scales with the mas$4, radius,R, and luminosity,L,
for a star in which the energy transport is by radiation. Tdtds, use the stellar structure equa-
tion (5.16) for the temperature gradient in radiative @friim. Assume that ~ R and that the
temperature is proportional @, | ~ L and estimating @/dr ~ - T/R.

(b) Derive howT, scales withM andR, using the hydrostatic equilibrium equation, and assurtiiag
the ideal gas law holds.

(c) Combine the results obtained in (a) and (b), to derive hagales withM andR for a star whose
energy transport is radiative.

You have arrived at a mass-luminosity relation without asisg anything about how the energy is
produced only about how it igransported(by radiation). It shows that the luminosity of a stamnist
determined by the rate of energy production in the centrebfpunow fast it can be transported to the
surface!

(d) Compare your answer to the relation betwéérand L which you derived from observations
(Exercise 1.3). Why does the derived power-law relatiort stateviate from observations for low
mass stars? Why does it deviate for high mass stars?
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5.4 Conceptual questions: convection

(&) Why does convection lead to a net heat flux upwards, evamgththere is no net mass flux
(upwards and downwards bubbles carry equal amounts of thass)

(b) Explain the Schwarzschild criterion
dinT . dinT
dinP/ 4 \dInP/ 4
in simple physical terms (using Archimedes law) by drawirgghematic picture . Consider both
caseV,ad > VagandV 44 < Vag. Which case leads to convection?

(c) What is meant by theuperadiabaticityof a convective region? How is it related to the convective
energy flux (qualitatively)? Why is it very small in the interiof a star, but can be large near the
surface?

5.5 Applying Schwarzschild’s criterion

(a) Low-mass stars, like the Sun, have convective enveldffesfraction of the mass that is convec-
tive increases with decreasing mass. ARl star is completely convective. Can you qualitatively
explain why?

(b) In contrast higher-mass stars have radiative envelapdsconvective cores, for reasons we will
discuss in the coming lectures. Determine if the energysprart is convective or radiative at two
different locationsr(= 0.242R, andr = 0.670R;) in a 5M, main sequence star. Use the data of a
5 My model in the table below. You may neglect the radiation presand assume that the mean
molecular weighg: = 0.7.

r'Ro | m/Mg Li/Lo T [K] plgcm] [ «[g7T cn¥]
0.242] 0.199 | 340x 1C? | 252x 10’ 18.77 0.435
0.670| 2.487 | 5.28x 10? | 1.45x 10’ 6.91 0.585

5.6 The Eddington luminosity
The Eddington luminosity is the maximum luminosity a staitiwadiative energy transport) can have,
where radiation force equals gravity.
(&) Show that

47cGm
Imax = .
K

(b) Consider a star with a uniform opacityand of uniform parameter 4 8 = P,9/P. Show that
L/Lgqq = 1 — B for such a star.

(c) Show that the Schwarzschild criterion for stability ig& convectiorV,,q < Vaq can be rewritten
as:
[ I:)rad
— <4—V
.. < p ad

(d) Consider again the star of question (b). By assumingitias a convective core, and no nuclear
energy generation outside the core, show that the masgfraaftthis core is given by
Mcore — 1
M 4Va4
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Chapter 6

Nuclear processes in stars

For a star in thermal equilibrium, an internal energy source is requiredaadmthe radiative energy
loss from the surface. This energy source is providedustear reactionghat take place in the deep
interior, where the temperature and density affigantly high. In ordinary stars, where the ideal-
gas law holds, this stellar nuclear reactor is very stable: the rate of nueksaions adapts itself to
produce exactly the amount of energy that the star radiates away froorfaise. Nuclear reactions
do not determine the luminosity of the star — this is set by how fast the enenglyecransported,
i.e. by the opacity of the stellar gas — but they do determine for how long théssthate to sustain
its luminosity. In stars composed of degenerate gas, on the other hafehmeactions are unstable
and may give rise to flashes or even explosions.

Apart from energy generation, another importafieéet of nuclear reactions is that they change
the composition by transmutations of chemical elements into other, usually hedeieents. In this
way stars produces all the elements in the Universe heavier than heliunmoeesg calledtellar
nucleosynthesis

6.1 Basic nuclear properties

Consider a reaction whereby a nucleligzacts with a particla, producing a nucleu¥ and a particle
b. This can be denoted as

X+a—->Y+b or X(a, b)Y . (6.1)

The particleais generally another nucleus, while the particleould also be a nucleus;aphoton or
perhaps another kind of particle. Some reactions produce more than ttiicdgza(e.g. when a weak
interaction is involved, an electron and anti-neutrino can be producedliticadto nucleusY), but
the general principles discussed here also apply to reactions invohffiegedit numbers of nuclei.
Each nucleus is characterized by two integers, the chgr@representing the number of protons in
the nucleus) and the baryon number or mass nurmbéequal to the total number of protons plus
neutrons). Charges and baryon numbers must be conserved dugagtin, i.e. for the example
above:

Ix +2Za =2y + 2y and Ax + Ag = Ay + Ap. (62)

If a or b are non-nuclear particles théy = 0, while for reactions involving weak interactions the
lepton number must also be conserved during the reaction. Therefprihi@e of the reactants
uniquely determine the fourth.
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6.1.1 Nuclear energy production

The masses of atomic nuclei are not exactly equal to the sum of the masisesnafividual nucleons
(protons and neutrons), because the nucleons are bound togettier $tyong nuclear force.
denotes the mass of a nucléuthen thebinding energyof the nucleus can be defined as

Egi = [(A - Z)my + Zimp — m] ¢, (6.3)

wherem, andm, are the masses of a free neutron and proton respectively. Therafttx@ighy A
is conserved during a nuclear reaction, the sum of the actual massbk&hunthe reaction is not.
This mass dferenceAm is converted into energy according to Einstein’s formila= Am¢. The
energy released by a reaction of the kiXi@, b)Y is therefore

Q= (Mx + My — My — my) ¢%. (6.4)

Note thatQ may be negative if energy is absorbed by the reaction; such reactmoaldendother-
mic. Reactions that release ener@y ¥ 0) are callecexothermic

In practice, one often uses atomic masses rather than nuclear massesitatec@Ic This is
allowed because the number of electrons is conserved during a readespite the fact that the
nuclei are completely ionized under the conditions where nuclear reatdicnplace. Atomic masses
of a few important isotopes are given in Table 6.1. The energy releagadnction is related to the
so-calledmass defeadf nuclei, defined as

AM; = (m — Amy) ¢, (6.5)
Since nucleon number is conserved during a reaction, we can write §5.4) a
QIAMx+AMa—AMy—AMb. (66)

Nuclear binding energies and reactiQavalues are usually expressed in MeV. Published tables of
atomic masses often list the mass defects in MeV, rather than the masses thentdetwember that
my, is defined as/IL2 times the mass of tH€C atom; a useful identity igy,c? = 931494 MeV.

When comparing dierent nuclei, théinding energy per nucleongfA is a more informative
quantity tharEg itself. In Fig. 6.1 this quantity is plotted against mass nun#oaivith the exception
of the lightest nuclei, typical values are around 8 MeV. This reflects tbet shAnge of the strong
nuclear force: a nucleon only ‘feels’ the attraction of the nucleons in its imatesgicinity, so that
Eg/A quickly saturates with increasiny There is a slow increase withup to a maximum at®Fe,

Table 6.1. Atomic masses of several important isotopes.

element Z A M/my, element Z A M/my, element Z A M/my
n 0 1 1.008665 C 6 12 12.000000 Ne 10 20 19.992441
H 1 1 1.007825 6 13 13.003354 Mg 12 24 23.985043
1 2 2.014101 N 7 13 13.005738 Si 14 28 27.976930
He 2 3 3.016029 7 14 14.003074 Fe 26 56 55.934940
2 4 4.002603 7 15 15.000108 Ni 28 56 55.942139
Li 3 6 6.015124 (0] 8 15 15.003070
3 7 7.016003 8 16 15.994915
Be 4 7 7.016928 8 17 16.999133
4 8 8.005308 8 18 17.999160
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which hasEg/A = 8.79 MeV, beyond which the binding energy per nucleon decreasesds\ager
A. This decrease is due to the increase in the number of pr@avith A: the protons inside the
nucleus experience a repulsive Coulomb force, which has a long eardjdoes not saturate with
increasingZ. There is additional structure in the curve, caused by the shell struzftumeclei and
pairing dfects.

The most tightly bound nuclei occur around the maximur@®&e. Energy can be gained from
the fusion of light nuclei into heavier ones as longeagA increases; this is the main energy source
in stars. Fusion of nuclei heavier thafFe would be endothermic and does not occur in nature (but
energy can be released by fission reactions that break up heavy intléghter ones).>Fe thus
forms the natural endpoint of the stellar nuclear reaction cycles. In éngially consisting mostly
of hydrogen, each step in the transformation of H into Fe releases ereigyal of 8.8 MeV per
nucleon, of which 7.0 MeV are already used up in the first step, the fasiblinto He.

6.2 Thermonuclear reaction rates

Consider again a reaction of the typéa, b)Y. Let us first suppose that particl¥sare bombarded
by particlesa with a particular velocitys. The rate at which they react then depends onctbes-
sectioni.e. the dfective surface area of the partictdor interacting with particle. The cross-section
is defined as

_ number of reactionX(a, b)Y per second

7= flux of incident particles

’

which indeed has a unit of area (m We denote the reacting particl¥sanda by indicesi and j
and their number densities asandnj, respectively. The incident flux of particless thenn; v, so
that the number of reactions with a certain partXleaking place per second iig v o. The number
of reactions per second in a unit volume is therefore

Fij =hninjvo,

which defines the reaction rate at a particular relative velagityrhis expression applies X and
a are of a diferent kind. If the reacting particles are identical, then the number of pessicting
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pairs is notn; but%ni(ni -1 = %nlz for large particle numbers. Thus we can write more generally

1
1= T, Ve (6.7)
sincesj; = 0ifi # jandsj; = Lifi = j.
In general,c = o(v) depends on the relative velocity. In a stellar gas there is a distribution of
velocities¢(v), normalized such tha}goo ¢(v)dv = 1. The overall reaction rate, i.e the number of
reactions taking place per second and per unit volume, is therefore

1 o 1
rj = :L_'_—(Sijn,nj\f0 ¢() o(wvdv = 1+—6”

In an ideal gas in LTE, the particle velocities are given by the Maxwell-Boltzrmdistribution,
eg. (3.13). If each patrticle velocity distribution is Maxwellian, then so is ttedative velocity distri-
bution,

ninj{ov). (6.8)

,( M \3/2 2
¢(U) = 4dnv (m) eXp(—%) , (69)
wheremis the reduced mass in the centre-of-mass frame of the patrticles,
mm;
- ) (6.10)
m + m;

We replace the relative velocityby the kinetic energy in the centre-of-mass fraie; %mvz. Using
the fact thatp(v) dv = ¢(E) dE, we can write the average over in eq. (6.8) as

8\ L, E
<au>=(77n) (KT)"3/2 fo o-(E)Eexp(—ﬁ) dE. (6.11)

This depends only on temperature, i.e. the dependence on velocity in®du¢®s into a dependence

on thetemperaturen the overall reaction rate. The temperature dependence of a nudetioneis

thus expressed by the fact@rv). To understand this temperature dependence, we must consider in
more detail the reaction cross sections and their dependence on energy.

6.2.1 Nuclear cross-sections

The cross-sectioor appearing in the reaction rate equation (6.8) is a measure of the probability tha
a nuclear reaction occurs, given the number densities of the reactifgj. ndthile the energy gain
from a reaction can be simply calculated from the mass deficits of the nucleiydhs-section is
much more diicult to obtain. Classically, the geometrical cross-section for a reactiorebatnuclei

i andj with radii R andR;j is o = (R + Rj)z. A good approximation to the nuclear ‘radius’, or rather
for the range of the nuclear force, is

R ~RA”?  with Ry=144x10"cm (6.12)

This would yield typical cross-sections of the order 0f¥0-10-24 cn?. On the other hand, quantum-
mechanically the particles ‘see’ each other as smeared out over a lengthteghe de Broglie
wavelength associated with their relative momenfum

_h h
P (2mBpYZ
with mandE the reduced mass and relative kinetic energy as defined before. Taquasity assumes
non-relativistic particles. A better estimate of the geometrical cross-sectibariforeo = 712, At
typical conditions in the stellar gas, this is (much) larger than the classical éstmael > R +R;.
The real situation is much more complicated owing to a numbeffetts:

(6.13)
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e Charged nuclei experience a repulsive Coulomb force which, althoeghev than the strong
nuclear force, has a much longer range. This Coulomb barrier wowerany reaction to
occur under stellar condition, were it not for the quantum-mechanicalel gfect

e The nature of the force involved in the reaction determines the strength witénaction. For
a reactionX(a, b)Y, the emitted particle may be either another nucleuspaoton, or an &
or €'y pair. In the first case, only the strong force is involved and the cresises may be
close to the geometrical one. The second case also involves the electatimégte, which
is weaker and gives a lower reaction probability, i.e. a smaller cross-setiithe last case, a
weak interaction must occur which has an even lower probability and smed&s-section.

¢ Nuclear structureféects can have a strong influence on the cross-section. This is particularly
true in the case aksonant interactions

Coulomb barrier and the tunnel effect

At distances larger than the range of the nuclear force, two nuclei with chaZgasdZ; experience
a repulsive Coulomb potential

ZiZj82 ZiZ

V(r) = —— =144——— MeV, (6.14)
r r [fm]

with r expressed in fre= 1023 cm in the last equality. To experience the attractive nuclear force the
particles have to approach each other within a typical distanee A3 Ry as given by eq. (6.12).
Forr < ry the nuclear attraction gives a potential drop to rougfyy: —30 MeV. The particles must
therefore overcome a typical Coulomb bartigy = V() ~ Z1Z», MeV, see Fig. 6.2.

If an incoming particle has a kinetic ener@yat infinity in the reference frame of the nucleus,
it can classically only come within a distancggiven byE = V(r¢). In stellar interiors the kinetic
energies of nuclei have a Maxwellian distribution, with an average vdje= %kT ~ 1.3keV at
10’ K, which is typical of the centre of the Sun and other main-sequence $taissfalls short of the
Coulomb barrier by a factor of about 1000. Even considering the highgg tail of the Maxwell-
Boltzmann distribution, the fraction of particles with > Ec is vanishingly small. With purely
classical considerations nuclear reactions have no chance of liagpésuch temperatures.

We need to turn to quantum mechanics to see how nuclear reactions at#epatstellar tem-
peratures. As was discovered by G. Gamow, there is a finite probabilitjhiinarojectile penetrates
the repulsive Coulomb barrier everif« Ec. The tunnelling probability can be estimated as

e 2m[V(r) = E]

P~ exp( — f M dr)

n h
where
2z

‘T E

is the classical distance of closest approach. The result is
2.2, (m\"?
P=PoexphE YY)  with b= zn%(g) = 31297,Z;AY? [keV]¥2.  (6.15)

HereA = A/Aj/(A + A)) is the reduced mass in unitsiof, andPy is a constantP increases steeply
with E and decreases witfiZj, i.e., with the height of the Coulomb barrier. Therefore, at relative
low temperatures only the lightest nuclei (with the small&&) have a non-negligible chance to
react. Reactions with heavier nuclei, with larggrZ;, require larger energies and therefore higher
temperatures to have a comparable penetration probability.

79



Nuclear structure effects on the cross-section

A typical thermonuclear reaction proceeds as follows. After penetrated@tiulomb barrier, the
two nuclei can from an unstable, excitedmpound nucleushich after a short time decays into the
product particles, e.g.

X+a—-C">Y+bh.

Although the lifetime of the compound nucleGs is very short, it is much longer than the crossing
time of the nucleus at the speed of light {021s). Therefore by the time it decays, the compound
nucleus has no ‘memory’ of how it was formed, and the decay deperygsmihe energy.

The decay can proceed vididrent channels, e.g* - X+a, — Y1+by, — Yo+by, ..., —

C +v. In the first case the original particles are reproduced, the last castersay to a stable energy
level of C with y-emission. In the other cases the partidiesh,, etc. may be protons, neutrons

or a-particles. (Reactions involving electron and neutrino emission do noepdozia a compound
intermediate state, since the necesgadecays would be prohibitively slow.) In order for a certain
energy level ofC* to decay via a certain channel, the conservations laws of energy, momentum,
angular momentum and nuclear symmetries must be fulfilled. The outgoing padixtken a certain
kinetic energy, which — with the exception of neutrinos that escape withteriaiction — is quickly
thermalised, i.e. shared among the other gas particles owing to the shom gimatgarticle mean

free paths in the stellar gas.

The energy levels of the compound nucleus play a crucial role in deterntiméngaction cross-
section, see Fig. 6.2. L&y, be the minimum energy required to remove a nucleon from the ground
state ofC to infinity, analogous to the ionization energy of an atom. Energy levels biglgycorre-
spond to bound states in an atom; these can only decgyeyission which is relatively improbable.
These ‘stationary’ energy levels have long lifetimeand correspondingly small widtHg since
according to Heisenberg's uncertainty relation

r=-. (6.16)

I'n e r

energy
o

Figure 6.2. Schematic depiction of the combined nuclear and Coulomb po-

tential, shown as a thick line. The potential is dominatedCloylomb repul-

sion at distances > r,, and by nuclear attraction far < r,. An incoming

particle with kinetic energig at infinity can classically approach to a distance
Emin rc. The horizontal lines for & r < ry indicate energy levels in the compound
-\5 —J nucleus formed during the reaction. The ground state iseggr-Enin; the
quasi-stationary levels witk > 0 are broadened due to their very short life-
times. If the incoming particles have energycorresponding to such a level
they can find a resonance in the compound nucleus (see text).
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Figure 6.3. Example of the dependence of the reac-
tion cross section on enerdyfor the He + *He —
. "Be + vy reaction. Althougho varies very strongly
‘ with energy, and becomes immeasurably small at
very low E, the factorS(E) is only a very weak func-
tion of E and — at least for this reaction — can be safely
extrapolated to the low energies that are relevant for
nuclear reactions in stars (15—-30 keV, vertical bar on
T R the left).
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Energy levels abov&, can also expel particles, which is much more probable tramission.
These levels also have finite lifetimes because of the sharp potential rizedrgybut eventually the
particles can escape by the tunnfeet. These ‘quasi-stationary’ levels have much shorter lifetimes
and correspondingly larger widths. The probability of escape incseaitk energy and so does the
level width, until eventuallyl" is larger than the distance between levels resulting in a continuum of
energy states above a cert&ifax.

The possible existence of discrete energy levels aBgyecan give rise to so-called ‘resonances’
with much increased reaction probabilities. Suppose wi l@bda react with gradually increasing
relative energye (measured at large distance). As londeds in a region without or in between quasi-
stationary levels, the reaction probability will simply increase with the penetrptmvability (6.15).
However, ifE coincides with such a level (e.g. enelfgyin Fig. 6.2), then the reaction probability can
be enhanced by several orders of magnitude. For energies closehta fvelE.sthe cross-section
has an energy dependence with a typical resonance form,

1

B« EoErr 2

(6.17)

At E = Eesthe cross-section can be close to the geometrical cross-secinyhere is the de
Broglie wavelength (6.13). We can thus expect the cross-section tod@epesnergy as

o (E) o 7112 P(E) £(E). (6.18)

The astrophysical cross-section factor

Since? « 1/E andP(E) « exp(b E~¥/?), one usually writes

explb E"1/?)

o(E) = S(E) S

(6.19)

This equation defines the ‘astrophysiGafactor’ S(E), which contains all remainingfiects, i.e. the
intrinsic nuclear properties of the reaction including possible resonances
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Figure 6.4. Example of the Gamow peak for théC(p, ¥)1°N reaction. The left panel shows as dash-dotted
lines the tunnelling probability factor, explo/EY?), and as dashed lines the tail of the Maxwell distribution,
exp(E/KT), for three values of temperatur®:= 2.0x10’ K (lower curve), 25x10’ K (middle) and 30x10’ K
(upper). The solid lines show the product of these two faGtiiE) as in eq. (6.21), labelled b, = T/10” K.
Note the enormous range of the vertical log-scale. To ajgeethe sharpness of the Gamow peak, and the
enormous sensitivity to temperature, the right panel shidi&$ on a linear scale fof; = 2.4, 2.5 and 2.6. The
dashed line is the Gamow peak for tHal(p, y)1°0 reaction forT; = 2.4, multiplied by a factor 200.

TheS-factor can in principle be calculated, but in practice one relies on labgnateasurements
of the cross-section to obtal®(E). The dificulty is that such measurements are only feasible at
large E, typically > 0.1 MeV, because cross-sections quickly become unmeasurably smalleat low
energies. This lowest energy is still an order of magnitude larger tham#rgies at which reactions
typically take place under stellar conditions. One therefore has to extte{&) down over quite
a large range oE to the relevant energies. In many caS%g) is nearly constant or varies slowly
with E — unlike o(E)! — and this procedure can be quite reliable (e.g. see Fig. 6.3). Howelien
resonances occur in the range of energies over which to extrapoktestits can be very uncertain.

6.2.2 Temperature dependence of reaction rates

Combining egs. (6.11) and (6.19), the cross-section fgeotoy can be written as

(ov)y = (8/am)Y?(kT)32 fo S(E) exp(— % - %)da (6.20)
We will look at the case ohon-resonanteactions, where we can assume t8éE) varies slowly
with E. The integrand is then dominated by the product of two exponential faeop$-E/KT), the
tail of the Maxwell-Boltzmann distribution which decreases rapidly viithand expcbE=1/2), the
penetration probability due to the tunndlext which increases rapidly with. The product of these
two exponentials,

b
f(E) = exp( - % - m), (621)
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is a sharply peaked function called tlBamow peakwhich has appreciable values only around a
maximum at energ¥o. Fig. 6.4 shows an example for the reactl8@ + p — N + y. Since by
assumptiors(E) varies slowly withE, we can také&(E) ~ S(Ep) out of the integral (6.20) and obtain

o0 E b
(ovy ~ (8/mm)Y?(kT)~/? S(Ep) fo exp(— e m)dE. (6.22)

The reaction rate then only depends on the inteﬁf’al‘(E) dE.

Properties of the Gamow peak

The value of the Gamow peak eneif§y can be found by takingfydE = 0, which gives
Eo = (3bkT)?® = 5,665 Z7Z*AT)° keV. (6.23)

To obtain the last equality we have substituteds given by eq. (6.15) and we use the notation
Tn = T/(10"K), while A is the reduced mass m, as before. For reactions between light nuclei
at temperature¥ ~ 1-2x 10’ K, Eg ~ 10-30keV, while the average kinetic energies are 1-2 keV.
The peak is quite narrow, having a widM at half maximum that is always smaller th&p. Thus,
the nuclei that contribute to the reaction rate have energies in a narrowainaeound 10 times the
thermal energy, but about 2 orders of magnitude below the Coulombbarrie

The right panel of Fig. 6.4 illustrates the strong dependence of the maxiralua f\(Ep) of the
Gamow peak on the temperature. In the case of46€p, y)13N reaction, an increase in temperature
by 4% (fromT7; = 2.4 to 2.5, or from 2.5 to 2.6) almost doubles the maximum valué(&). The
width of the peak also increases modestly, such that the area underke-awhich is the integral
that appears in eq. (6.22) — increases enormously with increasing teorperghis is the reason why
thermonuclear reaction rates are extremely sensitive to the temperature.

When we compare fferent reactions, the factdr o« Z;Z,AY2 changes and thereby the pene-
tration probability at a certain energy. A reaction between heavier nweii [arger A andZ) will
therefore have a much lower rate at certain fixed temperature. This is iledirathe right panel
of Fig. 6.4 by the dashed curve, showing the Gamow peak foFtkp, y)1°0 reaction afl; = 2.4,
multiplied by a factor 200. Hence, the probability of this reaction is 200 times sntiafinrthat of the
12C(p, v)*N reaction at the same temperature. In other words, reactions betweéer meelei will
need a higher temperature to occur at an appreciable rate.

To summarize, the properties of the Gamow peak imply that
o the reaction ratéov) increasevery strongly with temperature

e (ov) decreases strongly with increasing Coulomb batrrier.

Analytic expressions for the temperature dependence

We can find an analytical expression for the reaction rate if we approxithatmtegrandf (E) in
eg. (6.22) by a Gaussian centredgat i.e.,

2
E - Eq
—( E )] (6.24)

Considering the shapes of the curves in Fig. 6.4, this is not a bad apptmamarom eq. (6.21) we
find f(Eg) = exp3Eq/KT) = explr), which defines the often used quantity

ZiZZjZA)m

f(E) ~ f(Eo) exp

(6.25)
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The widthAE of the Gaussian can be obtained by expanding eq. (6.21)(fy in a Taylor series
aroundEp,

f(E) = f(Eo) + f'(Eo) (E - Eo) + 3f"(Eo) (E—~ Eo)’ + ...,

in which the second term equals zero becali$ggy) = 0. Comparing this with a similar expansion
of the Gaussian approximation f¢E) yields the same expression, to second order, if

1/2 1/2
AE = (_2,,':) = (4E°kT) (6.26)
7 Jecg, 3
We can then approximate the integral in eq. (6.22) by
f f(E)dE ~ e—ff exp| - %) |dE ~ e VT AE. (6.27)

In the last step we have extended the integral fres to oo to obtain the resultyr AE, which
introduces only a very small error because the exponential is negligibly fam& < 0. When we
substitute (6.27) with the expression (6.26) Adt into (6.22), and we eliminatBy andkT in favour
of r andb using (6.23) and (6.25), then we find after some manipulation

8( 2
e

1/2

S(Eo) v _ 7-21“05( S(Eo) )Tze—f. (6.28)

b '~ T zzA \keven?

In the last equality we have substituted the explicit expression (6.156) Bincer o« T~/3 this gives
a temperature dependence of the form

1 C
e exp( - m) (6.29)

where the constar@ in the exponential factor depends @;7;, i.e. on the height of the Coulomb
barrier. This is indeed a strongly increasing function of temperature.
If we consider a small range of temperatures around some Vg|wee can write

dloglov)y 7-2
dlogT ~ 3 °

{ov) = (o-v)o(l) with y (6.30)
To
The last equality follows from (6.28) and (6.25). Therefore the expbnds not a constant but
depends off itself — in facty decreases witf roughly asT~%3. In general, however, any particular
reaction is only important in quite a limited range of temperatures, so that takasgconstant in
(6.30) is approximately correct. Values of the exponemtre in all cases> 1. For example, at
T7; = 1.5 we find(cv) « T3 for the p+ p reaction for hydrogen fusion ardv) o« T20 for the
14N(p, v) reaction in the CNO cycle (see Sec. 6.4.1). Thus thermonuclear reaatésnare about the
most strongly varying functions found in physics. This temperature séhshias a strong influence
on stellar models, as we shall see.

6.2.3 Electron screening

We found that the repulsive Coulomb force between nuclei plays a trotgdn determining the rate
of a thermonuclear reaction. In our derivation of the cross section weigaored the influence of
the surrounding free electrons, which provide overall charge dauirathe gas. In a dense medium,
the attractive Coulomb interactions between atomic nuclei and free elecaes each nucleus to
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be dfectively surrounded by a cloud of electrons. This electron cloud el Coulomb repulsion
between the nuclei at large distances, and may thus increase the proludhilityeling through the
Coulomb barrier. Thisféect is know aglectron screeningr electron shielding

We simply give the main results, the derivation of which can be found ispkk Sec. 9.4 or
KiprentauN Sec. 18.4. The repulsive Coulomb potential (eq. 6.14) is reduced laya &xpEr/rp),
whererp, the so-called Debye-lttkel radius, represents théextive radius of the electron cloud.
The stronger the Coulomb interactions between nuclei and electrons, thersmaWe have found
(Sec. 3.6.1) that Coulomb interactions increase in strength with increasisifydand decreasing
temperature, and so does the magnitude of the electron scredif@og # turns out that the reaction
rate(ov) is enhanced by a factor

E
f= exp(k—_ID_), (6.31)
where, for small values dfp /KT < 1,
Eb  Z17Z,€ p*?
T FokT ~ 0.0062,7Z, T (6.32)

This is theweak screeningpproximation, which applies to relatively low densities and high temper-
atures such as found in the centre of the Sun and other main-sequascéJsider these conditions,
reaction rates are enhanced only by modest facfofs].1.

The description of electron screening becomes complicated at high deasitigglatively low
temperatures, where the weak screening approximation is no longer vajeheXal result is that with
increasing strength of electron screening, the temperature sensitivitg oddlation rate diminishes
and the density dependence becomes stronger. At very high densities) g/cm?, the screening
effect is so large that it becomes the dominating factor in the reaction rate. Teidirsip of the
Coulomb barrier can be sdfective that the reaction rate depends mainly on the density and no
longer on temperature. Reactions between charged nuclei becomdegessib at low temperature,
if the density exceeds a certain threshold. One then spegyEnbnuclear reactionsvhich can play
an important role in late stages of stellar evolution. In a very cool and deed@&im one must also
take into account thefiect of crystallization, which decreases the mobility of the nuclei and thus the
probability of collisions.

6.3 Energy generation rates and composition changes

Having obtained an expression for the cross-section faetoy, the reaction rate;; follows from
eg. (6.8). We can then easily obtain the energy generation rate. Eatlomeleases an amount
of energyQ;; according to eq. (6.4), so th&; rjj is the energy generated per unit volume and per
second. The energy generation rate ysit massfrom the reaction between nuclei of typandj is
then

6j = Qi i (6.33)

P

We can express the energy generation rate in terms of the mass fra¢tams$X; and the density
using eq. (6.8). Replacing the number densityy the mass fractioi; according tay, = X o/(Amy),
eg. (6.33) can be written as

o= Qi
' @) AAE

Gij

|
p XiXj{ov)ij = m

p XiXj (ov)ij, (6.34)
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In the last identityA = A/A;/(Ai + A)) is the reduced mass in units f;, and we have replaceq;
by the energy released per unit mass by this reaction

Qij Qij

- ~ , 6.35
m+m (A +A)My (6-35)

0ij

Remember thatov) contains the temperature dependence of the reaction rate. If we usenée po
law approximation (6.30) we can write the energy generation rate of a reasio

&j = €0,j XiXjpT". (6.36)

The total nuclear energy generation rate results from all reactions takicg in a certain mass
element in the star, i.e.

€nuc = Z E|] . (637)
i
This is the quantity,c that appears in the stellar structure equation for the luminosity, eq. (5.4).

Composition changes

The reaction rates also determine the rate at which the composition charigesatd of change in
the number density; of nuclei of typei owing to reactions with nuclei of typgis

dn;
(d—r:)J =—(1+ (5”') rij = —ninj {ov)ij. (6.38)

The factor 1+6jj takes into account that a reaction between identical nuclei conswossch nuclei.
One can define theuclear lifetimeof a specie$ owing to reactions witlj as
_ N; _ 1

|(dni/dt)jl  nj{ovij’

Ti.j (6.39)
which is the timescale on which the abundanceafanges as a result of this reaction.

The overall change in the numbgrof nuclei of typei in a unit volume can generally be the result
of different nuclear reactions. Some reactions (with ratas defined above) consurmehile other
reactions, e.g. between nucleandl, may produce. If we denote the rate of reactions of the latter
type asry i, we can write for the total rate of changergf

dn;
d—tl :—Z(1+6ij)rij +Z Mkl (6.40)
f K

The number density; is related to the mass fractiofy by n; = X; p/(Aimy), so that we can write the
rate of change of the mass fraction due to nuclear reactions as

dX; my
d—'[':Ai?(—;(l+6ij)rij+%rk|,i) (6.41)
For each nuclear speciésne can write such an equation, describing the composition change at
a particular mass shell inside the star (with dengitgind temperaturd) resulting from nuclear

reactions. In the presence of internal mixing (in particulasaivectionSec. 5.5.3) the redistribution
of composition between flerent mass shells should also be taken into account.
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Note the similarity between the expressions for the nuclear energy genenatto(6.37) and the
equation for composition changes (6.41), both of which are proporttorrgl. Using eq. (6.35) for
the energy released per gram, we can write the reaction rate as
_ Gj P

i (A + Aj) my
If we substitute this expression into eq. (6.41) the fagfon, drops out. We obtain a useful expression
in simple cases where onbnereaction occurs, or a reaction chain in which one reaction determines

the overall rate. An example is the fusion ofH into “He, which is the net result of a chain of
reactions (see Sec. 6.4.1). In that case you may verify that (6.416a422) ¢educe to

v __dX_ e

d dt  on’
whereey is the energy generation rate by the complete chain of H-burning readiwig, is amount
of energy produced by converting 1 gramtef into “He.

Fij (6.42)

(6.43)

6.4 The main nuclear burning cycles

In principle, many dfferent nuclear reactions can occur simultaneously in a stellar interiorelison
interested in following the detailed isotopic abundances produced by albastions, or if structural
changes occur on a very short timescale, a large network of reactisrie be calculated (as implied
by eq. 6.41). However, for the calculation of the structure and evolutianstar usually a much
simpler procedure is siicient, for the following reasons:

e The very strong dependence of nuclear reaction rates on the tempembined with the
sensitivity to the Coulomb barriet; Z,, implies that nuclear fusions offtierent possible fuels
— hydrogen, helium, carbon, etc. — are well separated by substantiatrizime diferences.
The evolution of a star therefore proceeds through several distirod¢ar burning cycles

e For each nuclear burning cycle, only a handful of reactions contriigtéficantly to energy
production anfbr cause major changes to the overall composition.

¢ In a chain of subsequent reactions, often one reaction is by far thesi@nd determines the
rate of the whole chain. Then only the rate of this bottleneck reaction nedmstaken into
account.

6.4.1 Hydrogen burning

The net result of hydrogen burning is the fusion of fédrnuclei into a*He nucleus,
4'H - *He+2¢e" +2v. (6.44)

You may verify using Sec. 6.1.1 that the total energy release.#32/eV. In order to create e
nucleus two protons have to be converted into neutrons. Thereforestuminos are released by weak
interactions (p— n+ et +v), which escape without interacting with the stellar matter. It is customary
not to include the neutrino energies into the overall energy rel@asrit to take into account only
the energy that is used to heat the stellar gas. This includes energyetklaate form ofy-rays
(including they-rays resulting from pair annihilation after @mission) and in the form of kinetic
energies of the resulting nuclei. Th&extive Q-value of hydrogen burning is therefore somewhat
smaller than 26.734 MeV and depends on the reaction in which the neutrenemited.
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Since a simultaneous reaction between four protons is extremely unlikelgjrmaafireactions is
always necessary for hydrogen burning. This can take place in twnaligays: either direct fusion
of protons via the-p chain or by using already present CNO-nuclei as catalysts irCiR® cycle
Hydrogen burning in stars takes place at temperatures ranging betwe&f& and 50 x 10 K,
depending on stellar mass and evolution stage.

The p-p chains
The first reaction is the so-called p-p reaction:
H+™H >2H+e"+y or p+p-oD+e+v. (6.45)

This involves the simultaneoysdecay of one of the protons during the strong nuclear interaction.
This is very unlikely and the p-p reaction therefore has an extremely smaB-section, about 18
times that of a typical reaction involving only strong interactions. The reactitncannot be mea-
sured in the laboratory and is only known from theory.

After some deuterium is produced, it rapidly reacts with another protorota #He. Subse-
quently three dferent branches are possible to complete the chain tokiets

IH+H 5 2H + et +v

?H+1H - 3He+y

T

SHe + 3He — “He+ 21H SHe + *He — "Be+y
‘Be+e — "Li+v ‘Be+H -8B +y
Li +H - *He+ *He 88 — 8Be+et +v

8Be — “He + “He

pp2

Pp3 (6.46)

The pp1 branch requires twiHe nuclei, so the first two reactions in the chain have to take place
twice. The alternative pp2 and pp3 branches require onlyHeaucleus and an already existitige
nucleus (either present primordially, or produced previously by lyemdourning). The resultintBe
nucleus can either capture an electron or fuse with another protong gisento the second branching
into pp2 and pp3. Three of the reactions in the chains are accompanieditsjno emission, and the
(average) neutrino energy ididirent in each caseéE,) = 0.265 MeV for the p-p reaction, 0.814 MeV
for electron capture ofBe and 6.71 MeV for thg-decay offB. Therefore the total energy release
Qu for the production of onéHe nucleus is dferent for each chain: 26.20 MeV (ppl), 25.66 MeV
(pp2) and only 19.76 MeV for pp3.

The relative frequency of the three chains depends on temperaturehandcal composition.
Because théHe + *He reaction is slightly more sensitive to temperature tharltee+ 3He reaction
(it has a somewhat higher reduced mass and largay. 6.25), the ppl chain dominates over the other
two at relatively low temperaturel{ < 1.5). The ppl chain is the main energy-producing reaction
chain in the Sun. At increasing, first the pp2 chain and then the pp3 chain become increasingly
important.
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At low temperaturesT < 8 x 10° K) the rates of all reactions should be calculated separately to
obtain the energy generation rate and the changes in abundancesicugrathe3He+ 3He reaction
is quite slow and a substantial abundancékéé can accumulate before further reactions occur. For
T > 8 x 10°K all reactions in the chain are fast enough that they reach a steadyveate, once a
D nucleus is produced by the first, very slow reaction, all successaeions proceed very quickly
until “He is formed. The nuclear lifetimes (eq. 6.39) of the intermediate nucléHg, ’Li, etc,
are very short compared to the overall nuclear timescale, and their afcexlare very small. The
overall rate of the whole reaction chain is then set by the rate of the bottiapeeactionypp. In
this steady-state or ‘equilibrium’ situation the rate of each subsequenioreadapts itself to the pp
rate! The energy generation rate (given by the sum of energies releassathyeaction, eq. 6.37)
can then be expressed in a single term of the form (6.33)ne= Qnrpp/p WhereQy is the total
energy released in the whole chain (6.44). The above expressionsjptiee pp2 and pp3 chains,
which each require one p-p reaction to complete. For the ppl chain tweg@epans are needed and
therefore in that cas@uc = 3Qurpp/p- EXpressingpp in terms of the cross section fact@rv)pp and
the hydrogen abundanég€ we can compute the energy generation rate for hydrogen burning by the
combination of pp chains as

0
€pp =Y QHXZE (oV)pps (6.47)

whereqy = Qu/4my is the total energy release per gram of hydrogen burning/aisda factor be-
tween 1 (for the ppl chain) and 2 (for the pp2 and pp3 chains), depead the relative frequency of
the chains. Botly andqy therefore depend on the temperature, because the three chainsffeve di
ent neutrino losses. The overall temperature dependengg isfdominated by th@ -dependence of
(ov)pp and is shown in Fig. 6.5. The pp chain is the least temperature-sensitif@otkear burning
cycles with a power-law exponenteq. 6.30) varying between about 6Tat~ 5 and 3.5 affg ~ 20.

The CNO cycle

If some C, N, and O is already present in the gas out of which a star famaisif the temperature
is suficiently high, hydrogen fusion can take place via the so-callsiD cycle This is a cyclical
sequence of reactions that typically starts with a proton captures9 aucleus, as follows:

!

2C+1H - BN +y
BN BC+et+v
BC+IH - ¥UN+y
T UN+H - 0 +y
Bo->BN+et+y

5N + 1H — 12C 4+ 4He
L

— 160 + y
160 +1H - 1F+y
YF>10+et +v
0 +1H - N + “He
| (6.48)

1For example, if we denote hyp the rate ofH + H, one hasyp = ryp, etc. Note that describing the p-p reaction as
‘slow’ and the?H + 'H as ‘fast’ refers to the dierence in cross-section factdrsvy and not to the number of reactions per
second given by eq. (6.8).
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The 12C nucleus is reproduced after the first six reactions, and thus only sesatalyst for the
net hydrogen burning reaction (6.44). This set of six reactions formathin cycle, also called the
CN cycle. The!N + H reaction has a small probability (somewnhat less tharf)1® producet®O
instead oft?C + *He. This opens up a branching into the second cycle indicated in (6.48)lash
three reactions have théect of transforming®0, which is initially very abundant, intN and thus
bringing it into the main CN cycle. The relative proportions of C, N and O nuclie cycles change
according to the dierent speeds of the reactions involved, but the total number of CN@irisic
always conserved. The thrgedecay reactions have neutrino energies between 0.71 and 1.00 MeV
and decay times between?8nd 1§ sec. Unless very rapid changes are considered, thdseays
are so fast that one can ignore their detailed rates and the small resuliimdpaices ofN, 1°0 and
17F.

At high enough temperatureB,> 1.5 x 10’ K, all reactions in the cycle come into a steady state
or ‘equilibrium’ where the rate of production of each nucleus equals itsofatensumption. In this
situation, as was the case with the p-p chain, the speed of the whole CNQscgol&trolled by the
slowest reaction (the one with the smallest cross-section) whitiNig, )1°0. This reaction acts
like a bottleneck that congests the nuclei in their flow through the cycle#hdhus becomes by
far the most abundant of all the CNO nuclei. Looking at this in a bit more déteispeed of the
different reactions in the cycle can be expressed in terms of the nuclear lifetiragginst proton
captures, as defined in eq. (6.39). In equilibrium one ME5’@)/dt = dn(*3C)/dt, etc., so that

12
[n(lZC)] _(ovs _w(C) (6.49)
€q

N13C) og (W12 7p(13C)°
For the reactions in the CN cycle one typically has
p(*°N) < 7(13C) < 7p(*2C) < 1p(**N) < Tnuc -

Thus nearly all initially present CNO nuclei are transformed ité by the CNO cycle. Therefore,
apart from*He, the second-most important product of the CNO-cycléNs— especially because the
gas out of which stars form is typically more abundant in carbon andesxtftan in nitrogen.

The energy generation rate of the CNO cycle in equilibrium can be written as

P
€cNO = OH X X14 — (T U)pN, (6.50)
my
lgey
A
5 =
0 -
i Figure 6.5. Total energy generation ratg; (in
[~ erggts?) for hydrogen burning as a function of
_ temperature, fop = 1 g/cn?® and abundances = 1
andXcno = 0.01. The dashed curves show the con-
i tributions of the pp chain and the CNO cycle. Figure
- | .
56 8 IaT from KipPENHAHN
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where(cv)pn is the cross-section factor of tHéN(p, )1°0 reaction which controls the rate of the
whole cycle. X14 is the*N mass fraction in the energy-generating zone of the star, which is close
to the total abundancécno of CNO nuclei once equilibrium is reached in the full CNO cycle. The
energy release per unit mags = Qu/4m, takes into account the neutrino losses, which for the CNO
cycle in equilibrium amounts tQy = 24.97 MeV. The temperature sensitivity of the CNO cycle is
much higher than for the pp chain, withvarying between 23 and 13 fdr ranging from 1.0 to 5.0.
This is illustrated in Fig. 6.5 where the temperature dependenegnefis compared to that odyp.

For the purpose of very simple approximations one can take

epox X2pT*  and  ecno o XXqap T8, (6.51)

The strong dierence in temperature sensitivity has the consequence that the pp cimairatis at
low temperaturesl; < 1.5, while the CNO cycle is dominant at higher temperatures.

6.4.2 Helium burning

Helium burning consists of the fusion 8He into a mixture of-2C and'®0, which takes place at
temperature§ > 10°K. Such high temperatures are needed because (1) the Coulomb barrier f
He fusion is higher than that of the H-burning reactions consideredeatamd (2) fusion ofHe is
hindered by the fact that no stable nucleus exists with mass nuinbed. Therefore helium burning
must occur in two steps:

4He + “He & ®Be

% 6.52
8Be+4He > 12C" - 12C+y (6.52)

The®Be nucleus temporarily formed in the first reaction has a ground state thake/Shigher in
energy than that of two separdtde nuclei. It therefore decays back into twaarticles after a few
time 1016s. While extremely short, this time is long enough to build up a very small equilibrium
concentration ofBe, which increases with temperature and reaches abobitaiT ~ 1B K. Then
the second reactiofBe(e, y)12C starts to occur at a significant rate, because of a resonance at just
the Gamow peak energy. The result is an excited compound ndé@ug/hich subsequently decays
to the ground state dPC with emission of a photon. The corresponding energy level in R€
nucleus was predicted by Fred Hoyle in 1954, because he could nowviteexplain the existence
of large amounts of carbon in the Universe. This excited stat€é®fwas subsequently found in
laboratory experiments.

The net #ect of the two reactions (6.52) is called tingle-a reaction,

3%He - 12C + 4, (6.53)

which hasQ = 7.275MeV. The energy release per unit massgis= Q/m(*°C) = 5.9 x 10" ergg,
which is about 110 smaller than for H-burning. Since the two reactions need to occur alinugt s
taneously, the @ reaction behaves as if it were a three-particle reaction and its rate isrponadto
n3. The energy-generation rate can be written as

€3¢ = (3¢ XZ’PZ A3, (6.54)

where the temperature dependence is described by the fagtowhich depends on the combined
cross-sections of the two reactions (6.5 ~ Y is the mass fraction ofHe. The temperature
sensitivity of the & rate is extremely high, with ~ 40 atTg ~ 1.0.

When a sfficient amount of2C has been created by the Beaction, it can capture a further
particle to form*0,

12C + *He - %0 + y, (6.55)
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which hasQ = 7.162 MeV, org,c = 4.32x 10" erg per gram of produce®O. In principle further
« captures oR®0 are possible, forming’Ne, but during normal helium burning conditions these are
very rare. Thé®C(a, v)'®0 reaction is stronglyféected by resonances and its rate is quite uncertain.
This is important because this reaction competes with thee@ction for availabléHe nuclei, as

illustrated by Fig. 6.6. The finai?C/*%0 ratio reached at the end of He-burning is therefore also
uncertain.

6.4.3 Carbon burning and beyond

In the mixture of mainly*?C and'®O that is left after helium burning, further fusion reactions can
occur if the temperature risesfBaiently. In order of increasing temperature, the nuclear burning
cycles that may follow are the following.

Carbon burning When the temperature exceefis> 5 the large Coulomb barrier fdfC + 12C
fusion can be overcome. This is a complicated reaction, in which first atedxcompound*Mg
nucleus is formed which can then decay via marffedent channels. The most important channels
are the following:

12C 1 12C - 2%Mg" - ONe+a  Q=4.616MeV (~ 50%)

(6.56)
—28Na+p Q=2238MeV (- 50%)

The protons and particles released find themselves at extremely high temperatures compared to
those needed for hydrogen and helium burning, and will almost immediagsdy wéth other nuclei

in the mixture, fromt2C to **Mg. Examples aré®Na(p @)*°Ne, ?°Ne(e, y)**Mg and chains such as
12C(p, v)'N(e*v)13C(a, n)*®0O, where the neutron will immediately react further. The overall energy
release is obtained from the combination of all these reactions and is roQghlyl13 MeV per
12C+12C reaction. The main products after exhaustion of all carbot®@&g°Ne and?*Mg (together

95% by mass fraction). These most abundant nuclei have equal rsioflaotons and neutron, but
some of the side reactions produce neutron-rich isotope$iiéde, 22Na and®*>?5Mg, so that after

C burning the overall composition has a ‘neutron exces ¢tnl, orue > 2).
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Neon burning The next nuclear burning cycle might be expected to be oxygen fusiv@/ieady

at somewhat lower temperaturBy(~ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of°Ne. At this temperature a fiicient number of photons have energies in the MeV
range which is sfiicient to break up the relatively fragifNe nucleus intd®0 and*He. This is
immediately followed by the capture of theparticle by anothet°Ne nucleus, thus:

Ne+y < %0+ o Q= -473MeV

6.57
Ne+a —» **Mg+y Q=09.31MeV (657)

The first reaction is endothermic, bufectively the two reactions combine t%®Ne — 160 + 2*Mg
with a net energy releas@ > 0. The composition after neon burning is mosfi@ and®*Mg (together
95% by mass fraction).

Oxygen burning At Tg ~ 2.0 fusion of*®0 nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there ambmaction channels, the most
important ones being:

160+ 160 — 325" 5 28514 Q=959MeV (~ 60%)

(6.58)
—3pip  Q=7.68MeV (~ 40%)

Similar to carbon burning, the p and particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a compositidly massisting

of 28Si and32S (together 90% by mass fraction). The net energy releas&@er 1°0 reaction is

Q ~ 16 MeV. Since some of the side reactions invgdfedecays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning  The lightest and most abundant nucleus in the ashes of oxygen burifigi, isut
the Coulomb barrier fof®Si + 28Sj fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration, () anda-capture &, y) reactions wheffg 2 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the reledstlto make heavier nuclei:

28Si (y, @) Mg (7, @) *°Ne (v, @) 1°0 (v, @) °C (y, @) 2

6.59
283 (@, 7) 32S (@, ) %Ar (@, y) “°Ca @, y) **Ti(a, y) ... %°Ni ( )

Most of these reactions are in equilibrium with each other, £8i + y & 2*Mg + «, and the
abundances of the nuclei can be described by nuclear equivalghts 8&ha equation for ionization
equilibrium. ForT > 4 x 10°K a state close tauclear statistical equilibrium (NSEan be reached,
where the most abundant nuclei are those with the lowest binding ersengstrained by the total
number of neutrons and protons present. The final composition is then rPfd&tipecause/ip > 1
(due top-decays andecaptures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interagtibmormal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuebsztions have typical
energies in the MeV range, and at such energies the interaction ed#sasiso, ~ 10**cn?.
The corresponding mean free path in matter at depsigynumy, is ¢, = 1/(no,) = umy/(oo,) ~
2 x 10%%cm/p, for u ~ 1. Even at densities as high atcn?, this givest, ~ 3000R,. Therefore
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any neutrino produced in the interior of a normal star leaves the star withi@uaction, carrying
away its energy. The energy of neutrinos therefore has to be tregiachtaly from other forms of
energy, which are transported by #@dsive process due to a temperature gradient.

As mentioned before, the energy loss by neutrinos that are produceadtl@an reactions are
conventionally taken into account by subtracting the neutrino energy thentotal energy release
of a reaction. In other words, thg,c term in the energy balance equation (5.4) is reduced and no
separate, term is needed for these neutrinos.

However, also in the absence of nuclear reactispsntaneous neutrino emissioan occur at
high densities and temperatures as a result of weak interaction prac@sgeg to the fundamental
coupling of the electromagnetic and weak interactions, for each electrauesgs that emits a photon,
there is a very small but finite probability of emitting a neutrino-antineutrino paiead of a photon.
The theory of weak interactions predicts this probability to be

POY) _ _18( E )“
) 3% 10 ) (6.60)

2
whereE, is the neutrino energy. These emissions represent a direct loss of energy from the stellar
interior (a positive, in eq. 5.4) and thus give rise tmolingof the stellar matter.

The following processes of this type are important in stellar interiors (seid Sec. 9.5 or
KrepeEnHAHN Sec. 18.6 for more details):

Photo-neutrinos In the process of electron scattering, discussed in Sec. 5.3.1, a phatoatdis
tered by a free electron. There is a tiny probability (6.60) that the outgdiotpp is replaced by

a neutrino-antineutrino pairy + € — € + v + v. The average neutrino energys ~ kT, and
therefore the probability of producingva pair instead of a photon is proportional T8. The rate of
neutrino emission is also proportional to the number density of photgns, T3, so thate, is a very
strong function of temperature, roughdy o« T8. The process of photo-neutrino emission results in
significant cooling of stellar matter @t> 2 x 18 K.

Pair annihilation neutrinos At temperatures] > 10° K, energetic photons can undergo pair cre-
ation (Sec. 3.6.2), quickly followed by annihilation of the electron-positi@n @ his normally yields
two photons and these processes reach an equilibsiuny (- e* + 7). Once in every 10'° cases,
however, the annihilation produces a neutrino-antineutrino pai# € — v + v, which results in a
small one-way leakage out of the equilibrium exchange. This repregeitsportant energy loss in a
very hot, but not too dense plasma ihcreases even more strongly witlthan for photo-neutrinos,
but is inversely proportional tp).

Plasma-neutrinos In a dense plasma, an electromagnetic wave can generate collective osaillatio
of the electrons. The energy of these waves is quantized and a quahthis @scillation energy is
called a ‘plasmon’. The plasmon usually decays into photons, but agamitharfinite probability
(6.60) of vv emission. This process of neutrino energy loss dominates at high denbiy, the
electron gas is degenerate.

Bremsstrahlung neutrinos Bremsstrahlung is the emission of a photon by an electron that is
slowed down in the Coulomb field of an atomic nucleus (the inverse of fe=eatosorption, Sec. 5.3.1).
The small probability of’v emission instead of a photon gives rise to significant cooling at low tem-
perature and very high density. Unlike the processes discussed, &revasstrahlung depends on
the presence of nuclei and therefore is mdfiient for heavy elements (the neutrino emission rate
is oc Z2/A).
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The Urca process This process is dlierent from the ones discussed above in that it involves nuclear
transformations. Certain nucleZ,(A) can capture an electron and subsequently undegydecay
back to the original nucleus,

ZA+e - (Z-1LA+v

(Z-1LA - @EZA+e +v. (6.61)

The net result is that the original particles are restored and two neuttirecsmitted. Only certain
nuclei are suitable for this process: the nucletis1, A) must be3-unstable and have a slightly higher
rest energy thanZ( A), and the captured electron must be energetic enough to make the fitgimea
possible. These conditions are quite restrictive and the Urca proces®mseaquential under most
conditions found in stars, but it can play a role in very late stages of evolatigery high densities.

Suggestions for further reading

The contents of this chapter are also covered by Chapter Qe and by Chapter 18 of ikpen-
HAHN.

Exercises

6.1 Conceptual questions: Gamow peak
N.B. Discuss your answers to this question with your felltmdents or with the assistant.
In the lecture (see eq. 6.22) you saw that the reaction rgm@sortional to

8\"? S(E) ™ _E/KT o~b/EY2
<O—U>:(ﬁ) K2 J, € € dE,

where the factob = 7(2m)Y/22,Z,€?/ 1, andm = mymy/(my + my) is the reduced mass.

(@) Explain in general terms the meaning of the teemékT ande?/E"*,
(b) Sketch both terms as function Bf Also sketch the product of both terms.

(c) The reaction rate is proportional to the area under tbeuymt of the two terms. Draw a similar
sketch as in question (b) but now for a higher temperaturpldiixwhy and how the reaction rate
depends on the temperature.

(d) Explain why hydrogen burning can take place at lower teragres than helium burning.
(e) Elements more massive than iron, can be produced byameaaptures. Neutron captures can
take place at low temperatures (even at terrestrial terhpes). Can you explain why?

6.2 Hydrogen burning
(a) Calculate the energy released per reaction in MeV@hlue) for the three reactions in the ppl
chain. (Hint: first calculate the equivalentmfc? in MeV.)

(b) What is the total ective Q-value for the conversion of fodH nuclei into*He by the pp1 chain?
Note that in the first reactiotd + *H — 2H + e* + v) a neutrino is released with (on average) an
energy of 0.263 MeV.

(c) Calculate the energy released by the ppl chain ifgerg

(d) Will the answer you get in (c) beftierent for the pp2 chain, the pp3 chain or the CNO cycle? If
so, why? If not, why not?
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6.3 Relative abundances for CN equilibrium

Estimate the relative abundances of the nuclei CN-eqiulibif their lifetimes against proton capture
atT = 2x 10K are: 7p(*°N) = 30 yr, 7(*3C) = 1600 yr,7p(*>C) = 6600 yr andrp(**N) = 6 x 1P yr.

6.4 Helium burning

(a) Calculate the energy released per gram for He burningéogt reaction and thé’C + « reaction,
if the final result is a mixture of 50% carbon and 50% oxygenrtiass fraction).

(b) Compare the answer to that for H-burning. How is thistezlao the duration of the He-burning
phase, compared to the main-sequence phase?

6.5 Comparing radiative and convective cores
Consider a H-burning star of mabt = 3M, with a luminosityL of 80L,, and an initial composition
X = 0.7 andZ = 0.02. The nuclear energy is generated only in the central 108heofmass, and the
energy generation rate per unit magsge, depends on the mass coordinate as

m
Enuc = €°(1_ o.1|v|)

(a) Calculate and draw the luminosity profileas a function of the mass). Express in terms of
the known quantities for the star.

(b) Assume that all the energy is transported by radiati@ic@ate the H-abundance as a function of
mass and timexX = X(m,t). What is the central value fof after 100 Myr? DrawX as a function
of m. (Hint: the energy generation per unit masQis 6.3 x 10' erg g1).

(c) Inreality,enycis so high that the inner 20% of the mass is unstable to coivedtiow, answer the
same question as in (b) and draw the néwrofile as a function ofn. By how much is the central
H-burning lifetime extended as a result of convection?
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Chapter 7

Stellar models and stellar stability

In the previous chapters we have reviewed the most important physme¢gses taking place in
stellar interiors, and we derived theldirential equations that determine the structure and evolution of
a star. By putting these ingredients together we can construct modelsasfcghly symmetric stars.
Because the complete set of equations is highly non-linear and time-deypetiser full solution
requires a complicated numerical procedure. This is what is done in desteléat evolution codes,
the results of which will be described in later chapters. We will not go intodetgil about the
numerical methods commonly used in such codes — for those interested, iSth@seadetails may be
found in Chapter 24.2 of Meper or Chapter 11 of KePENHANHN.

The main purpose of this chapter is to briefly analyse themintial equations of stellar evolution
and their boundary conditions, and to see how the full set of equationbeaimplified in some
cases to allow simple or approximate solutions — so-calieghle stellar models/Ne also address the
guestion of the stability of stars — whether the solutions to the equations yieltla staicture or
not.

7.1 The dfferential equations of stellar evolution

Let us collect and summarize thetérential equations for stellar structure and evolution that we have
derived in the previous chapters, regardings the spatial variable, i.e. egs. (2.6), (2.11), (5.4), (5.17)
and (6.41):

or 1
= - = 7.1
om  4nr2p (7.1)
P __Gm 1 o7 (7.2)
om~  4xrd 4nr2 ot '
ol Js
a_rn = Enuc_ €y - TE (73)
3k P .
T T _ Viad= ——— — if Viag< 'V
g_m - _%E v with v=J "™ 16racGmT? fad = Yad (7.4)
Vad + AV |f Vrad > Vad
X - . .
a—t':A'Tm“(—Z(l+6ij)rij +Z rku) [+ mixingterms] i=1...N (7.5)
j Kl
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Note that eq. (7.2) is written in its general form, without pre-supposingdsgdtic equilibrium. In

eq. (7.3) we have replacéd/dt— (P/p?)dp/ot by Tds/at, according to the combined first and second
laws of thermodynamics. Eq. (7.4) is generalized to include both the casmsiative and convective
energy transport. The tercV is the superadiabaticity of the temperature gradient that must follow
from a theory of convection (in practice, the mixing length theory); for theriar one can take
AV = 0 except in the outermost layers of a star. Finally, eq. (7.5) has been miadifaeld ‘mixing
terms’ that describe the redistribution (homogenization) of composition inectine regions. There
areN such equations, one for each nucleus (isotope) indicated by suliscript

The set of equations above comprise N partial diferential equations that should be solved
simultaneously. Let us count the number of unknown variables. Makie@ithe physics discussed
in previous chapters, the functios s, x, Vag, AV, e, € and the reaction rates; can all be
expressed as functions@f T and compositiorX;. We are therefore left with-AN unknown variables
(r, o, T, I and theX;) so that we have a solvable system of equations.

The variables, p, T, | andX; appearing in the equations are all functions of twdependent
variables,m andt. We must therefore find a solution to the above set of equations on theanterv
0 <m< M fort > tg, assuming the evolution starts at titgeNote thatM generally also depends on
tin the presence of mass loss. A solution therefore also requires spimifioBboundary conditions
(atm = 0 andm = M) and ofinitial conditions for exampleX;(m, t).

7.1.1 Timescales and initial conditions

Let us further analyse the equations. Three kinds of time derivatiyesaap

e 9%r/0t? in eq. (7.2), which describes hydrodynamical changes to the stellatisgucThese
occur on the dynamical timescatgy, which as we have seen is very short. Thus we can
normally assume hydrostatic equilibrium afft /0t?> = 0, in which case eq. (7.2) reduces to
the ordinary diferential equation (2.13). Note that HE was explicitly assumed in eq. (7.4).

e Tos/otin eq. (7.3), which is often written as an additional energy generation &anb(5):

ds ou  Pop
o= T5 T Tw T 2a
It describes changes to the thermal structure of the star, which calt fres contraction
(egr > 0) or expansiongy < 0) of the layers under consideration. Such changes occur on the
thermal timescalexy. If a star evolves on a much longer timescale than theneg ~ 0
and the star is in thermal equilibrium. Then also eq. (7.3) reduces to an wrdiifizerential
equation, eq. (5.7).

e 0X/dtin eqgs. (7.5), describing changes in the composition. For the most atiwidarents —
the ones thatféect the stellar structure — such changes normally occur on the longelgtanuc
timescalerpyc.

Because normallyn,c > 7kH > Tdyn, COMpoOSition changes are usually very slow compared to the
other time derivatives. In that case eqs. (7.5) decouple from the atheefjuations (7.1-7.4), which
can be seen to describe thiellar structurefor a given compositiorx; (m).

For a star in both HE and TE (also called ‘complete equilibrium’), the stellar tstreiequa-
tions (7.1-7.4) become a set of ordinarffeliential equations, independent of time. In that case it is
suficient to specify the initial composition profileg(m, tg) as initial conditions. This is the case for
so-calledzero-age main sequenséars: the structure at the start of the main sequence depends only
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on the initial composition, and is independent of the uncertain details of thioataation process, a
very fortunate circumstance!

If a star starts out in HE, but not in TE, then the time derivative repreddayteg, remains in the
set of structure equations. One would then also have to specify the spatifopy profiles(m, t)
as an initial condition. This is the case if one considers pre-main sequeamse Bortunately, as we
shall see later, in this case there is also a simplifying circumstance: pre-njaiernee stars start out
as fully convective gas spheres. This means that their temperatureemsdigg stratification is nearly
adiabatic, so thas can be taken as constant throughout the star. It thiites to specify the initial
entropy.

7.2 Boundary conditions

The boundary conditions for theftérential equations of stellar evolution constitute an important part
of the overall problem. Not all boundary conditions can be specifiedaead of the interval [(M]:
some boundary conditions are set in the centre and others at the suffaicemeans that direct
forward integration of the equations is not possible, and the influencedfdindary conditions on
the solutions is not easy to foresee.

7.2.1 Central boundary conditions

At the centre ih = 0), both the density and the energy generation rate must remain finite fariegre
bothr andl must vanish in the centre:

m=0 r=0 and |=0. (7.6)

However, nothing is known a priori about the central valueB ahdT. Therefore the remaining two
boundary conditions must be specified at the surface rather than ttne.cen

It is possible to get some idea of the behaviour of the variables close toritre by means of a
Taylor expansion. Even thoud® andT; are unknown, one can do this also andT, writing for
example

P:P(;+m

dP| , ,[d?P
d_n]]c+§n12|:W:|C+'“

and making use of the stellar structure equations Ryddh, etc, see Exercise 7.5.

7.2.2 Surface boundary conditions

At the surfacerh = M, orr = R), the boundary conditions are generally much more complicated than
at the centre. One may treat the surface boundary conditionfextedit levels of sophistication.

e The simplest option is to take = 0 andP = 0 at the surface (the ‘zero’ boundary conditions).
However, in realityT andP never become zero because the star is surrounded by an interstellar
medium with very low, but finite density and temperature.

e A better option is to identify the surface with tipotospherewhich is where the bulk of the
radiation escapes and which corresponds with the visible surface dathdke photospheric
boundary conditions approximate the photosphere with a single surfapticl depthr = %
We can write

Tph:f Kpdrzkphf pdr, (7.7)
R R
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wherexpn is an average value of opacity over the atmosphere (all layers abovedtusphere).
If the atmosphere is geometrically thin we also have

P GM GM [
@we__sM PRz—f dr. 7.8
I 2 P (R~ — 2P (7.8)

Sincerph = % andT(R) ~ Te¢ we can combine the above equations to write the photospheric
boundary conditions as:

5_ 2GM

m=M(r =R) and L =4rRoTA (7.9)

e The problem with the photospheric boundary conditions above is that degive difusion
approximation on which it is based breaks down wheha few. The best solution is therefore
to fit adetailed stellar atmosphere modelan interior shell (at > %) where the radiative dif-
fusion approximation is still valid. This is a more complicated and time-consumingpagip,
and in many (but not all) practical situations the photospheric conditiorsuéireient.

7.2.3 Hfect of surface boundary conditions on stellar structure

Itis instructive to look at theféect of the surface boundary conditions on the solution for the structure
of the outer envelope of a star. Assuming complete (dynamical and thermdipggm, the envelope
contains only a small fraction of the mass and no energy sources. Irefeitc L andm ~ M. Itis

then better to tak®, rather tharm, as the independent variable describing depth within the envelope.
We can write the equation for radiative energy transport as

ar T 3 L «
— = —Vig= ————— ~ const — — 7.10
dP ~ P ™7 I6racGmT3 M T3 (7.10)
-
7
IgT
Cc>0 border of
6 convection
radiative
envelopes C<0

convective envelopes

3 1 1 1 1 1 —
5 10 15 IgP

Figure 7.1. Schematic diagram of lof versus logP illustrating the diferent types of envelope structure
solutions, as discussed in the text. Figure frompvHAHN & W EIGERT.

100



L B L L A B B L IR R I B Figure 7.2. Structure of detailed stellar models on
ZAMS models, Z = 0.02 ﬁ,//// 1  the zero-age main sequence in the RpdogT dia-

g g gram. Each curve is for a fliérent mass, from top
to bottom: 16My, 8 Mg, 4 Mg, 2Mg, 1 Mg, 0.5M,
and 0.29M. The+ symbols on each curve indicate,
for increasingP, the part of the envelope containing
0.01M, 0.1M and 05M (so most of thél andP vari-
ation in the envelope occurs in the outer 1% of the
mass). The dotted (blue) parts of each curve indicate
radiative regions of the star, the solid (red) parts indi-
cate convective regions.

Stars withM < 1M, have lowTg and therefore

convective envelopes. The depth of the convective
envelope increases strongly with decreasing surface
il temperature (and thus with decreasing mass); the

log T (K)
L I I B I B O

5 10 15 0.25M,, star is completely convective. On the other
hand, more massive stars have highgrand mostly
log P (dyn/crd) radiative envelopes, except for small convective lay-

ers near the surface caused by partial ionization.

We also approximate the opacity by a simple law, xoP2TP (this can represent e.g. Kramers opacity,
a=1,b = -45; or electron scattering, = b = 0). We can then integratelddP to give

T4P =B(P"*?+C) (7.11)

whereB « L/M = constant ane is an integration constant, determined by the boundary conditions.
For the Kramers opacity, which is a reasonable approximation for stellatogres of moderate tem-
peratures, we find 8> = B(P? + C).

The diferent possible solutions are characterized by the val@ ahd the various possibilities
are illustrated in Fig. 7.1. At large enough pressiites VC, all solutions approachi o« P?/85 ~
PO235 This corresponds to an actual temperature gradieatd logT/dlogP = 0.235< Vg~ 0.4,
which is consistent with the assumed radiative transport. There is a funtirdiference between
solutions withC > 0 andC < 0, however.

Radiative envelopescorrespond to solutions wit@ > 0. In the special cas€ = 0 the slope
of the solutionV remains equal to 0.235 whadT — 0. This corresponds to the ‘zero’
boundary conditions discussed above. Eor- O the solutions lie above th€ = 0 line,
and the slope decreasés & 0.235) as the surface is approached. This corresponds to more
realistic, e.g. photospheric, boundary conditions with large endigghdemonstrating that
stars with relatively hot photospheres have radiative envelopesractice this is the case
whenTer 2 9000 K. Fig. 7.1 demonstrates that such envelope solutions quickly ayptioa
‘radiative zero’ structureC = 0. This means that the envelope structure is insensitive to the
assumed surface boundary conditions, and in practice the photosBlksiare sifficient.

Convective envelopescorrespond to solutions wit@ < 0. In this case the solutions lie below the
C = 0 line, and their slope increases as bdecreases. This is shown by the dotted line in
Fig. 7.1. However, the assumption of radiative transport breaks ddvemW > V,q ~ 0.4
and convection sets in. Therefosgars with cool photospheres have convective envelapes
practice wherTe < 9000 K. The actual temperature stratification in the envelope is close to
adiabatic,V = Vg4, until the surface is approached. Before this happens, howevéal pan-
ization decrease®,q below 0.4 and gives rise to a much shallower slope. Since thereint
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solution lie close together near the surface, but further apart in the intdréstructure of a
convective envelopis sensitive to the surface boundary conditions. This means that the struc-
ture also depends on the uncertain details of near-surface convesgi®iséc. 5.5). A small
change or uncertainty ifieg can have a largefiect on the depth of the convective envelope!
For small enougf et the whole star can become convective (leading to the Hayashi line in the
H-R diagram, see Sect. 9.1.1).

The approximate description given here is borne out by detailed stellatis&Lcalculations, as
demonstrated in Fig. 7.2. Also note that if we assume electron scattering in$t€eainers opacity,
the description remains qualitatively the same (the radiative zero solution #s&h-h 0.25 instead
of 0.235).

7.3 Equilibrium stellar models

For a star in both hydrostatic and thermal equilibrium, the four partiéd@intial equations for stellar
structure (egs. 7.1-7.4) reduce to ordinary, time-independéetelitial equations. We can further
simplify the situation somewhat, by ignoring possible neutrino lossgsvhich are only important in
very late stages of evolution, and ignoring the superadiabaticity of the tatpegradient in surface
convection zones. We then arrive at the following set of structuretiemsathat determine the stellar
structure for a given composition profilg(m):

S_r:q _ Fizp (7.12)

j_r'; _ _% (7.13)

% e (7.14)

g_; _ ‘%% v owith vel) VedT 16:ch % ff Vrad < Vad (7.15)
Vad if Viaq > Vag

We note that the first two equations (7.12 and 7.13) describméahanical structuref the star, and
the last two equations (7.14 and 7.15) describdlieemal and energetistructure. They are coupled
to each other through the fact that, for a general equation of &agea function of bottp andT.

Although simpler than the full set of evolution equations, this set still has nolsjrapalytic
solutions. The reasons are that, first of all, the equations are verlingam: €.g.equc < p TV with
v > 1, andk is a complicated function g andT. Secondly, the four diierential equations are
coupled and have to be solved simultaneously. Finally, the equations hamddrg conditions at
both ends, and thus require iteration to obtain a solution.

It is, however, possible to make additional simplifying assumptions so thadrwedtain cir-
cumstances an analytic solution or a much simpler numerical solution is possiblaay already
discussed one example of such a simplifying approach in Chapter 4, naraatpgh ofpolytropic
modelsin which the pressure and density are related by an equation of the form

P=Kp".

Since in this casP does not depend oh, the mechanical structure of a stellar model can be computed
in a simple way, independent of its thermal and energetic properties, bpgelys. (7.12) and (7.13).
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Another approach is to consider simple scaling relations between stellar mwitieldifferent
masses and radii, but all having the same (or a very similar) relative dersdiijpations. If a detailed
numerical solution can be computed for one patrticular star, these so-caftealogy relationgan be
used to find an approximate model for another star.

7.4 Homology relations

Solving the stellar structure equations almost always requires heavy icaheaiculations, such as
are applied in detailed stellar evolution codes. However, there is often aoksithilarity between

the numerical solutions for fierent stars. These can be approximated by simple analytical scaling
relations known asiomology relations In past chapters we have already applied simple scaling
relations based on rough estimates of quantities appearing in the stellarrstegtations. In this
section we will put these relations on a firmer mathematical footing.

The requirements for the validity of homology are very restrictive, andlpaver apply to re-
alistic stellar models. However, homology relations c#ii@eroa rough but sometimes very helpful
basis for interpreting the detailed numerical solutions. This applies to modedtafsron themain
sequenceand to so-callethomologous contraction

Definition Compare two stellar models, with masdds and M, and radiiR; andR,. All interior
guantities in star 1 are denoted by subscript'1’ (e.g. the mass coordipgatetc. Now consider
so-callechomologous mass shelighich have the same relative mass coordinate m/M, i.e.

m N

- x_ 12 7.16
X= M~ M, (7.16)

The two stellar models are said to bemologousf homologous mass shells within them are
located at the same relative radiR, i.e.
(9 _ ra(x) () _ R

_ = or —_— = 7.17
Ry Ry r2(X) R> ( )

for all x.

Comparing two homologous stars, the ratio of raglir, for homologous mass shells is constant. In
other words, two homologous stars halie same relative mass distributioand therefore (as we
shall prove shortly) the same relative density distribution.

All models have to obey the stellar structure equations, so that the transitionddnomologous
model to another has consequences for all other variables. We staralyging the first two structure
equations.

e The first stellar structure equation (7.12) can be written for star 1 as

drq M1

-7 7.18
dx 47Tr12p1 ( )

If the stars are homologous, then from eq. (7.17) we can subatitete, (R1/R) and obtain

do My .[pzﬂ(Rz)e’]' (7.19)

dx  4ar2p; [p1 M2 \Ry
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We recognize the structure equation for the radius of star 2 (i.e. eq. Tt 8uwbscript ‘1’ re-

placed by ‘2’), multiplied by the factor in square brackets on the right-lsiatel This equation
must hold generally, which is only the case if the factor in square bracketpia to one for
all values ofx, that is if

p2() _ M2 (&)_3
p1(®¥)  Mi\Ry/ ~
This must hold at any homologous mass shell, and therefore also at the aeséich star. The

factor M R™3 is proportional to the average densityso that the density at any homologous

shell scales with the central density, or with the average density:

(7.20)

p(X) &< pc o< p (7.21)

Note that, therefore, any two polytropic models with the same imdaEe homologous to each
other.

We can apply a similar analysis to the second structure equation (7.13)diargtgtic equilib-
rium. For star 1 we have

dpl GM12X

—ir__=-77 7.22

dx 4rr 14 ( )
so that after substituting = r, (R1/R>) we obtain

dPy _ _GMx (&)Z(&)“ _dP (m)z(&)“ (7.23)

dx B 4711’24 M2 R]_ a dx M2 Rl ’ '

where the second equality follows because star 2 must also obey thestajtrequilibrium
equation. Hence we havég/dx = C dP,/dx, with C equal to the (constant) factor in square
brackets. Integrating we obtaly(x) = C Px(X) + B, where the integration constaBt= 0
because at the surface;—~ 1, for both star$® — 0. Thus we obtain

Pa(X) _ (M2 2(@)“‘
P1(x) _(Ml) Ry) ’ (7.24)

at any homologous mass shell. Again this must include the centre, so thitxtor a

2
P(X) « Pg % . (7.25)

The pressure required for hydrostatic equilibrium therefore scalesMAfiR* at any homolo-
gous shell. Note that we found the same scaling ottdrgralpressure witiM andR from our
rough estimate in Sect. 2.2, and for polytropic models of the same imdex

We can combine egs. (7.20) and (7.24) to show that two homologous starsineysthe following
relation between pressure and density at homologous points,

or

(7.26)

o=l Gl

P(X) o« M2/3p(x)4/3, (7.27)
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7.4.1 Homology for radiative stars composed of ideal gas

In order to obtain simple homology relations from the other structure equati@siust make addi-
tional assumptions. We start by analysing eqg. (7.15).

e First, let us assume thdeal gasequation of state,

R
P=—pT.
u

Let us further assume that in each stardbenposition is homogenequs® thatu is a constant
for both stars, though not necessarily the same. We can then combir{é.2q%.and (7.24) to
obtain a relation between the temperatures at homologous mass shells,

-1
To(X) 2 Mz(Rz) M

=— —[= or T(X) oc Tg oxc u— 7.28
To®) 1 Mq \Rs (9 e Te o g (7.28)

e Second, we will assume the stars areadiative equilibrium We can then write eq. (7.15) as

dT¥  3M «

- _ i 7.29
dx 16n2ac r4 ( )

This contains two as yet unknown functionsxasn the right-hand side,andl. We must there-
fore make additional assumptions about the opacity, which we can veghlsoapproximate
by a power law,

K = ko p2TP. (7.30)

For a Kramers opacity law, we would hage= 1 andb = —3.5. However, for simplicity let us
assume a@onstant opacityhroughout each star (but like not necessarily the same for both
stars). Then a similar reasoning as was held above for the pressurves alioto transform
eg. (7.29) into an expression for the ratio of luminosities at homologous points

1

(Tl(X)) 1% M1 k1 (Rl) = M ATHAR (7.31)

making use of eq. (7.28) to obtain the second expression. This relatiomaddisofor the surface
layer, i.e. for the total stellar luminosity. Hencel(x) « L and

L o 3,14M3 (7.32)
K

This relation representsmaass-luminosity relatiofor a radiative, homogeneous star with con-
stant opacity and ideal-gas pressure.

Note that we obtained a mass-luminosity relation (7.32) without making any aisnrapout the
mode of energy generation (and indeed, without even having to assummtteguilibrium, because
we have not yet made use of eq. 7.14). We can thus expect a mass-liyniatagion to hold not
only on the main-sequence, but for any star in radiative equilibrium. Wisatdlation tells us is that
the luminosity depends mainly on houfieiently energy can be transported by radiation: a higher
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opacity gives rise to a smaller luminosity, because the nontransparens lagek like a blanket
wrapped around the star. In practice, for a star in thermal equilibriumdg.the main sequence) the
power generated by nuclear reactidng: adapts itself to the surface luminosity and thereby also
the central temperature needed to make the nuclear reactions proces e tlictated by..

Note, however, that the simple mass-luminosity relation (7.32) depends orsghmption of
constant opacity. If we assume a Kramers opacity law, the mass-luminosityegdeads (weakly) on
the radius. Itis left as an exercise to show that, in this case

15M5S

RO5
This means that if the opacity is not a constant, there is a weak dependahedwminosity on the
mode of energy generation, through the radius dependence (see%&2L.

L o (7.33)

7.4.2 Main sequence homology

For stars that are in thermal equilibrium we can make use of the last strecuuaéon (7.14) to derive
further homology relations for the radius as a function of mass. We thentbaassume a specific
form for the energy generation rate, say

€uc=epT” (7.34)
so that eq. (7.14) can be written as

di

— =gMpT” 7.

dx e VM p ( 35)

By making use of the other homology relations, including the mass-luminosity rekdia(7.32), we
obtain for a homogeneous, radiative star with constant opacity and tnggi§an ideal gas:

R oc =4/0+3) MO-1)/(+3) (7.36)

The slope of thignass-radius relatioherefore depends an that is, on the mode of nuclear energy
generation. For main-sequence stars, in which hydrogen fusion psothé energy source, there are
two possibilities, see Table 7.1.

We can also obtain relations between the central temperature and centi#y éad the mass of
a star in thermal equilibrium, by combining the homology relations for the radi@§) Wwith those
for density and temperature (7.20 and 7.28):

e oc 1 BEN0+3) 23/ 0+3) (7.37)

TC o ’u7/(v+3) M4/(v+3) (738)

Again, the result depends on the mode of energy generation throughltieeofv. For main-sequence
stars the possibilities are tabulated in Table 7.1.

The mass-luminosity and mass-radius relations (7.32) and (7.36) can baremhpthe observed
relations for main-sequence stars that were presented in Chaptertt, thadesults of detailed stellar
structure calculations. This comparison is deferred to Chapter 9, wheenestin sequence is discussed
in more detail.

Table 7.1. Homology relations for the radius, central temperature@erdral density of main-sequence stars

pp-chain v=~4 R o M043 Te oc uMO57 pe o« M~03
CNOcycle v~18 R u?PMO8L T. o ytBMO19 pooc p2M~14
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7.4.3 Homologous contraction

We have seen in Chapter 2 that, as a consequence of the virial theotamyitsout internal energy
sources must contract under the influence of its own self-gravity. Gapihat this contraction takes
place homologously. According to eq. (7.17) each mass shell inside th@etamaintains the same
relative radiug /R. Writing f = dr/at, etc., this means that
f(m R
r(m R
Since in this case we compare homologous models with the sameNhags can replaca by the
mass coordinate. For the change in density we obtain from eq. (7.20) that
H(m R
p(m) =-3-, (7.39)
p(m) R
and if the contraction occurmguasi-statically i.e. slow enough to maintain HE, then the change in
pressure follows from eq. (7.24),

P _ R _4p(m)

= R 3 (7.40)

To obtain the change in temperature for a homologously contracting staraweetd consider the
equation of state. Writing the equation of state in its generdierintial form eq. (3.48) we can
eliminateP/P to get

T 1 (4 p 1 R

—=———)()—=—3X YA 7.41

TXT3pPXT(p)R (741)
Hence the temperature increases as a result of contraction as Iqr,;gasg—‘. For an ideal gas,
with y, = 1, the temperature indeed increases upon contraction, in accordancaintualitative)
conclusion from the virial theorem. Quantitatively,

T 1p

T 3p
However, for a degenerate electron gas with= g eg. (7.41) shows that the temperature decreases,
in other words a degenerate gas sphere gathl upon contraction. The full consequences of this
important result will be explored in Chapter 8.

7.5 Stellar stability

We have so far considered stars in both hydrostatic and thermal equilidBiunan important ques-
tion that remains to be answered is whether these equilibriatabde From the fact that stars can
preserve their properties for very long periods of time, we can guesthihas indeed the case. But
in order to answer the question of stability, and find out under what cirzumoss stars may become
unstable, we must test what happens when the equilibrium situation is metiustdl the perturba-
tion be quenched (stable situation) or will it grow (unstable situation). Sirere re two kinds of
equilibria, we have to consider two kinds of stability:

o dynamical stability: what happens when hydrostatic equilibrium is pert@rbed

e thermal (secular) stability: what happens when the thermal equilibrium situaterturbed?
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7.5.1 Dynamical stability of stars

The question of dynamical stability relates to the response of a certainfizastar to a perturbation
of the balance of forces that act on it: in other words, a perturbatioydrostatic equilibrium. We
already treated the case of dynamical stabilitiotmal perturbations in Sec. 5.5.1, and saw that in this
case instability gives rise toonvection In this section we look at the global stability of concentric
layers within a star to radial perturbations, i.e. compression or expansisigorous treatment of
this problem is very complicated, so we will only look at a very simplified examplbuistrate the
principles.

Suppose a star in hydrostatic equilibrium is compressed on a short timesealex, so that
the compression can be considered as adiabatic. Furthermore supgiotbe tbtompression occurs
homologouslysuch that its radius decreases fréto R'. Then the density at any layer in the star
becomes

R,—3

p=p =p(§)

and the new pressure after compression becdthagiven by the adiabatic relation

P/ ~ p/ Yad B R _3’}’ad
P \p/ \R ‘

The pressure required for HE after homologous contraction is
(Bl (%)
Plhe \p R
Therefore, ifyaq > ‘3‘ thenP’ > P}, and the excess pressure leads to re-expansion (on the dynamical
timescalerqyn) so that HE is restored. If, howevetq < %thenP’ < P}z and the increase of pressure

is not suficient to restore HE. The compression will therefore reinforce itself, thadsituation is
unstable on the dynamical timescale. We have thus obtained a criteridprfamical stability

-4

Yad> 3 (7.42)

It can be shown rigorously that a star that hgs> g‘ everywhere is dynamically stable, ang'if; = g‘
it is neutrally stable. However, the situation whep < % in some part of the star requires further

investigation. It turns out that global dynamical instability is obtained wheimtiegral
f (Vad— il)Edm (7.43)
3/p

over the whole star is negative. Therefore/if < g‘ in a suficiently large core, wher®/p is high,
the star becomes unstable. Howeveyif < g‘ in the outer layers wherg/p is small, the star as a
whole need not become unstable.

Cases of dynamical instability

Stars dominated by an ideal gas or by non-relativistic degenerate eketiaoBy,y = % and are

therefore dynamically stable. However, we have seen that for relatipsttclesy,q — ‘é‘ and stars

dominated by such particles tend towards a neutrally stable state. A small disteidfasuch a star
could either lead to a collapse or an explosion. This is the caseli@tion pressuradlominates (at
high T and lowp), or the pressure of relativistically degenerate electrons (at verydigh
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A process that can lead g < ‘é‘ is partial ionization(e.g. H«+~ H* + €7), as we have seen
in Sec. 3.5. Since this normally occurs in the very outer layers, wRgses small, it does not
lead to overall dynamical instability of the star. However, partial ionizatiororsected to driving
oscillations in some kinds of star.

At very high temperatures two other processes can occur that have a sffi@td to ionization.
These argoair creation(y + y & €* + €7, see Sect. 3.6.2) amhoto-disintegratiorof nuclei (e.g.
v + Fe & ). These processes, that may occur in massive stars in late stagesutibayalso lead
t0 yaq < %’ but now in the core of the star. These processes can lead to a stellasiermo collapse
(see Chapter 13).

7.5.2 Secular stability of stars

The question of thermal @ecularstability, i.e. the stability of thermal equilibrium, is intimately
linked to the virial theorem. In the case of an ideal gas the virial theorent.(38) tells us that the
total energy of a star is

Etot = —Eint = :‘ZLEgr, (7-44)

which is negative: the star is bound. The rate of change of the totalyeisegiyen by the dference
between the rate of nuclear energy generation in the deep interior anatéhef ienergy loss in the
form of radiation from the surface:

I.Etot = I—nuc_ L (7-45)

In a state of thermal equilibriunt, = L,c and Ey; remains constant. Consider now a small pertur-
bation of this situation, for instandg,,c > L because of a small temperature fluctuation. This leads
to an increase of the total energ¥:: > 0, and since the total energy is negative, its absolute value
becomes smaller. The virial theorem, eq. (7.44), then tells us thaEgl)> O, in other words the star
will expand ¢p < 0), and (2)5Ein: < 0, meaning that the overall temperature will decrease< 0).
Since the nuclear energy generation r@te « oT” depends on positive powers @fand especially

T, the total nuclear energy generation will decredtg;c < 0. Eq. (7.45) shows that the perturbation
to E;ot Will be quenched and the state of thermal equilibrium will be restored.

The secular stability of nuclear burning thus depends omégative heat capacityf stars com-
posed of ideal gas: the property that an increase of the total enenggntdeads to a decrease of
the temperature. This property providetharmostathat keeps the temperature nearly constant and
keeps stars in a stable state of thermal equilibrium for such long time scales.

We can generalise this to the case of stars with appreciable radiationngreBsu a mixture of
ideal gas and radiation we can write, with the help of egs. (3.11) and (3.12)

P P P
o, T %Ugas"‘ %Urad- (7.46)
p P P
Applying the virial theorem in its general form, eq. (2.24), this yields
2 Eintgast Eintrad = —Egr (7.47)

and the total energy becomes
Etot = —Eintgas= %(Egr + Eintrrad)- (7.48)

The radiation pressure thus has tlfieet of reducing theféective gravitational potential energy. If
B = Pgag/ P is constant throughout the star, then eq. (7.48) becomes

Etot = %ﬂ Egr (7-49)
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This is negative as long #> 0. The analysis of thermal stability is analogous to the case of an ideal
gas treated above, and we see that stars in which radiation pressure isamhdaut not dominant,
are still secularly stable. Howeverdf— 0 then the thermostatidfect no longer works.

Thermal instability of degenerate gases

In the case of a degenerate electron gas, the pressure and the iaterl are independent of the
temperature (Sec. 3.3.5). The mechanical structure of an electronatatgstar — or the degenerate
core of an evolved star — is therefore independent of the thermaleatiesfructure (Sec. 7.3). If
the same perturbatioln,,c > L discussed above is applied to a degenerate gas, the resulting energy
input will have no &ect on the electron pressure and on the stellar structure. Therefogenttide
no expansion and cooling. Instead, there will be a temperatareasebecause the ionized atomic
nuclei still behave as an ideal gas, and the energy input will increasdttbamal motions. Thus the
effect of the perturbation will b6T > 0, whilesp =~ 0.
Because of the strong sensitivity of the nuclear energy generation ratghie perturbation will
now lead to an increase bf,,c, and thermal equilibrium will not be restored. Instead, the temperature
will continue to rise as a result of the increased nuclear energy relehid in turn leads to further
enhancement of the energy generation. This instability is calldebi@monuclear runawayand it
occurs whenever nuclear reactions ignite in a degenerate gas. Inasesdtcan lead to the explosion
of the star, although a catastrophic outcome can often be avoided wheastlewantually becomes
suficiently hot to behave as an ideal gas, for which the stabilizing thermostedtepe This can be
seen from eq. (7.41), valid in the case of homologous expansion, wiadamwwrite as
oT 1 (4 ) op
P

_ 1A , 7.50
T xr p (7:50)

3

As soon as the gas is heated enough that it is no longer completely degepera 0 and some
expansion will occurdp < 0), while y, decreases belo@. From eq. (7.50) we see that whep
drops below the critical value cé‘ 6T changes sign and becomes negative upon further expansion.

We shall encounter several examples of thermonuclear runaways ne fthapters. The most
common occurrence is the ignition of helium fusion in stars with masses belowt abk, — this
phenomenon is called theelium flash Thermonuclear runaways also occur when hydrogen gas
accumulates on the surface of a white dwarf, giving rise to so-cabed outbursts

The thin shell instability

In evolved stars, nuclear burning can take place in a shell around drcore. If such a burning
shell is sifficiently thin the burning may become thermally unstable, even under ideal-gdisicns.
We can make this plausible by considering a shell with nmamsnside a star with radiuR, located
between a fixed inner boundaryrgtand outer boundary &t so that its thicknessid=r —rg <« R.

If the shell is in thermal equilibrium, the rate of nuclear energy generatioaleghe net rate of heat
flowing out of the shell (eq. 7.14). A perturbation by which the energyegation rate exceeds the
rate of heat flow leads to expansion of the shell, pushing the layers @bmygvard ¢r > 0). This
leads to a decreased pressure, which in hydrostatic equilibrium is given. §7.40),

oP or

o0 _ 4% 7.51

P r ( )
The mass of the shell ism = 4xro?pd, and therefore the density varies with the thickness of the

shell as
op od _orr

=TT a (7.52)
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Eliminating 6r/r from the above equations yields a relation between the changes in gresslr
density,

oP dé

—4= 7.53
P rp ( )
Combining with the equation of state in its generaffatiential form eq. (3.48) we can eliminate/P

to obtain the resulting change in temperature,
oT 1/.d op
== (42 - ))__‘ 7.54
T xr ( r ) (7.54)

The shell is thermally stable as long as expansion results in a drop in tempgiratusden
€>M (7.55)

sinceyt > 0. Thus, for a sfliciently thin shell a thermal instability will develop. (In the case of an
ideal gas, the condition 7.55 givegr > 0.25, but this is only very approximate.) If the shell is very
thin, the expansion does not lead to &isient decrease in pressure to yield a temperature drop, even
in the case of an ideal gas. This may lead to a runaway situation, analoghes<tse of a degenerate
gas. The thermal instability of thin burning shells is important during late stdga®lution of stars

up to about 8V, during theasymptotic giant branch

Suggestions for further reading

The contents of this chapter are also (partly) covered by Chapter 24miek] where the question of
stability is considered in Section 3.5. A more complete coverage of the materiabisig Chapters
9, 10, 19, 20 and 25 of IkPENHAHN.

Exercises

7.1 General understanding of the stellar evolution equatins

The diferential equations (7.1-7.5) describe, for a certain lonah the star at mass coordinate the
behaviour of and relations between radius coordinatee pressur®, the temperaturg, the luminosity
| and the mass fraction$§ of the various elementis

(a) Which of these equations describe the mechanical steyattnich describe the thermal-energetic
structure and which describe the composition?

(b) What doe¥ represent? Which two cases do we distinguish?

(c) How does the set of equations simplify when we assumedsyaltic equilibrium (HE)? If we
assume HE, which equation introduces a time dependence“h\physical &ect does this time
dependence represent?

(d) What do the terms,,c andTds/dt represent?

(e) How does the set of equations simplify if we also assuraenihl equilibrium (TE)? Which equa-
tion introduces a time dependence in TE?

(f) Equation (7.5) describes the changes in the compositiomprinciple we need one equation for
every possible isotope. In most stellar evolution codes,nticclear network is simplified. This
reduces the number of flierential equations and therefore increases speed ofrstefidution
codes. Th&TARS code behindVindow to the Staranly takes into account seven isotopes. Which
do you think are most important?
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7.2 Dynamical Stability

(@) Show that for a star in hydrostatic equilibriunP(dm = —Gny(4xr4)) the pressure scales with
density asP o« p*/3.

(b) If yag < 4/3 a star becomes dynamically unstable. Explain why.
(c) Inwhat type of starg,q ~ 4/3?

(d) What is the &ect of partial ionization (for example Bs H" + €7) ony,4? So what is theféect of
ionization on the stability of a star?

(e) Pair creationandphoto-disintegratiorof Fe have a similarféect ony,q. In what type of stars (and
in what phase of their evolution) do these processes plale@ ro

7.3 Mass radius relation for degenerate stars

(a) Derive how the radius scales with mass for stars compotadon-relativistic completely de-
generateelectron gas. Assume that the central dengity= ap and that the central pressure
P. = bGM?/R*, wherep is the mean density, aralandb depend only on the density distribution
inside the star.

(b) Do the same for aextremely relativistic degeneragdectron gas.

(c) The electrons in a not too massive white dwarf behavedige@mpletely degenerate non-relativistic
gas. Many of these white dwarfs are found in binary systenescbbe qualitatively what happens
if the white dwarf accretes material from the companion star

7.4 Main-sequence homology relations

We speak of twdhomologous starerhen they have the same density distribution. To some ertieirt
sequence stars can be considered as stars with a similatyd#isgibution.

(a) You already derived some scaling relations for main eege stars from observations in the first
set of exercises: the mass-luminosity relation and the reatigs relation. Over which mass range
were these simple relations valid?

(b) During the practicum you plotted the density distribatiof main sequence stars offférent
masses. For which mass ranges did you find that that the starproximately the same density
distribution.

(c) Compare thd_-M relation derived form observational data with theM relation derived from
homology, eq. (7.32). What could cause thgedtence? (Which assumptions may not be valid?)

(d) Show that, if we replace the assumption of a constantigpaith a Kramers opacity law, the
mass-luminosity-radius relation becomes eq. (7.33),

,u7‘5M5'5
RO5
(e) Substitute a suitable mass-radius relation and contpamesult of (d) with the observational data

in Fig. 1.3. For which stars is the Kramers-basei relation the best approximation? Can you
explain why? What happens at lower and higher masses, resghget

L o

7.5 Central behaviour of the stellar structure equations

(&) Rewrite the four structure equations in terms ffrd

(b) Find how the following quantities behave in the neighthmod of the stellar center:
- the massn(r),
- the luminosityi(r),
- the pressuré(r),
- the temperatur@ (r).
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Chapter 8

Schematic stellar evolution —
consequences of the virial theorem

8.1 Evolution of the stellar centre

We will consider the schematic evolution of a star, as seen from its centee cdifire is the point
with the highest pressure and density, and (usually) the highest tenmeenahere nuclear burning
proceeds fastest. Therefore, the centre is the most evolved part sfathend it sets the pace of
evolution, with the outer layers lagging behind.

The stellar centre is characterized by the central depsgjtpressurd®. and temperaturé. and
the composition (usually expressed in termsuofndor ue). These quantities are related by the
equation of state (EOS). We can thus represent the evolution of a stardwpltionary track in the
(Pg, pc) diagram or theTg, pc) diagram.

8.1.1 Hydrostatic equilibrium and the P-p. relation

Consider a star in hydrostatic equilibrium (HE), for which we can estimate thewcentral pres-
sure scales with mass and radius from the homology relations (Sec. 7r4.skr that expands or
contracts homologously, we can apply eq. (7.26) to the central pressdmreentral density to yield

P.=C - GM%3p 43 (8.1)

whereC is a constant. This is a fundamental relation for stars iniHB:star of mass M that expands
or contracts homologously, the central pressure varies as centraditjeto the powe%. The value

of the constan€ depends on the density distribution in the star. Note that we found the saitierela
for polytropic stellar models in Chapter 4, eq. (4.18), where C,, depends on the polytopic index.
However, the dependence njand hence on the density distibution, is only very weak. For polytropic
models with indexn = 1.5 -3, a range that encompasses most actual &aewjes between 0.48 and
0.36. Hence relation (8.1) is reasonably accurate, even if the contréston exactly homologous.

In other words: for a star of a certain mass, the central pressure istalmgaely determined by the
central density.

Note that we have obtained this relation without considering the EOS. Tiergf.1) defines a
universal relation for stars in HEhat is independent of the equation of state. It expresses the fact that
a star that contracts quasi-statically must achieve a higher internal préssemain in hydrostatic
equilibrium. Eq. (8.1) therefore defines avolution trackof a slowly contracting (or expanding) star
in the Pc-p¢ plane.
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8.1.2 The equation of state and evolution in thé>.-p. plane

By considering the EOS we can also derive the evolution of the central tatape This is obviously
crucial for the evolutionary fate of a star because e.g. nuclear buramgresT. to reach certain
(high) values. We start by considering lines of consfiarisothermsin the P, p) plane.

We have encountered various regimes for the EOS in Chapter 3:

o Radiation dominated? = 2aT*. Hence an isotherm in this region is also a line of consant
N R .
e (Classical) ideal gaf® = —pT. Hence an isotherm hds« p.
U

 Non-relativistic electron degenerady:= Knr(o/ue)® (eq. 3.35). This is independent of tem-
perature. More accurately: the complete degeneracy implied by this relatimtyigachieved
whenT — 0, so this is in fact the isotherm fdr = 0 (and not too high densities).

o Extremely relativistic electron degenerady:= Ker(o/ue)*'® (€q. 3.37). This is the isotherm
for T = 0 and very higtp.

Figure 8.1 shows various isotherms schematically in theplelpgP plane. Where radiation
pressure dominates (Igw) the isotherms are horizontal and where ideal-gas pressure dominates the
have a slope- 1. The isotherm fofl = 0, corresponding to complete electron degeneracy, has slope
of % at relatively low density and a shallower slopeg‘oat high density. The region to the right and
below theT = 0 line is forbidden by the Pauli exclusion principle, since electrons anaideis.

The dashed lines are schematic evolution tracks for starsfefeint massell; andM,. Accord-
ing to eq. (8.1) they have a slopeg)fand the track for a larger mass lies at a higher pressure than that
for a smaller mass.

Several important conclusions can be drawn from this diagram:

e As long as the gas is ideal, contraction (increagigigeads to a highef;, because the slope
of the evolution track is steeper than that of ideal-gas isotherms: the evottditkhcrosses
isotherms of higher and higher temperature.

Non-degenerate region

oy ? 1

Li'm Region o

Radiation pomt\ fOfblddEnL
pressure \ M| N
Pec T} = constant

T] >Ti

ot £

logp
Figure 8.1. Schematic evolution in the lgg—logP plane. Solid lines are isotherms in the equation of state;

the dashed lines indicate two evolution tracks dfedent mass, which have a sIope%afSee the text for an
explanation.
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Note that this is consistent with what we have already concluded from tlaéthieorem for an
ideal gas:Ej, = —%Egr. Contraction (decreasin,, i.e. increasing-Eg) leads to increasing
internal (thermal) energy of the gas, i.e. to heating of the stellar gas!

e Tracks for masses lower than some critical vaMgj;, e.g. the track labeleM;, eventually
run into the line for complete electron degeneracy because this has a sie@ee Hence for
stars withM < Mcit there exist a maximum achievable central density and pregsurg, and
Pcmax Which define the endpoint of their evolution. This endpoint is a completejgnirate
state, i.e. a white dwarf, where the pressure needed to balance gravies dmm electrons
filling the lowest possible quantum states.

Because complete degeneracy corresponds 00, it follows that the evolution track must
intersect each isotherm twice. In other words, stars Wth< Mt also reach a maximum
temperaturd ¢ max, at the point where degeneracy starts to dominate the pressure, aiter wh
further contraction leads to decreasifig pcmax Pcmax and Temax all depend orM and in-
crease with mass.

e Tracks for masses larger thaut.i;, €.g. the one labelelfl,, miss the completely degenerate

region of the EOS, because at hjgthis has the same slope as the evolution track. This change

in slope is owing to the electrons becoming relativistic and as their velocity tamueedc,
they exert less pressure than if there were no limit to their velocity. Hetesgtr@n degeneracy
is not suficient to counteract gravity, and a star with> Mt must keep on contracting and
getting hotter indefinitely — up to the point where the assumptions we have mealedown,
e.g. whenp becomes so high that the protons inside the nuclei capture free electrdres a
neutron gas is formed, which can also become degenerate.

Hence the evolution of stars witMl > Mg is qualitatively diferent from that of stars with
M < Mgit. This critical mass is none other than t@handrasekhar masthat we have already
encountered in Chapter 4 (eq. 4.22)

Mo. (8.2)

It is the unique mass of a completely degenerate and extremely relativistiplgae s A star with
M > Mcp must collapse under its own gravity, but the electrons become extremelyigtiat- and,
if M is equal to or not much larger théhcy, also degenerate — in the process.

8.1.3 Evolution in the T¢-p. plane

We now consider how the stellar centre evolves inTthep. diagram. First we divide th&, p plane
into regions where dierent processes dominate the EOS, see Sec. 3.3.7 and Fig. 3.4, cepradu
Fig. 8.2a.

For a slowly contracting star in hydrostatic equilibrium equation (8.1) implies délsdtng as the
gas behaves like a classical ideal gas:

R CG
;Tcpc = CGM3p*° - Te=—2H M?/3pcH/3 (8.3)

(Compare to Sec. 7.4.3.) This defines an evolution track in th& Jéagp plane with slope%. Stars
with different mass evolve along tracks that lie parallel to each other, those wien Mrtying at

higher T and lowerp.. Tracks for larger mass therefore lie closer to the region where radiation
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Figure 8.2. The equation of state in the 1dg —logp. plane (left panel), with approximate boundaries between
regions where radiation pressure, ideal gas pressuresahativistic electron degeneracy and extremely rela-
tivistic electron degeneracy dominate, for a compositioK e 0.7 andZ = 0.02. In the right panel, schematic
evolution tracks for contracting stars of 0.1 — 1@ have been added.

pressure is importantthe larger the mass of a star, the more important is the radiation pressure
Furthermore, the relative importance of radiation pressure does ngelaa a star contracts, because
the track runs parallel to the boundary between ideal gas and radiatissupe-

As the density increases, stars with< Mcy, approach the region where non-relativistic electron
degeneracy dominates, because the boundary between ideal gaRkatwhéheracy has a steeper
slope than the evolution track. Inside this region, equating relation (8.1) dRItegenerate pressure
gives:

1/3 CG 3
Kl =COMES o o= (22 w2 84
e KNR

When degeneracy dominates the track becomes independgntanfd the star moves down along a
track of constanpe. This is thepe max we found from thePe, p. diagram. The larger the mass, the
higher this density. (When the electrons become relativistig at10° g/cm?, the pressure increases
less steeply with density so that the central density for a degenerate staisei is in fact larger
than given by eq. 8.4).

Equations (8.3) and (8.4) imply that, for a star with< Mcp, that contracts quasi-statically,
increases as:2 until the electrons become degenerate. Then a maximum temperature isdeache
and subsequently the star cools at a constant density when degetertaitae provide the pressure.
The schematic evolution tracks for 0.1 and M@ given in Fig. 8.2 show this behaviour. This can
be compared to eq. (7.41) for homologous contraction (Sec. 7.4.3), wititlates that the slope of
an evolution track in the lo§ —logp plane is equal tog — Xp)/xT. This equal% for an ideal gas,
but changes sign and becomes negative gpce %. When degeneracy is almost completg,= g
andyt — 0 such that the slope approaches infinity. The maximum temperature is deabba the

1t is easy to show for yourself that the evolution track for a star in whidhatéon pressure dominates would have the
same slope 0§ in the logT, logp plane. However, such stars are very close to dynamical instability.
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ideal gas pressure and degenerate electron pressure are alaytagh contributing about half of
the total pressure. Combining egs. (8.3) and (8.4) then implies that the maxiemiraldemperature
reached increases with stellar mass as (see Exercise 8.2)

22
AR KnR

ForM > Mc, the tracks of contracting stars miss the degenerate region ofthglane, because
at high density the boundary between ideal gas and degeneracy remnhbeslope as an evolution
track. The pressure remains dominated by an ideal gasTakdeps increasing likp:'/3 to very
high values ¢ 10'°K). This behaviour is shown by the schematic tracks for 10 andvi0

pu® MAB, (8.5)

Tc,max =

8.2 Nuclear burning regions and limits to stellar masses

We found that stars witM < Mch reach a maximum temperature, the value of which increases with
mass. This means that only gas spheres above a certain mass limit will reaehatmgs sfiiciently

high for nuclear burning. The nuclear energy generation rate is éigefignction of the temperature,
which can be written as

énuc = €0p'T" (8.6)

where for most nuclear reactions (those involving two nuclei 1, while v depends mainly on
the masses and charges of the nuclei involved and usuady1. For H-burning by the pp-chain,

v ~ 4 and for the CNO-cycle which dominates at somewhat higher temperaturel8. For He-
burning by the @ reaction,y ~ 40 (andd = 2 because three particles are involved). For C-burning
and O-burning reactionsis even larger. As discussed in Chapter 6, the consequences of thig stro
temperature sensitivity are that

e each nuclear reaction takes place at a particular, nearly constant seompeand
¢ nuclear burning cycles of subsequent heavier elements are welagsgar temperature

As a star contracts and heats up, nuclear burning becomes importanthehamergy generated,
Lhuc = fenucdm, becomes comparable to the energy radiated away from the sufaéeom this
moment on, the star can compensate its surface energy loss by nuclepr gemeration: it comes
into thermal equilibrium The first nuclear fuel to be ignited is hydrogenTat~ 10’ K. From the
homology relation (7.38) we expect that the central temperature at whirodwsn fusion stabilizes
should depend on the mass approximately as

Tc = Tc,@ (M/M®)4/(V+3) (8-7)

whereT¢o ~ 1.5 x 107K, for a composition like that of the Sum (= o). We can estimate the
minimum mass required for hydrogen burning by comparing this temperature teekimum central
temperature reached by a gas sphere of fvassq. (8.5). By doing this (and takir@ = 0.48 for an
n = 1.5 polytrope) we find a minimum mass for hydrogen burning.@6M.

Detailed calculations reveal that the minimum mass for the ignition of hydrogerotogtars
is about 2 times smaller than this simple estimalig,, = 0.08 M. Less massive objects become
partially degenerate before the required temperature is reached atimueoto contract and cool
without ever burning hydrogen. Such objects are not stars accaaimg definition (Chapter 1) but
are known adrown dwarfs

We have seen earlier that the contribution of radiation pressure insr@@semass, and becomes
dominant forM > 100Mg. A gas dominated by radiation pressure has an adiabatic ingex ‘5‘,
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which means that hydrostatic equilibrium in such stars becomes marginallplen&ee Sec. 7.5.1).
Therefore stars much more massive than @Ghould be very unstable, and indeed none are known
to exist (while those wittM > 50 Mg, indeed show signs of being close to instability, e.g. they lose
mass very readily).

Hence stars are limited to a rather narrow mass range 6f1 M; to ~ 100My. The lower
limit is set by the minimum temperature required for nuclear burning, and ther lipmit by the
requirement of dynamical stability.

8.2.1 Overall picture of stellar evolution and nuclear burning cycles

As a consequence of the virial theorem, a self-gravitating sphere ceahpdsdeal gas in HE must
contract and heat up as it radiates energy from the surface. Thgydass occurs at a rate
. . . E
L = —Eiot = Ein = —1Eqr » — (8.8)
TKH
This is the case for protostars that have formed out of an interstellal@as cTheir evolution, i.e.
overall contraction, takes place on a thermal timesegle As the protostar contracts and heats up
and its central temperature approache$Kl,0the nuclear energy generation rate (which is at first
negligible) increases rapidly in the centre, until the burning rate matchesérgyeloss from the
surface:

L= _Enuc ~ Enuc (8.9)
Tnuc
At this point, contraction stops afi¢ andp. remain approximately constant, at the values needed for
hydrogen burning. The stellar centre occupies the same placeTg-fhwediagram for about a nuclear
timescaler,,. Remember that for a star of a certain masts essentially determined by the opacity,
i.e. by how dficiently the energy can be transported outwards.

When H is exhausted in the core — which how consists of He and has a miasdlyyp10% of the
total massM — this helium core resumes its contraction. Meanwhile the layers aroundaméxp his
constitutes a large deviation from homology and relation (8.1) no longer applithe whole star.
However the core itself still contracts more or less homologously, while thehtvefghe envelope
decreases as a result of its expansion. Therefore relation (8.1) mea@pnoximately valid for the
coreof the star, i.e. if we replackl by the core masbl.. The core continues to contract and heat up
at a pace set by its own thermal timescale,

Egr,core

(8.10)

Lcore ® Ein,core ® —% Egr.core ~
TKH,core
as long as the gas conditions remain ideal. It is now the He core mass, ratheh¢htotal mass of
the star, that determines the further evolution.

Arguments similar to those used for deriving the minimum mass for H-burningttetite ex-
istence a minimum (core) mass for He-ignition, This is schematically depicted irBRHgwhich
suggests that this minimum mass is larger thaih,1 However, the schematic tracks in Fig. 8.3 have
been calculated for a fixed compositign= 0.7, Z = 0.02, which is clearly no longer the valid since
the core is composed of helium. You may verify that a He-rich compositiondasesethe maximum
central temperature reached for a certain mass (eg. 8.5). Detailed tialtsifaut the minimum mass
for He-ignition at~ 0.3 M. Stars with a core mass larger than this value ignite He in the centre
whenT, ~ 10°K, which stops further contraction while the energy radiated away cammgied
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log T¢

Figure 8.3. The same schematic evolution tracks as
in Fig. 8.2, together with the approximate regions in
the logT. —logp. plane where nuclear burning stages
‘ 10  oecur.

by He-burning reactions. This can go on for a length of time equal to thieautmescale of He
burning, which is about 0.1 times that of H burning. In stars with a He cors m&s3 M, the core
becomes degenerate before reachipg= 10°K, and in the absence of a surrounding envelope it
would cool to become a white dwarf composed of helium, as suggested b8.Big(In practice,
however, H-burning in a shell around the core keeps the core hatledM. has grown tex 0.5 Mg

He ignites in a degenerate flash.)

After the exhaustion of He in the core, the core again resumes its contrastienthermal
timescale, until the next fuel can be ignited. Following a similar line of reasotiiagninimum
(core) mass for C-burning, which requir@s~ 5 x 10°K, is » 1.1M,. Less massive cores are
destined to never ignite carbon but to become degenerate and cool asi€@iwarfs. The mini-
mum core mass required for the next stage, Ne-burning, turns out4oMey,. Stars that develop
cores withM¢ > Mcy, therefore also undergo all subsequent nuclear burning stages@Nand Si-
burning) because they never become degenerate and continue tatanttdeat after each burning
phase. Eventually they develop a core consisting of Fe, from whichrtteefunuclear energy can be
squeezed. The Fe core must collapse in a cataclysmic event (a superreogamma-ray burst) and
become a neutron star or black hole.

The alternation of gravitational contraction and nuclear burning stagesimarized in Table 8.1,
together with the corresponding minimum masses and characteristic tempeeatdrenergies. The
schematic picture presented in Fig. 8.3 of the evolution of stardfefrdint masses in thie-o diagram
can be compared to Fig. 8.4, which shows the results of detailed calculatioverious masses.

To summarize, we have obtained the following picture. Nuclear burningsygele be seen as long-
lived but temporary interruptions of the inexorable contraction of a staat(least its core) unde
the influence of gravity. This contraction is dictated by the virial theorem aara$ult of the fact
that stars are hot and lose energy by radiation. If the core mass is laghélfahandrasekhar mass,
then the contraction can eventually be stopped (after one or more nugides)cwhen electron
degeneracy supplies the pressure needed to withstand gravity. Hafviheecore mass exceeds
the Chandrasekhar mass, then degeneracy pressure is not enduggngaction, interrupted b
nuclear burning cycles, must continue at least until nuclear densitiesaniked.

—
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Figure 8.4. Detailed evolution tracks in the Igg - log T, plane for masses between 1 andM& The
initial slope of each track (labelled pre-main sequencdraction) is equal t(% as expected from our simple
analysis. When the H-ignition line is reached wiggles appeé#ne tracks, because the contraction is then no
longer strictly homologous. A stronger deviation from hdagmus contraction occurs at the end of H-burning,
because only the core contracts while the outer layers expaocordingly, the tracks shift to higher density
appropriate for their smaller (core) mass. These deviatfoom homology occur at each nuclear burning
stage. Consistent with our expectations, the most massivélSM,) reaches C-ignition and keeps evolving
to higherT andp. The core of the WM, star crosses the electron degeneracy border (indicateg/ by = 10)
before the C-ignition temperature is reached and become®avBite dwarf. The lowest-mass tracks (1 and
2 M) cross the degeneracy border before He-ignition becaesedbres are less massive than BL3 Based
on our simple analysis we would expect them to cool and beddenerhite dwarfs; however, their degenerate
He cores keep getting more massive and hotter due to H-siveling. They finally do ignite helium in an
unstable manner, the so-called He flash.

Suggestions for further reading

The schematic picture of stellar evolution presented above is very nicelgirsg in Chapter 7 of
Priarnik, Which was one of the sources of inspiration for this chapter. The ctenéeea only briefly
covered by MEeper in Sec. 3.4, and are somewhat scattered throughoutdéiann & W EIGERT, See
sections 28.1, 33.1, 33.4 and 34.1.
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Table 8.1. Characteristics of subsequent gravitational contractioth nuclear burning stages. Column (3)
gives the total gravitational energy emitted per nucleocesithe beginning, and column (5) the total nuclear
energy emitted per nucleon since the beginning. Column ii@sghe minimum mass required to ignite a
certain burning stage (column 4). The last two columns dieeftaction of energy emitted as photons and
neutrinos, respectively.

phase T (1(PK) total Eq/n  main reactions totd,,o/n Mmin v (%) v (%)
grav. 0— 10 ~ 1keV/n 100

nucl. 10— 30 H - “He 6.7MeVn 0.08My; ~95 ~5
grav. 30— 100 ~ 10keV/n 100

nucl. 100— 300 ‘He—1°C,%%0 ~74MeV/n 0.3M, ~100 ~0
grav. 300— 700 ~ 100keVn ~50 ~50
nucl.  700— 1000 2C 5 Mg,Ne =~7.7MeVin 1.1M, ~0 ~100
grav. 1000— 1500 ~ 150keV/n ~100
nucl.  1500— 2000 %0 - S, Si ~80MeV/n 1.4Mg ~100
grav. 2000- 5000 ~ 400keVn Si—...—»>Fe =~84MeV/n ~100

Exercises

8.1 Homologous contraction (1)

(a) Explain in your own words whdtomologous contractiomeans.

(b) Areal star does not evolve homologously. Can you givesgifip example? [Think of core versus
envelope]

(c) Fig. 8.3 shows the central temperature versus the delenaity for schematic evolution tracks as-
suming homologous contraction. Explain qualitatively wva can learn form this figure (nuclear
burning cycles, dference between aN, and a 10V, star, ...)

(d) Fig. 8.4 shows the same diagram with evolution tracksifdetailed (i.e. more realistic) models.
Which aspects were already present in the schematic evwolirdioks? When and where do they
differ?

8.2 Homologous contraction (2)
In this question you will derive the equations that are plbth Figure 8.2b.

(a) Use the homology relations fBrandp to derive eq. (8.1),
P. = CGM?3p23

To see what happens qualitatively to a contracting starwafrgimasaM, the total gas pressure can be
approximated roughly by:

R Y
P~ Py + Pdeg: —pT +K (ﬁ) (811)
H He
wherey varies betweerg (non-relativistic) ancg (extremely relativistic).
(b) Combine this equation, for the case of NR degenerach thié central pressure of a contracting
star in hydrostatic equilibrium (eq. 8.1, assumig: 0.5) in order to find howl . depends ofp.
(c) Derive an expression for the maximum central tempeeatemched by a star of makk
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8.3 Application: minimum core mass for helium burning
Consider a star that consists completely of helium. Compuatestimate for the minimum mass for
which such a star can ignite helium, as follows.
e Assume that helium ignites @t = 10°K.

e Assume that the critical mass can be determined by the ¢ondktat the ideal gas pressure and
the electron degeneracy pressure are equally importaheistar at the moment of ignition.

e Use the homology relations for the pressure and the demsitsume thaP, = 10" gcnrls2
andpco = 60gcnT3,
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Chapter 9

Early stages of evolution and the main
sequence phase

In this and the following chapters, an account will be given of the evoluiatars as it follows from
full-scale, detailed numerical calculations. Because the stellar evoluticatiens are highly non-
linear, they have complicated solutions that cannot always be anticipated basis of fundamental
principles. We must accept the fact that simple, intuitive explanations taiways be given for the
results that emerge from numerical computations. As a consequencectuntof stellar evolution
that follows will be more descriptive and less analytical than previoustehap

This chapter deals with early phases in the evolution of stars, as they ¢ésalasds and during
the main-sequence phase. We start with a very brief (and incompletejewesf the formation of
stars.

9.1 Star formation and pre-main sequence evolution

The process of star formation constitutes one of the main problems of mosteoptaysics. Com-
pared to our understanding of what happafter stars have formed out of the interstellar medium
— that is, stellar evolution — star formation is a very ill-understood problem. rddigtive theory of
star formation exists, or in other words: given certain initial conditions,teegdensity and temper-
ature distributions inside an interstellar cloud, it is as yet not possible tacpreith certainty, for
example, thestar formation giciency(which fraction of the gas is turned into stars) and the resulting
initial mass functior{(the spectrum and relative probability of stellar masses that are formedelW
mostly on observations to answer these important questions.

This uncertainty might seem to pose a serious problem for studying stedlaitien: if we do not
know how stars are formed, how can we hope to understand their ev@lutioe reason that stellar
evolution is a much more quantitative and predictive branch of astrophysiosstar formation was
already alluded to in Chapter 7. Once a recently formed star settles intostgtitcand thermal
equilibrium on the main sequence, its structure is determined by the four s&recfuations and only
depends on the initial composition. Therefore all the uncertain details obth®afion process are
wiped out by the time its nuclear evolution begins.

In the context of this course we can thus be very brief about star formagsielf, as it has very
little effect on the properties of stars themselves (at least as far as we asgraahwith individual
stars — it does of course have an importdfg@ on stellapopulation$.

Observations indicate that stars are formed out of molecular clouds, tymgi@nt molecular clouds
with masses of order 20M,,. These clouds have typical dimensions-010 parsec, temperatures of
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10 - 100K and densities of 10 300 moleculeem?® (where the lowest temperatures pertain to the
densest parts of the cloud). A certain fraction, about 1 %, of the clodédriakis in the form of dust
which makes the clouds very opaque to visual wavelengths. The cloads pressure equilibrium
(hydrostatic equilibrium) with the surrounding interstellar medium. Roughly, avedistinguish six
stages in the star formation process.

Interstellar cloud collapse Star formation starts when a perturbation, e.g. due to a shock wave orig-
inated by a nearby supernova explosion or a collision with another clastdrlos the pressure
equilibrium and causes (part of) the cloud to collapse under its selftgralhe condition for
pressure equilibrium to be stable against such perturbations is that théwaesd should be
less than a critical mass, tleans masswhich is given by

3/2 -1/2

n
) o1

wheren is the molecular density by number (see e.geMir Sec. 18.2.1 for a derivation). For
typical values off andn in molecular cloudi; ~ 10°—10* M. Cloud fragments with a mass
exceeding the Jeans mass cannot maintain hydrostatic equilibrium and veitbanessentially
free-fall collapse. Although the collapse is dynamical, the timeseglex p~1/2 (eq. 2.18) is
of the order of millions of years because of the low densities involved. Tthelds transparent

to far-infrared radiation and thus coolffieiently, so that the early stages of the collapse are
isothermal

T
MJ~4><104M®(100K)

Cloud fragmentation As the density of the collapsing cloud increases, its Jeans mass dedrgases
eg. (9.1). The stability criterion within the cloud may now also be violated, satlieatloud
starts to fragment into smaller pieces, each of which continues to collapsdragmentation

process probably continues until the mass of the smallest fragments (dieyatesidecreasing
Jeans mass) is less than M4.

Formation of a protostellar core The increasing density of the collapsing cloud fragment eventu-
ally makes the gaspaqueto infrared photons. As a result, radiation is trapped within the
central part of the cloud, leading to heating and an increase in gasipedss a result the
cloud core comes into hydrostatic equilibrium and the dynamical collapse isdlmra quasi-
static contraction. At this stage we may start to speakmbéostar

100 T T T T T Figure 9.1. Timescales and properties
of stars of mas$1 on the main sequence.
LI Time along the abscissa is in logarithmic
regions NS units to highlight the early phases= 0
corresponds to the formation of a hydro-
5 static core (stage 3 in the text). Initially

‘ the star is embedded in a massive accre-
tion disk for (1- 2) x 10°years. In low-
mass stars the disk disappears before the
star settles on the zero-age main sequence
(ZAMS). Massive stars reach the ZAMS
while still undergoing strong accretion.
These stars ionize their surroundings and
01 I I excite an HIl region around themselves.

104 100 108 1010 TAMS stands for terminal-age main se-
time (yr) quence. Figure from NEper.

M/M.. 2

10

strong accretion
massive disks
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Figure 9.2. Schematic illustration of four stages
in the evolution of protostars and their circumstellar
disks. On the left, the stellar flux is depicted (shaded
area) and the contribution from the disk (dotted line).
On the right the corresponding geometry of the ob-
ject is shown.

logh F

Class 0 objects are very young protostag< (" yrs)
with almost spherical accretion at a high rate, emit-
ting in the far-IR and sub-mm range. Class | pro-
tostars correspond to an advanced stage of accretion
(age~ 1P yrs), where the star is still embedded in a
massive accretion disk, while jets or bipolar outflows
are also observed. In class Il the protostar has become
visible as a classical T Tauri star on the pre-main se-
— quence (age- 10°yrs), while the accretion disk is

still optically thick giving rise to a large IR excess.
4 Class Il stars are already close to the main sequence
1 10 100 (age~ 107 yrs), with an optically thin accretion disk

A (pm) and weak emission lines. Figure fromkber.

logh F

logA F

Accretion The surrounding gas keeps falling onto the protostellar core, so thakettigphase is
dominated by accretion. Since the contracting clouds contain a substantiahtoi@ngular
momentum, the infalling gas forms an accretion disk around the protostar.e &be®tion
disksare a ubiquitous feature of the star formation process and are obseowet most very
young stars, mostly at infrared and sub-millimeter wavelengths (see Fig. 9.2)

The accretion of gas generates gravitational energy, part of whieh igto further heating of
the core and part of which is radiated away, providing the luminosity of tbestar, so that

L ~ I—acc= I —— (92)

whereM andR are the mass and radius of the core & the mass accretion rate. The factor
%originates from the fact that half of the potential energy is dissipated in ttretsn disk.
Meanwhile he core heats up almost adiabatically since the accretion timegcateM/M is
much smaller than the thermal timescalg;.

Dissociation and ionization The gas initially consists of molecular hydrogen and behaves like an
ideal gas, such thatyq > g‘ and the protostellar core is dynamically stable. When the core
temperature reaches 2000 K molecular hydrogen starts to dissociate, which is analogous to
ionization and leads to a strong increase of the specific heat and a skofeqq below the
critical value of% (Sect. 3.5). Hydrostatic equilibrium is no longer possible and a renewed
phase oflynamical collapséollows, during which the gravitational energy release is absorbed
by the dissociating molecules without a significant rise in temperature. Whé&hddmpletely
dissociated into atomic hydrogen HE is restored and the temperature rises Sgamewhat
later, further dynamical collapse phases follow when first H and therr¢dienized at~ 10* K.
When ionization of the protostar is complete it settles back into hydrostatic equitilat a
much reduced radius (see below).
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Pre-main sequence phasd-inally, the accretion slows down and eventually stops and the protostar
is revealed as pre-main sequence statts luminosity is now provided by gravitational con-
traction and, according to the virial theorem, its internal temperature riséscagvi?/3p1/3
(Chapter 8). The surface cools and a temperature gradient buildsangparting heat out-
wards. Further evolution takes place on the thermal timesgale

Arough estimate of the radili®, of a protostar after the dynamical collapse phase can be obtained
by assuming that all the energy released during the collapse was atbsodiEsociation of molecular
hydrogen (requiring, = 4.48 eV per b molecule) and ionization of hydrogep{ = 13.6 eV) and
helium (e = 79 eV). Because the final radius will be much smaller than the initial one, weaka
the collapse to start from infinity. After the collapse the protostar is in hyatiosequilibrium and
must satisfy the virial theorenk;o; = %Egr. Taking Egyr as given by eq. (2.28), we can write

Eizﬁ(g)(Hz"'XXH*'%XHe)E%X- (9.3)
Taking X = 0.72 andY = 1 - X, we havey = 16.9eV per baryon. For a polytrope of index
a = 3/(5-n) (eq. 4.19). We will shortly see that the protostar is completely conveatigetais we
can taken = 3 anda = &, such that

a GMm, M
~ ——— ~ B50R;|—|. 9.4
Rp 2 x Ro ( Mo) ( )
The average internal temperature can also be estimated from the viriagiinéex. 2.29),
— GM 2
T~2E = 2 ~ 8x10°K, (9.5)

3R R, 3k¥

which is independent of the mass of the protostar. At these low temperaharepacity is very
high, rendering radiative transport ffieient and making the protostar convective throughout. The
properties of suckully convective starmust be examined more closely.

9.1.1 Fully convective stars: the Hayashi line

We have seen in Sect. 7.2.3 that as tfiecive temperature of a star decreases the convective envelope
gets deeper, occupying a larger and larger part of the magg; i$ small enough stars can therefore
become completely convective. In that case, as we derived in Sect.énBrgy transport is veryie
cient throughout the interior of the star, and a tiny superadiabalicity o4 is suficient to transport a
very large energy flux. The structure of such a star can be saidddiabatic meaning that the tem-
perature stratification (the variation of temperature with depth) as measufee lollog T/dlog P is
equal toV,g. Since an almost arbitrarily high energy flux can be carried by such a tatpe gradi-
ent, theluminosityof a fully convective star is practicalindependent of its structure unlike for a
star in radiative equilibrium, for which the luminosity is strongly linked to the tentpegagradient.

It turns out that:

Fully convective stars of a given mass occupy an almost vertical line intRedidgram (i.e. with
Te ~ constant). This line is known as thayashi line The region to the right of the Hayashi
line in the HRD (i.e. at lower féective temperatures) isfarbidden regiorfor stars in hydrostatic
equilibrium. On the other hand, stars to the left of the Hayashi line (at hibjgg¢rcannot be fully
convective but must have some portion of their interior in radiative equikioriu

Since these results are important, not only for pre-main sequence statsdfor later phases of
evolution, we will do a simplified derivation of the properties of the Hayashiitirarder to make the
above-mentioned results plausible.
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Simple derivation of the Hayashi line

For any luminaosityL, the interior structure is given by = V4. For an ideal gas we have a constant
Vad = 0.4, if we ignore the variation oV g4 in partial ionization zones. We also ignore the non-zero
superadiabaticity oV in the sub-photospheric layers (Sect. 5.5.2). The temperature stratification
throughout the interior can then be described by a powerTlaw P%4. Using the ideal gas law,

P « pT, we can eliminatd from both expressions and write

P = Kp®3,

which describes a polytrope of index= % Indeed, for an ideal gas the adiabatic expongpt %
The constanK for a polytropic stellar model of inden is related to the massl and radiusk by
eqg. (4.15). For our fully convective star with= % we haveNs; = 0.42422 (Table 4.1) and therefore

K = 0.42422GMY°R. (9.6)

Since the luminosity of a fully convective star is not determined by its interioctsire, it must
follow from the conditions (in particular thepacity) in the thin radiative layer from which photons
escape, the photosphere. We approximate the photosphere by aapheface of negligible thick-
ness, where we assume the photospheric boundary conditions (7.90toWadting the pressure,
density and opacity in the photospherer(at R) asPg, pr and«r and the photospheric temperature
asTer, We can write the boundary conditions as

krPR = g GR—I;/I, (9.7)

L = 4nRoTS;, (9.8)
and we assume a power-law dependenceafp andT so that

KR = KopRaTgﬁ. (9.9)
The equation of state in the photospheric layer is

Pr= T prTe (9.10)

The interior, polytropic structure must match the conditions in the photosgbdhat (using eq. 9.6)
Pr = 0.42422GMY3Rpg>. (9.11)

For a given masM, egs. (9.7-9.11) constitute five equations for six unknowRspr, «r, Tes, L and
R. The solution thus always contains one free parameter, that is, the salutiarelation between
two quantities, say. andTeg. This relation describes theayashi linefor a fully convective star of
massM.

Since we have assumed power-law expressions in all the above equidiesst of equations can
be solved straightforwardly (involving some tedious algebra) to give a&ptaw relation betweeh
andTes after eliminating all other unknowns. The solution can be written as

logTes = AlogL + BlogM + C (9.12)

where the constantd and B depend on the exponengsandb in the assumed expression for the
opacity (9.9),

3 1
3a—35 a+3

A_ Y = a.nd = m (913)

T 9a+2b+3
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Figure 9.3. The position of the Hayashi lines in

. the H-R diagram for massaed = 0.25, 0.5, 1.0, 2.0

- and 4.0M, as indicated. The lines are analytic fits
to detailed models computed for compositi¥n=
0.7,Z = 0.02. The zero-age main sequence (ZAMS)
_ for the same composition is shown as a dashed line,
. for comparison.

B Note that the Hayashi lines do not have a constant
slope, as expected from the simple analysis, but
have a convex shape where the constant A (eq. 9.12)
| changes sign and becomes negative for high lumi-
. nosities. The main reason is our neglect of ionization
- zones (wheré&v,q < 0.4) and the non-zero supera-
diabaticity in the outer layers, both of which have a
larger dfect in more extended stars.

log L (Lsun

4.5 4
log Tett (K)

L
.0

Therefore the shape of the Hayashi line in the HRD is determined by howptmty in the photo-
sphere depends gnandT. Since fully convective stars have very cool photospheres, thetpgsc
mainly given by H absorption (Sect. 5.3) which increases strongly with temperature. Acgaain
eq. (5.34)a~ 0.5 andb ~ 9 (i.e.x « T?) in the the relevant range of density and temperature, which
givesA ~ 0.01 andB ~ 0.14. Therefore (see Fig. 9.3)

e for a certain mass the Hayashi line is a very steep, almost vertical line in tbe HR

¢ the position of the Hayashi line depends on the mass, being located at fighfar higher
mass.

We can intuitively understand the steepness of the Hayashi line from tmgsticrease of H
opacity with temperature. Suppose such a fully convective star wouldaigerigs radius slightly
while attempting to keejh constant. Then the temperature in the photosphere would decrease and
the photosphere would become much more transparent. Hence energgcege much more easily
from the interior, in other words: the luminosity will in fartcreasestrongly with a slight decrease
in photospheric temperature.

The forbidden region in the H-R diagram

Consider models in the neighbourhood of the Hayashi line in the H-R diafjmaanstar of mas$/.
These models cannot haVe= V,qthroughout, because otherwise they wouldhb¢he Hayashi line.
Defining V as the average value dflogT/dlog P over the entire star, models on either side of the
Hayashi line (at lower or high€élrer) have eithelV > Vaqor V < Vagq. It turns out (after more tedious
analysis of the above equations and their dependence on polytropiainiiext models withV < Vaq

lie at higherT¢g than the Hayashi line (to its left in the HRD) while models with> V4 lie at lower
Teg (to the right in the HRD). _ _

Now consider the significance &f # Va4 If on averagevV < Va4 then some part of the star
must haveV < Vg4, that is, a portion of the star must be radiative. Since models in the vicinity
of the Hayashi line still have cool outer layers with high opacity, the radigisrt must lie in the
deep interior. Therefore stars located (somewhat) toeth®f the Hayashi line have radiative cores
surrounded by convective envelopes (if they are far to the left, theyo€@ourse be completely
radiative).
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- Figure 9.4. Pre-main-sequence
i evolution tracks for B — 2.5Mg,

i according to the calculations of
J D’Antona & Mazzitelli (1994). The
dotted lines are isochrones, connect-
_ ing points on the tracks with the
same age (betweeh = 10°yrs
and 10yrs, as indicated). Also
indicated as solid lines that cross
the tracks are the approximate loca-
tions of deuterium burning (between
the upper two lines, near the ~
10° yr isochrone) and lithium burn-
ing (crossing the tracks at lower lu-
minosity, att > 1P yr).

- Y=0.28 Z=0.019 MLT
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On the other hand, iV > Vg4 then a significant part of the star must haveuperadiabatic
temperature gradient (that is to say, apart from the outermost layerk att@@lways superadiabatic).
According to the analysis of Sect. 5.5.2, a significantly positive Vyq will give rise to a very
large convective energy flux, far exceeding normal stellar luminositiagch & large energy flux
very rapidly (on a dynamical timescale) transports heat outwards, thdeslbeasing the temperature
gradient in the superadiabatic region uiikE V,q again. This restructuring of the star will quickly
bring it back to the Hayashi line. Therefore the region to the right of thgablai line, withTeg <
Ter,HL, IS aforbidden regiorfor any star in hydrostatic equilibrium.

9.1.2 Pre-main-sequence contraction

As a newly formed star emerges from the dynamical collapse phase it settibg dlayashi line
appropriate for its mass, with a radius roughly given by eq. (9.4). Frasmibment on we speak of
thepre-main sequengghase of evolution. The pre-main sequence (PMS) star radiates at a $iiyino
determined by its radius on the Hayashi line. Since it is still too cool for nubl@aing, the energy
source for its luminosity is gravitational contraction. As dictated by the viriadm, this leads to
an increase of its internal temperature. As long as the opacity remains ligheaRMS star remains
fully convective, it contracts along its Hayashi line and thus its luminosityedsgs. Since fully
convective stars are accurately describedhby 1.5 polytropes, this phase of contraction is indeed
homologous to a very high degree! Thus the central temperature insrasigex p(l;/3 «< 1/R.

As the internal temperature rises the opacity (and ¥y decreases, until at some poNi,g <
Vag in the central parts of the star and a radiative core develops. The PK8atamoves to the
left in the H-R diagram, evolving away from the Hayashi line towards highgrsee Fig. 9.4). As
it keeps on contracting the extent of its convective envelope decraageiss radiative core grows
in mass. (This phase of contraction is no longer homologous, becausensigyddistribution must
adapt itself to the radiative structure.) The luminosity no longer decreagésdoeases somewhat.
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Once the star is mainly radiative further contraction is again close to homaodde luminosity
is now related to the temperature gradient and mostly determined by the masobtttetar (see
Sect. 7.4.2). This explains why PMS stars of larger mass turn away frohetyshi line at a higher
luminosity than low-mass stars, and why their luminosity remains roughly corsftantvard.

Contraction continues, as dictated by the virial theorem, until the central tampe becomes
high enough for nuclear fusion reactions. Once the energy genéatgdirogen fusion compensates
for the energy loss at the surface, the star stops contracting and setthezero-age main sequence
(ZAMS) if its mass is above the hydrogen burning limit of ONI§ (see Chapter 8). Since the nuclear
energy source is much more concentrated towards the centre than thatignaal energy released
by overall contraction, the transition from contraction to hydrogen bgraigain requires a (non-
homologous) rearrangement of the internal structure.

Before thermal equilibrium on the ZAMS is reached, however, severeear reactions have
already set in. In particular, a small quantity @duteriumis present in the interstellar gas out of
which stars form, with a mass fractien107°. Deuterium is a very fragile nucleus that reacts easily
with normal hydrogen?H + 'H — 3He + v, the second reaction in the pp chain). This reaction
destroys all deuterium present in the star wier 1.0 x 10° K, while the protostar is still on the
Hayashi line. The energy produced (5.5 MeV per reaction) is largaeginto halt the contraction of
the PMS star for a few times 39r. (A similar but much smallerféect happens somewhat later at
higherT when the initially present lithium, with mass fractigrnl0-8, is depleted). Furthermore, the
12C(p, v):N reaction is already activated at a temperature below that of the full Gh@-adue to
the relatively large initial’C abundance compared to the equilibrium CNO abundances. Thus almost
all 2C is converted intd*N before the ZAMS is reached. The energy produced in this way also halts
the contraction temporarily and gives rise to the wiggles in the evolution traskalpove the ZAMS
location in Fig, 9.4. Note that this occurs even in low-mass sfafisM, even though the pp chain
takes over the energy production on the main sequence in these sta@eqgeilibrium is achieved
(see Sect. 9.2).

Finally, the time taken for a protostar to reach the ZAMS depends on its magss.tiffie is
basically the Kelvin-Helmholtz contraction timescale (eq. 2.36). Since contnaistislowest when
bothRandL are small, the pre-main sequence lifetime is dominated by the final stages @futimmiy
when the star is already close to the ZAMS. We can therefore estimate the Riti&diby putting
ZAMS values into eq. (2.36) which yieldsus ~ 10'(M/My)~%°yr. Thus massive protostars reach
the ZAMS much earlier than lower-mass stars (and the term ‘zero-age’ mqiresce is somewhat
misleading in this context, although it hardly makesféedence to the total lifetime of a star). Indeed
in young star clusters (e.g. the Pleiades) only the massive stars halreddhe main sequence while
low-mass stars still lie above and to the right of it.

9.2 The zero-age main sequence

Stars on the zero-age main sequence are (nearly) homogeneous irsg@n@nd are in complete
(hydrostatic and thermal) equilibrium. Detailed models of ZAMS stars can be weahpy solv-
ing the four diferential equations for stellar structure numerically. It is instructive to coentie
properties of such models to the simple main-sequence homology relatioveddarSect. 7.4.

From the homology relations we expect a homogeneous, radiative stadriostgtic and thermal
equilibrium with constant opacity and an ideal-gas equation of state to follonsa-taminosity and
mass-radius relation (7.32 and 7.36),

IN

y—

Lo</,t4M3, Roc v+

wi

v=1
Mv+3.

130



L L L B L L B A 15 AL L L B L LB L O
6 B 4
i 1.0 g
4~ B ]
g= [ = L 1
5 % : |
<4 2 0.0 —
i 05" ]
2L B i
7\ ‘\ TR NN AT AN VU ST R B _1_0 L Levvvrv e b by vy |
-1 0 1 2 -1 0 1 2
|0g (M / Msur) |Og (M / MSUT’D

Figure 9.5. ZAMS mass-luminosity (left) and mass-radius (right) rielas from detailed structure models
with X = 0.7,Z = 0.02 (solid lines) and from homology relations scaled to setdues (dashed lines). For
the radius homology relation, a value= 18 appropriate for the CNO cycle was assumed (giRrg M%8%);
this does not apply tdd < 1 Mg so the lower part should be disregarded. Symbols indicatgoaents of
double-lined eclipsing binaries with accurately measwedR andL, most of which are MS stars.

These relations are shown as dashed lines in Fig. 9.5, where they arareotpobserved stars with
accurately measurefll, L andR (see Chapter 1) and to detailed ZAMS models. The mass-radius
homology relation depends on the temperature sensitiv)tpf(the energy generation rate, and is
thus expected to be fiiérent for stars in which the pp chain dominates«(4, R o« M%43) and stars
dominated by the CNO cycle & 18, R o« u®6"M%81 as was assumed in Fig. 9.5).

Homology predicts the qualitative behaviour rather well, that is, a dtelprelation and a much
shallowerR-M relation. However, it is not quantitatively accurate and it cannot adcfuurthe
changes in slopead(ogL/dlogM anddlog R/dlog M) of the relations. This was not to be expected,
given the simplifying assumptions made in deriving the homology relations. [bpe sf thel-

M relation is shallower than the homology value of 3 for masses belMy, lbecause such stars
have large convective envelopes (as illustrated in Sect. 5.5; see als®.3ezbelow). The slope is
significantly steeper than 3 for masses between 1 amd:10n these stars the main opacity source is
free-free and bound-free absorption, which increases outwtrdrrénan being constant through the
star. In very massive stars, radiation pressure is important which resfi&ening theL-M relation.
The reasons for the changesdiog R/dlog M are similar. Note that for low masses we should have
used the homology relation for the pp chain (for reasons explained in &2ct.below), which has

a smaller slope — the opposite of what is seen in the detailed ZAMS models. The occercé
convective regions (see Sect. 9.2.2) is the main reason for this non-hgoaslbehaviour.

The detailed ZAMS models do reproduce the observed stellar luminosities aplitdtve models
trace the lower boundary of observed luminosities, consistent with thetxpmcrease of with
time during the main sequence phase (see Sect. 9.3). The same can be thadddii (right panel
of Fig. 9.5), although the scatter in observed radii appears much |&aetly this is due to the much
finer scale of the ordinate in this diagram compared to the luminosity plot. Théhttanost of the
observed stellar radii are larger than the detailed ZAMS models is explainesdansion during
(and after) the main sequence (see Sect. 9.3).
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The location of the detailed ZAMS models in the H-R diagram is shown in Fig. 9. sblid
(blue) line depicts models for quasi-solar composition, which were alsoin$eg. 9.5. The increase
of effective temperature with stellar mass (and luminosity) reflects the steep massdiymialation
and the much shallower mass-radius relation — more luminous stars with similameedibe hotter,
by eq. (1.1). The slope of the ZAMS in the HRD is not constant, reflectimgirmnologous changes
in structure as the stellar mass increases.

The dfect of compositionon the location of the ZAMS is illustrated by the dashed (red) line,
which is computed for a metal-poor mixture characteristic of Population Il.sMetal-poor main
sequence stars are hotter and have smaller radii. Furthermore, relbtivatyass stars are also more
luminous than their metal-rich counterparts. One reason for th&&eatices is a lower bound-free
opacity at lowerZ (eq. 5.33), which fiects relatively low-mass stars (up to abou#l§). On the
other hand, higher-mass stars are dominated by electron-scatteririty,ophich is independent of
metallicity. These stars are smaller and hotter forfiedént reason (see Sect. 9.2.1).

9.2.1 Central conditions

We can estimate how the central temperature and central density scale witandassnposition for
a ZAMS star from the homology relations for homogeneous, radiative istdiermal equilibrium
(Sec. 7.4.2, see egs. 7.37 and 7.38 and Table 7.1). From these relationaywexpect the central
temperature to increase with mass, the mass dependence being largerpiorctian T «« M%57)
than for the CNO cycleT. « M%21). Since the CNO cycle dominates at higih we can expect
low-mass stars to power themselves by the pp chain and high-mass stars@\@heycle. This
is confirmed by detailed ZAMS models, as shown in Fig. 9.7. For solar compusitie transition
occurs afl ~ 1.7 x 10’ K, corresponding taM ~ 1.3 M. Similarly, from the homology relations,
the central density is expected to decrease strongly with mass in stars dahipatee CNO cycle
(oc o« M~14), but much less so in pp-dominated low-mass stags(M~93). Also this is borne out
by the detailed models in Fig. 9.7; in fact the central density increases sligithlynass between 0.4
and 1.5M,. The abrupt change in slope at 044, is related to the fact that stars wi < 0.4 Mg,
are completely convective. For these lowest-mass stars one of the mainpéissis made in the
homology relations (radiative equilibrium) breaks down.
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Figure 9.7. Central temperature versus central den-
sity for detailed ZAMS models witlX = 0.7,Z =
0.02 (blue solid line) and witkX = 0.757,Z = 0.001
(red dashed line). Plus symbols indicate models for
specific masses (in units df,). The dotted lines in-
dicate the approximate temperature border between
energy production dominated by the CNO cycle and
the pp chain. This gives rise to a change in slope of
65 e L L theTg, pc relation.
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The energy generation rate of the CNO cycle depends on the total CN@laiee. At lower
metallicity, the transition between pp chain and CNO cycle therefore occarkigher temperature.
As a consequence, the mass at which the transition occurs is also lamgberfore, high-mass stars
powered by the CNO cycle need a higher central temperature to providartetotal nuclear power.
Indeed, comparing metal-rich and metal-poor stars in Figs. 9.6 and 9.7, theokityiaf two stars
with the same mass is similar, but their central temperature is higher. As a censef the virial
theorem (eq. 2.29 or 7.28), their radius must be correspondingly smaller.

9.2.2 Convective regions

An overview of the occurrence of convective regions on the ZAMS amaetion of stellar mass is
shown in Fig. 9.8. For any given mads, a vertical line in this diagram shows which conditions
are encountered as a function of depth, characterized by the frdatiasa coordinaten/M. Gray
shading indicates whether a particular mass shell is convective (gragjliative (white). We can
thus distinguish three types of ZAMS star:

e completely convective, foM < 0.35Mg,
o radiative core+ convective envelope, for 0.38,< M < 1.2 M,
e convective core- radiative envelope, foM > 1.2 M.

This behaviour can be understood from the Schwarzschild criterioadimrection, which tells
us that convection occurs whéh,g > Vg (€g. 5.50). As discussed in Sec. 5.5.1, a large value of
Viad is found when the opacity is large, or when the energy flux to be transported (in particular the
value ofl/m) is large, or both. Starting with the latter condition, this is the case when a loteofg
is produced in a core of relatively small mass, i.e. when the energy demerateen,¢ is strongly
peaked towards the centre. This is certainly the case when the CNO-gyuieates the energy
production, since it is very temperature sensitivex( 18) which means thad,, rapidly drops as
the temperature decreases from the centre outwards. It results in astesse oV ,q towards the
centre and thus to a convective core. This is illustrated foMg, ZAMS star in Fig. 5.4. The size of
the convective core increases with stellar mass (Fig. 9.8), and it cameass up to 80% of the mass
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Figure 9.8. Occurrence of convective regions (gray shading) on the ZAMi®rms of fractional mass coor-
dinatem/M as a function of stellar mass, for detailed stellar modetk wicompositionX = 0.70,Z = 0.02.
The solid (red) lines show the mass shells inside which 508086 of the total luminosity are produced. The
dashed (blue) lines show the mass coordinate where thesnaidi25% and 50% of the stellar radiis (After
K1pPENHAHN & W EIGERT.)

of the star wherM approaches 108l,. This is mainly related with the fact that at high ma8g is
depressed below the ideal-gas value of 0.4 because of the growing ingmdaradiation pressure.
At 100 M, radiation pressure dominates aWigh ~ 0.25.

In low-mass stars the pp-chain dominates, which has a much smaller tempeetsigvity.
Energy production is then distributed over a larger area, which keepntrgy flux and thu¥,,q
low in the centre and the core remains radiative (see thie Inodel in Fig. 5.4). The transition
towards a more concentrated energy productioMat 1.2 M is demonstrated in Fig. 9.8 by the
solid lines showing the location of the mass shell inside which most of the luminogignisrated.

Convective envelopes can be expected to occur in stars with fi@etiee temperature, as dis-
cussed in Sec. 7.2.3. This is intimately related with the rise in opacity with decge@siperature
in the envelope. In the outer envelope of MJ star for examplex can reach values of ¥@n?/g
which results in enormous values %f,q (see Fig. 5.4). Thus the Schwarzschild criterion predicts a
convective outer envelope. This sets in for masses lessitHab M, although the amount of mass
contained in the convective envelope is very small for masses betweendl25M,. Consistent
with the discussion in Sec. 7.2.3, the depth of the convective envelopasesravith decreasinyy
and thus with decreasinigl, until for M < 0.35Mg, the entire star is convective. Thus these very
low-mass stars lie on their respective Hayashi lines.

9.3 Evolution during central hydrogen burning

Fig. 9.9 shows the location of the ZAMS in the H-R diagram and various evaltriagks for diferent
masses at Population | composition, covering the central hydrogen gyhase. Stars evolve away
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from the ZAMS towards higher luminosities and larger radii. Low-mass strs<(1 M) evolve
towards highefl ¢, and their radius increase is modest. Higher-mass stars, on the otheehalvd
towards loweiT ¢t and strongly increase in radius (by a factor 2 to 3). Evolved main-segustars are
therefore expected to lie above and to the right of the ZAMS. This is indesfihmed by comparing
the evolution tracks to observed stars with accurately determined parameters

As long as stars are powered by central hydrogen burning they remajalinstatic and thermal
equilibrium. Since their structure is completely determined by the four (time-imdigpe) structure
eqguations, the evolution seen in the HRD is due to the changing compositiontinsider (i.e. due
to chemical evolution of the interior). How can we understand these change

Nuclear reactions on the MS have two importaffieets on the structure:

e Hydrogen is converted into helium, therefore the mean molecular weigkteases in the core
of the star (by more than a factor two from the initial H-He mixture to a pure He by the
end of central hydrogen burning). The increase in luminosity can threrée understood from
the homology relatio. o x* M3, It turns out that the* dependence of this relation describes
the luminosity increase during the MS quite wellyifs taken as the mass-averaged value over
the whole star.

e The nuclear energy generation ragg: is very sensitive to the temperature. Therefore nuclear
reactions act like ghermostaton the central regions, keeping the central temperature almost
constant. Since approximatedy, o«« T4 andecno o« T8, the CNO cycle is a better thermostat
than the pp chain. Since the luminosity increases and at the same time the myalbagdance
decreases during central H-burning, the central temperature musaggcsomewhat to keep
up the energy production, but the required increask; iis very small.

Sinceu increases whil@ . ~ constant, the ideal-gas law implies tia{ oc « T¢/u must decrease.
This means that either the central density must increase, or the censalirenust decrease. The
latter possibility means that the layers surrounding the core must expaedplasned below. In

4 — ’ 2 —  Figure 9.9. Evolution tracks in the H-
L 10 1 Rdiagram during central hydrogen burn-
| ‘ 2 »»»»»»»»»»»» | ing for stars of various masses, as la-
belled (in My), and for a composition
STy 17 X =07,Z = 0.02. The dotted portion
of each track shows the continuation of
...... | the evolution after central hydrogen ex-
| 2'./\> ) ' haustion; the evolution of the 0N, star
) is terminated at an age of 14Gyr. The
i 15% . 1 thin dotted line in the ZAMS. Symbols
= ' k —{ show the location of binary components
<0.8, 2-3, >20 1 \ | with accurately measured mass, luminos-
0.8-1, 3-5 g ity and radius (as in Fig. 9.5). Each sym-
B 1-15, 5-10 7 bol corresponds to a range of measured
1.5-2, 10-20 1 masses, as indicated in the lower left cor-
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4.5 4.0 35

log Tett (K)

IOg (L / Lsurb
w

135



either case, the density contrast between the core and the envelopsés; o that evolution during
central H-burning causea®n-homologoushanges to the structure.

9.3.1 Evolution of stars powered by the CNO cycle

We can understand why rather massive stits(1.3 M) expand during the MS by considering the
pressure that the outer layers exert on the core:

M Gm
Peny = fmc de (9.14)

Expansion of the envelope (increase iof all mass shells) means a decrease in the envelope pressure
on the core. This decrease in pressure is needed because of tiigesmermostatic action of the
CNO cycle,ecno o« p T18, which allows only very small increases Ty andpc. Sinceuc increases

as H being is burned into He, the ideal-gas law dictatesRhatust decrease. This is only possible

if Peny decreases, i.e. the outer layers must expand to keep the star ppHE @ndR 7). This self-
regulating envelope expansion mechanism is the only way for the star tbiesedfiio the composition
changes in the core while maintaining both HE and TE.

Another important consequence of the temperature sensitivity the CNOisybkelarge concen-
tration of e,,c towards the centre. This gives rise to a large ceygal o< |/mand hence tgonvective
cores which are mixed homogeneous)(fm) = constant within the convective core madg.). This
increases the amount of fuel available and therefore the lifetime of cdmtabgen burning (see
Fig. 9.10). In generaM.. decreases during the evolution, which is a consequence of the fact that
Viad < « and sincex « 1 + X for the main opacity sources (see Sect. 5.3) the opacity in the core
decreases as the He abundance goes up.

Towards the end of the main sequence phask; Aecomes very small, the thermostatic action of
the CNO reactions diminishes aiiid has to increase substantially to keep up the energy production.
When hydrogen is finally exhausted, this occurs within the whole coneective of mas#/.. and
enuc decreases. The star now loses more energy at its surface than isgutdduthe centre, it gets
out of thermal equilibrium and it will undergo an overall contraction. Thisurs at the red point of
the evolution tracks in Fig. 9.9, after whidlg increases. At the blue point of the hook feature in the
HRD, the core has contracted and heated wifcsently that at the edge of the former convective core
the temperature is high enough for the CNO cycle to ignite again in a shellg&tbarhelium core.
This is the start of théydrogen-shell burninghase which will be discussed in Chapter 10.

9.3.2 Evolution of stars powered by the pp chain

In stars withM < 1.3 Mg, the central temperature is too low for the CNO cycle and the main energy-
producing reactions are those of the pp chain. The lower temperatusiggnep, o p T# means
thatT.; andp. increase more than was the case for the CNO cycle. Therefore the outey iheeed to
expand less in order to maintain hydrostatic equilibrium in the core. As a réseiltadius increase

in low-mass stars is modest and they evolve almost parallel to the ZAMS in thaelidgRam (see
Fig. 9.9).

Furthermore, the loweF -sensitivity of the pp chains means that low-mass stars have radiative
cores. The rate of change of the hydrogen abundance in each ghelhiproportional to the overall
reaction rate of the pp chain (by eq. 6.41), and is therefore highest aeitiee. Therefore a hydrogen
abundance gradient builds up gradually, witfm) increasing outwards (see Fig. 9.10). As a result,
hydrogen is depleted gradually in the core and there is a smooth transitiodrtugley-shell burning.
The evolution tracks for low-mass stars therefore do not show a habkrée
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Figure 9.10. Hydrogen abundance profiles affdrent stages of evolution for aM,, star (left panel) and a
5 Mg, star (right panel) at quasi-solar composition. Figuresagpced from SLaris & CassisI.

Note that stars in the approximate mass range-1.3 M, (at solar metallicity) undergo a transi-
tion from the pp chain to the CNO cycle as their central temperature increHseefore these stars
at first have radiative cores and later develop a growing conveatiee ét the end of the MS phase
such stars also show a hook feature in the HRD.

9.3.3 The main sequence lifetime

The timescalerys that a star spends on the main sequence is essentially the nuclear timescale for
hydrogen burning, given by eq. (2.37). Another way of derivingeesially the same result is by
realizing that, in the case of hydrogen burning, the rate of change ofytieden abundanck is

related to the energy generation ratg. by eq. (6.43),

dX €nuc
— = 9.15

at aH ( )
Hereqy = Qu/4m is the dfective energy release per unit mass of the reaction chdiH (4>
“He + 2€" + 2v), corrected for the neutrino losses. Hemggis somewhat dierent for the pp chain
and the CNO cycle. Note thag;/c? corresponds to the factgrused in eq. (2.37). If we integrate
eg. (9.15) over all mass shells we obtain, for a star in thermal equilibrium,

dMy L
A 9.16
dt o/ ( )
whereMy is the total mass of hydrogen in the star. Note that while eq. (9.15) only strigplyes
to regions where there is no mixing, eq (9.16) is also valid if the star has &ctre/core, because
convective mixing only redistributes the hydrogen supply. If we now irmtiegover the main sequence
lifetime we obtain for the total mass of hydrogen consumed

TMS
AMy = if Lt = {E2Ms (9.17)
a1 Jo OH
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where(L}) is the time average of the luminosity over the main-sequence lifetime. We camtijie=
foucM by analogy with eq. (2.37), and writg,c as the product of the initial hydrogen mass fraction
Xo and an €fective core mass fractiag, inside which all hydrogen is consumed, so that
gcM
Ly

We have seen that the luminosity of main-sequence stars increases swithgtyass. Since the
variation ofL during the MS phase is modest, we can assume the same relation béhyveeia M
as for the ZAMS. The other factors appearing in eq. (9.18) do notlgneeakly depend on the mass
of the star (see below) and can in a first approximation be taken as coristaira mass-luminosity
relation({L) e« M7 — wheren depends on the mass range under considerationwti3.8 on average
— we thus obtainys «« MY, Hencerys decreases strongly towards larger masses.

This general trend has important consequences for the observedi&yfms of star clusters.
All stars in a cluster can be assumed to have formed at approximately the sanandrtteerefore
now have the same agg. Cluster stars with a mass above a certain lili have main-sequence
lifetimestys < 7o and have therefore already left the main sequence, while thosévvithVl,, are
still on the main sequence. The main sequence of a cluster has an upgtreetidrn-dtf point’) at
a luminosity and ffective temperature correspondingMt,, the so-calledurn-gf mass determined
by the conditionrys(Mio) = 7¢. The turn-df mass and luminosity decrease with cluster age (e.g. see
Fig. 1.2). This the basis for thege determinatiof star clusters.

The actual main-sequence lifetime depend on a number of other factoeseif€htive energy
release per gramy depends on which reactions are involved in energy production anddaheteas
a slight mass dependence. More importantly, the exact valag isfdetermined by the hydrogen
profile left at the end of the main sequence. This is somewhat mass-egpeespecially for massive
stars in which the relative size of the convective core tends to increasenagib (Fig. 9.8). A larger
convective core mass means a larger fuel reservoir and a longer lifeiorgpoor understanding of
convection and mixing in stars unfortunately introduces considerabletaimtg in the size of this
reservoir and therefore both in the main-sequence lifetime of a star oftiaytar mass and in its
further evolution.

T™s = Xo OH (9.18)

9.3.4 Complications: convective overshooting and semi-meection

As discussed in Sect. 5.5.4, the size of a convective region inside a stpeisted to be larger than
predicted by the Schwarzschild (or Ledoux) criterion because ofemive overshooting However,
the extentd,, of the overshooting region is not known reliably from theory. In stellaylgion
calculations this is usually parameterized in terms of the local pressure sigie, iy, = @gyHp. In
addition, other physicalffects such as stellar rotation may contribute to mixing material beyond the
formal convective core boundary. Detailed stellar evolution models in whizkfects of convective
overshooting are taken into account generally provide a better matcheosabens. For this reason,
overshooting (or perhaps a variety of enhanced mixing processegjughhto have a significant
effect in stars with sizable convective cores on the main sequence.

Overshooting has several important consequences for the evolutiostarf:

1. alonger main-sequence lifetime, because of the larger hydrogenaieseailable;

2. alargerincrease in luminosity and radius during the main sequenceskaxfdhe larger region
inside whichu increases which enhances ttigeets onl. andR discussed earlier in this section;

3. the hydrogen-exhausted core mass is larger at the end of the magmsegwhich in turn leads
to (a) larger luminosities during all evolution phases after the main sequenceaée Fig. 10.2
in the next chapter) and, as a result, ghprterlifetimes of these post-main sequence phases.
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Figure 9.11. Two examples ofsochrone fittingo the colour-magnitude diagrams of open clusters, NGC 752
and IC4651. The distribution of stars in the turfi-cegion is matched to isochrones for standard stellar
evolution modelsgrp) and for models with convective overshootings). The overshooting models are better
able to reproduce the upper extension of the main sequemckilaoth cases.

Some of thesefiects, particularly (2) and (3a), provide the basis of observationaldaéstgershoot-

ing. Stellar evolution models computed withférent values ofy,, are compared to the observed
width of the main sequence band in star clusters (see for example Fig. &ty the luminosities

of evolved stars in binary systems. If the location in the HRD of the main sequem-df in a clus-

ter is well determined, or if the luminosity fiierence between binary components can be accurately
measured, a quantitative test is possible which allows a calibration of thengta,,. Such tests
indicate thatroy ~ 0.25 is appropriate in the mass range 1.5M& For larger masses, howevet,

is poorly constrained.

Another phenomenon that introduces an uncertainty in stellar evolution medelated to the
difference between the Ledoux and Schwarzschild criterion for convesgenSect. 5.5.1). Outside
the convective core a composition gradievitX develops, which can make this region dynamically
stable according to the Ledoux criterion while it would have been coneeiftihe Schwarzschild
criterion were applied. In such a region an over-stable oscillation patserdevelop on the thermal
timescale, which slowly mixes the region and thereby smooths out the composédiarg. This pro-
cess is calledemi-convectionits dficiency and the precise outcome are uncertain. Semi-convective
situations are encountered during various phases of evolution, mosttangipduring central hy-
drogen burning in stars witM > 10Mg and during helium burning in low- and intermediate-mass
stars.
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Suggestions for further reading

The process of star formation and pre-main sequence evolution is treatedcim more detail in
Chapters 18-20 of M:pEr, While the properties and evolution on the main sequence are treated in
Chapter 25. See alsonkennann & W eicert Chapters 22 and 26-30.

Exercises

9.1 Kippenhahn diagram of the ZAMS
Figure 9.8 indicates which regions in zero-age main sequetars are convective as a function of the
mass of the star.

(&) Why are the lowest-mass stars fully convective? Why doesraiss of the convective envelope
decrease wittM and disappear fox = 1.3 My?

(b) What changes occur in the central energy production ardl- 1.3 My, and why? How is this
related to the convection criterion? So why do stars Wtk 1.3 M have convective cores while

lower-mass stars do not?
(c) Why is it plausible that the mass of the convective coredases withV?

9.2 Conceptual questions

(a) What is the Hayashi line? Why is it a line, in other words: wthere a whole range of possible
luminosities for a star of a certain mass on the HL?

(b) Why do no stars exist with a temperature cooler than théteoHL? What happens if a star would
cross over to the cool side of the HL?

(c) Why is there a mass-luminosity relation for ZAMS starg? dther words, why is there a unique
luminosity for a star of a certain mass?)

(d) What determines the shape of the ZAMS is the HR diagram?

9.3 Central temperature versus mass

Use the homology relations for the luminosity and tempeeatii a star to derive how the central tem-
perature in a star scales with mass, and find the dependeniceoof M for the pp-chain and for the
CNO-cycle. To make the result quantitative, use the fadtiththe Sun withT, ~ 1.3 x 10’ K the pp-
chain dominates, and that the CNO-cycle dominates for reddse 1.3 M,. (Why does the pp-chain
dominate at low mass and the CNO-cycle at high mass?)

9.4 Mass-luminosity relation

Find the relation betweeh and M and the slope of the main sequence, assuming an opacity faw
ko pT~7/? (the Kramers opacity law) and that the energy generati@p@t unit mass,,. « pT”, where

y =4,
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Chapter 10

Post-main sequence evolution through
helium burning

After the main-sequence phase, stars are left with a hydrogen-egHazee surrounded by a still
hydrogen-rich envelope. To describe the evolution after the main seguitns useful to make a
division based on the mass:

low-mass starsare those that develop a degenerate helium core after the main sedeadogy to
a relatively long-livedred giant branchphase. The ignition of He is unstable and occurs in a
so-calledhelium flash This occurs for masses between Bl§ and~ 2 M, (this upper limit is
sometimes denoted &8uer).

intermediate-mass starsdevelop a helium core that remains non-degenerate, and they ignite helium
in a stable manner. After the central He burning phase they form a cashaen core that
becomes degenerate. Intermediate-mass stars have masses bdtweand My, ~ 8 M.
Both low-mass and intermediate-mass stars shed their envelopes by a stamgvind at the
end of their evolution and their remnants are CO white dwarfs.

massive starshave masses larger than,, ~ 8 My, and ignite carbon in a non-degenerate core.
Except for a small mass range 8 — 11 M) these stars also ignite heavier elements in the core
until an Fe core is formed which collapses.

In this chapter the evolution between the end of the main sequence and éhepteent of a carbon-
oxygen core is discussed. We concentrate on low-mass and intermedggestara, but the principles
are equally valid for massive stars. The evolution of massive stars in Relldgram is, however,
also strongly ffected by mass loss and we defer a more detailed discussion of massivensiars
Chapter 12.

10.1 The Sclonberg-Chandrasekhar limit

During central hydrogen burning on the main sequence, we have saestdls are in thermal equi-
librium (mhue > Tkn) With the surface luminosity balanced by the nuclear power generated in the
centre. After the main sequence a hydrogen-exhausted core is forgidd which nuclear energy
production has ceased. This inert helium core is surrounded by adshburning shell and a H-
rich envelope. For such an inert core to be in thermal equilibrium reqaimEso net energy flow,
I(m) = fmenucdm = 0 and henceT/dr « | = 0. This implies that the core must lmothermalto
remain in TE. Such a stable situation is possible only under certain circumstance
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A star composed of ideal gas at constant temperature correspondslidgrage withy = 1, i.e.
with n — oco. Such a polytrope would have infinite radius (Chapter 4) or, if its radiuse fugite, would
have infinitely high central density, both of which are unphysical. In otfeds,completely isother-
mal stars made of ideal gas cannot exihe reason is that the pressure gradient needed to support
such a star against its own gravity is produced only by the density grad®fur;, = (RT/u) do/dr,
with no help from a temperature gradient. Thus hydrostatic equilibrium in d@nesoal star would
require a very large density gradient.

It turns out, however, that if only the core of the star is isothermal, and tlss Mhgof this isother-
mal core is only a small fraction of the total mass of the star, then a stable a@tifigLis possible. If
the core mass exceeds this limit, then the pressure within the isothermal coo¢ astain the weight
of the overlying envelope. This was first discovered by@dierg and Chandrasekhar in 1942, who
computed the maximum core mass fractigr= M¢/M to be

2
Me _ gec = 0.37(@) ~ 0.10 (10.1)
M HUc
whereu; andueny are the mean molecular weight in the core and in the envelope respectitidy. T
limit is known as theSchonberg-Chandrasekhar limiThe typical valuegsc ~ 0.10 is appropriate
for a helium core withuc = 1.3 and a H-rich envelope. (A simple, qualitative derivation of eq. 10.1
can be found in Meper Section 25.5.1.)
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Figure 10.1. Evolution tracks for stars of quasi-solar compositioh= 0.7, Z = 0.02) and masses of 1, 2,
3, 5, 7 and 10/, in the H-R diagram (left panel) and in the central tempegatiarsus density plane (right
panel). Dotted lines in both diagrams show the ZAMS, whikedlashed lines in the right-hand diagram show
the borderlines between equation-of-state regions (aigirB®). The 1M, model is characteristic of low-mass
stars: the central core becomes degenerate soon aftemdeiénd main sequence and helium is ignited in an
unstable flash at the top of the red giant branch. When the deggnis eventually lifted, He burning becomes
stable and the star moves to thero-age horizontal branchn the HRD, at log- ~ 1.8. The 2Mg, model is

a borderline case that just undergoes a He flash. The He fledhig not computed in these models, hence
a gap appears in the tracks. Th&5 model is representative of intermediate-mass stars, goatey quiet
He ignition and He burning in a loop in the HRD. The appearasfcthe 7 and 10, models in the HRD

is qualitatively similar. However, at the end of its evotutithe 10M,, star undergoes carbon burning in the
centre, while the cores of lower-mass stars become straleggnerate. (Compare to Fig. 8.4.)
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Stars that leave the main sequence with a helium core mass below theb®oir Chandrasekhar
limit can therefore remain in complete equilibrium (HE and TE) during hydresiexl burning. This
is the case for stars with masses up to aboMt,8if convective overshooting is neglected. Over-
shooting increases the core mass at the end of central H-burning,exeébtie the upper mass limit
for stars remaining in TE after the main sequence decreases to aldguhZalculations that include
moderate overshooting.

When the mass of the H-exhausted core exceeds thinBely-Chandrasekhar limit — either im-
mediately after the main sequence in relatively massive stars, or in lowerstaassafter a period
of H-shell burning during which the helium core mass increases steadiBrmé#h equilibrium is no
longer possible. The helium core then contracts and builds up a tempeageddient. This tempera-
ture gradient adds to the pressure gradient that is needed to balanitg gnd keep the star in HE.
However, the temperature gradient also causes an outward heatdlovitfe core, such that it keeps
contracting and heating up in the process (by virtue of the virial theorehig.cbntraction occurs on
the thermal (Kelvin-Helmholtz) timescale in a quasi-static way, always maintairstaje@very close
to HE.

Low-mass starsMl < 2 M) have another way of maintaining both HE and TE during hydrogen-
shell burning. In such stars the helium core is relatively dense andatwbklectron degeneracy
can become important in the core after the main sequence. Degenerssyrpris independent of
temperature and can support the weight of the envelope even in a rglatigesive core, as long
as the degenerate core mass does not exceed the Chandrasekhfaimrthss case the Sémberg-
Chandrasekhar limit no longer applies. Inside such degenerate helremdiiient energy transport
by electron conductioifSec. 5.2.4) can keep the core almost isothermal.

Effects of core contraction: the ‘mirror principle’

The following principle appears to be generally valid, and provides a Wayerpreting the results
of detailed numerical calculations:

Whenever a star has active shell-burning sourgehe burning shell acts asmairror between the
core and the envelope:

core contraction = envelope expansion

core expansion = envelope contraction

This ‘mirror principle’ can be understood by the following argument. To mairtteermal equi-
librium, the burning shell must remain at approximately constant temperatari® dloe thermostatic
action of nuclear burning. Contraction of the burning shell would entaitihg, so the burning shell
must also remain at roughly constant radius. As the core contragtgmust therefore decrease and
hence also the pressure in the burning shell must decrease. Thdtef@ressurBen, of the overly-
ing envelope must decrease, so the layers above the shell must eapamdi(nple of this behaviour
can be seen in Fig. 10.4, to be discussed in the next section).

10.2 The hydrogen-shell burning phase

In this section we discuss in some detail the evolution of stars during hyehslged burning, until
the onset of helium burning. Based on the above section, qualitatiezatices are to be expected
between low-mass stard(< 2 Mg) on the one hand and intermediate- and high-mass St&rs (

'Note the very dierent physical meanings of ti@handrasekhar masmd theSchonberg-Chandrasekhar lirhit
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Figure 10.2. Evolution track in the Hertzsprung-Russell diagram of bstar of initial compositionX =
0.7, Z = 0.02. See text for details. The evolution track in the left pamas computed without convective
overshooting. The right panel shows a comparison betweertriéick and the evolution of the same star
computed with moderate overshooting,{ = lo,/Hp ~ 0.25; dashed line), illustrating some of thffests
discussed in Sec. 9.3.4.

2 M) on the other hand. Therefore we discuss these two cases sepatatdlyy with the evolution
of higher-mass stars because it is relatively simple compared to low-mass\Wtause two detailed
stellar evolution sequences, for stars d1§ and 1M, respectively, as examples for the general
evolutionary behaviour of stars in these two mass ranges.

10.2.1 Hydrogen-shell burning in intermediate-mass and nmssive stars

Fig. 10.2 shows the evolution track of avg, star of quasi-solar compositioiX(= 0.7,Z = 0.02)
in the H-R diagram, and Fig. 10.3 shows some of the interior details of the evohitithis star as
a function of time from the end of central hydrogen burning. Point B in ligilres corresponds
to the start of the overall contraction phase near the end of the main seqg(vemen the central H
mass fractioX. ~ 0.03) and point C corresponds to the exhaustion of hydrogen in the Gertdrine
disappearance of the convective core. The hatched regions in thgetighn diagram’ (lower panel
of Fig. 10.3) show the rapid transition at point C from hydrogen burnindpéncentre to hydrogen
burning in a shell.

The H-exhausted core initially has a mass of aboutM;4vhich is below the Sabnberg-Chandra-
sekhar limit, so the star initially remains in TE and the first portion of the hydragpet burning
phase (C-D) is relatively slow, lasting abouk2.Pyr. The temperature and density gradients be-
tween core and envelope are still shallow, so that the burning shell initiatlypades a rather large
region in mass. This phase is therefore referred tihiak shell burning The helium core gradually
grows in mass until it exceeds the S-C limit and the contraction of the corespge The envelope
expands at the same time, exemplifying the ‘mirror principle’ discussed aldis becomes more
clear in Fig. 10.4 which shows the radial variations of several mass shsitieithe star. After point
C the layers below the burning shell contract while the layers above dxpaan accelerating rate
towards the end of phase C-D. As a result the temperature and densityrgsebetween core and
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Figure 10.3. Internal evolution of a B/, star of
initial compositionX = 0.7, Z = 0.02. The pan-
els show various internal quantities as a function
of time, from top to bottom:
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(a) Contributions to the luminosity from hydro-
‘ gen burning (red line), helium burning (blue)
LI B B B B e S s R B B T w and gravitational energy release (orange; dashed
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parts show netbsorptionof gravitational en-
ergy). The black line is the surface luminosity.

(b) Central mass fractions of various elements
(*H, “He, 2C, ¥*N and'®0) as indicated.

(c) Internal structure as a function of mass coor-
dinatem, known as a ‘Kippenhahn diagram’. A
vertical line through the graph corresponds to a
model at a particular time. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation, whekg,. > 10L/M (dark
red) andeyc > 2L/M (light red). The letters
B...J indicate the corresponding points in the
evolution track in the H-R diagram, plotted in
Fig. 10.2. See text for details.
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envelope increase, and the burning shell occupies less and less iga4d (c). The latter portion of
hydrogen-shell burning is therefore referred tdahas shell burning Most of the time between C and

D is spent in the thick shell burning phase at relatively small radii and@dpg> 4.05. The phase of
expansion from lod s ~ 4.05 to point D at lodleg =~ 3.7 occurs on the Kelvin-Helmholtz timescale
and takes only a few times 19rs. A substantial fraction of the energy generated by shell burning is
absorbed by the expanding envelope (dashed yellow line in Fig. 10e3alting in a decrease of the
surface luminosity between C and D.

The rapid evolution on a thermal timescale across the H-R diagram from thefehe main
sequence tder ~ 5000 K is characteristic of all intermediate-mass stars. The probability oftidede
stars during this short-lived phase is very small, resulting in a gap in the distrbof stars in the
H-R diagram known as thidertzsprung gap

As point D is approached the envelope temperature decreases andditg imthe envelope rises,
impeding radiative energy transport. The envelope grows increasingtghle to convection, starting
from the surface, until at D a large fraction of the envelope mass hasrt@convective. During
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Figure 10.4. Radial variation of various mass
shells (solid lines) in the B, (Z = 0.02) star of

Fig. 10.3, during the early post-main sequence
evolution. Each line is labelled with its mass co-
ordinatem in units of M; the top-most curve
indicates the total radiuR. Gray areas indicate
convection and red cross-hatched areas have in-
tense nuclear burnings{,c > 10L/M). Letters
B...E correspond to those in Fig. 10.3.

r (Rsun)

1777750
////////,,,;;;%

S
77772777
///// /////////?ZZ

78 82 84 86
age (1 0% yr)

phase D-E the star is a red giant with a deep convective envelope. Tietbtn located close to the
Hayashi line in the H-R diagram, and while it continues to expand in resgonsae contraction,

the luminosity increases as thfextive temperature remains at the approximately constant value
corresponding to the Hayashi line. The expansion of the star betweenl [& atill occurs on the
thermal timescale, so the H-shell burning phase of intermediate-mass sthesred-giant branch is
very short-lived.

At its deepest extent at point E, the base of the convective envelopsaigtbat mass coordinate
m = 0.9 Mg which is below the maximum extent of the former convective core during aeHtr
burning (about 1.28;, at the start of the main sequence). Hence material that was formerly inside
the convective core, and has therefore been processed by bydbogning and the CNO-cycle, is
mixed throughout the envelope and appears at the surface. Thissgriscealleddredge-upand
occurs about halfway between D and E in Fig. 10.2. Dredge-up ondrgiaat branch also occurs in
low-mass stars and we defer its discussion to Sec. 10.2.3.

The helium cores of intermediate-mass stars remain non-degenerate thaiegtire H-shell
burning phase C-E, as can be seen in Fig. 10.1. These stars devalapdwes with masses larger
than 0.3M, the minimum mass for helium fusion discussed in Ch. 8. In thNg Star at point E the
helium core mass is 0M, when a central temperature ofélK is reached and helium is ignited in
the core. The ignition of helium halts further core contraction and envelgpansion and therefore
corresponds to a local maximum in luminosity and radius. Evolution throughnhdliuning will be
discussed in Sec. 10.3.1.

10.2.2 Hydrogen-shell burning in low-mass stars

Compared to intermediate-mass stars, low-mass stars flvith2 M) have small or no convective
cores during central hydrogen burning, and when they leave the maureisee their cores are rel-
atively dense and already close to becoming degenerate (see Fig. [b0stars withM < 1.1 Mg
the transition from central to shell hydrogen burning is gradual and initMiyM < 0.1 so the star
can remain in thermal equilibrium with an isothermal helium core. By the time the heliwenhas
grown to~ 0.1M, its density is large enough that electron degeneracy dominates therprasduhe
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Schinberg-Chandrasekhar limit has become irrelevant. Therefore low-st@s can remain in HE
and TE throughout hydrogen-shell burning and there is no Hertagmyap in the H-R diagram.
This can be seen in Fig. 10.5 which shows the internal evolution d¥ig &tar with quasi-solar
composition in a Kippenhahn diagram and the corresponding evolutionitrgok H-R diagram. Hy-
drogen is practically exhausted in the centre at poinkKB£ 1073) after 9 Gyr, after which nuclear
energy generation gradually moves out to a thick shell surrounding ttreersaal helium core. Be-
tween B and C the core slowly grows in mass and contracts, while the ena{ppgrds in response
and the burning shell gradually becomes thinner in mass. By point C the hetiterhas become
degenerate. At the same time the envelope has cooled and become largelstivenand the star
finds itself at the base of thed giant branch(RGB), close to the Hayashi line. The star remains
in thermal equilibrium throughout this evolution and phase B—C lasts abowyt fbGthis 1M, star.
This long-lived phase corresponds to the well-populatdahiant branchn the H-R diagrams of old
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star clusters.

Stars with masses in the mass rangke-11.5 Mg show a very similar behaviour after the main
sequence, the only flierence being the small convective core they develop during core irigur
This leads to a ‘hook’ in the evolution track at central H exhaustion (see%8). The subsequent
evolution during H-shell burning is similar, the core remaining in TE until it Inees degenerate on
the RGB and a correspondingly slow evolution across the subgiantthr8tars with 15 < M/Mg <
2 do exhibit a small Hertzsprung gap as they reach thémrg-Chandrasekhar limit before their
cores become degenerate. After a period of slow, thick shell burnirtgeosubgiant branch they
undergo a phase of rapid, thermal-timescale expansion until they reaglattidoranch. In this case
the gap inT¢x to be bridged is narrow because the main sequence is already relatiwssgyrciiective
temperature to the Hayashi line.

Regardless of theseftBrences between stars offdrent mass during the early shell-H burning
phase, all stars witt < 2 Mg have in common that their helium cores become degenerate before
the central temperature is high enough for helium ignition, and they settle intmT&e red giant
branch.

10.2.3 The red giant branch in low-mass stars

The evolution of low-mass stars along the red giant branch is very similaalamakt independent
of the mass of the star. The reason for this similarity is that by the time the helilevhasrbecome
degenerate, a very strong density contrast has developed betwesnréhend the envelope. The
envelope is so extended that it exerts very little weight on the compact whbile, there is a very
large pressure gradient between core and envelope. The prassheebottom of the envelope (see
eg. 9.14) is very small compared to the pressure at the edge of the cbirethie hydrogen-burning
shell separating core and envelope. Therefore the stellar structpemdte almost entirely on the
properties of the helium core. Since the core is degenerate, its struciodeiendent of its thermal
properties (temperature) and only depends on its mass. Thereforeubtigrof a low-mass red
giant is essentially a function of itsore mass

As aresult there is a very tight relation between the helium core mass andrtimesity of a red
giant, which is entirely due to the hydrogen shell-burning source. ddris-mass luminositselation
is very steep for small core mass&k, < 0.5 Mg and can be approximately described by a power law

M.\8
L~ 23x10L, (—C) (10.2)
Mo

Note that the luminosity of a low-mass red giant is independent of its total massrefore the
evolution of all stars withM < 2 M converges after the core becomes degenerate, which occurs
whenM. ~ 0.1M, i.e. later for largeM. From this point on also the central density and temperature
start following almost the same evolution track (e.g. see Fig. 10.1b).

In the H-R diagram the star is located along the Hayashi line appropriaits foassM. Higher-
mass red giants therefore have slightly higiigr at the same luminosity. Note that the location
of the Hayashi line also depends on tietallicity of the star, since thefiective temperature of a
completely convective star is determined by thedpacity in the photosphere (Sec. 9.1.1). Because
the H™ opacity increases with metallicity (Sec. 5.3), more metal-rich red giants of thersassand
luminosity are located at lowélreg. This provides a means of deriving the metallicity of a globular
cluster from the location of its RGB stars in the H-R diagram.

2This means there is alsocare-mass radiuselation, but it is less tight than tHd.-L relation and depends slightly on
the total mass.
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As the H-burning shell adds mass to the degenerate helium core, théaalsecontracts and the
radius and luminosity increase. The higher luminosity means the H-shell musaba higher rate,
leading to faster core-mass growth. The evolution along the RGB thussppeab the luminosity
increases (see Fig. 10.5). The density contrast between core asldmnincreases and the mass
within the burning shell decreasesx®.001 Mg, near the tip of the RGB. Since less mass is contained
in the burning shell while the luminosity increases, the energy generatiompeatenit massc
increases strongly, which means the temperature within the burning shetealsases. With it, the
temperature in the degenerate helium core increases. When the tip of thesR&Bhed (at point F
in Fig. 10.5) atL ~ 2000L, and a core mass a&f 0.45Mg, the temperature in the degenerate core
has reached a value close t&¥0and helium is ignited. This is an unstable process due to the strong
degeneracy, and leads to a thermonuclear runaway known helthm flashsee Sec. 10.3.2).

First dredge-up and the luminosity bump

When the convective envelope reaches its deepest extent at pointd kOB, it has penetrated into
layers that were processed by H-burning during the main sequerdcbasa been partly processed
by the CN-cycle. Up to point D the surface He abundance increasabamtiabundance decreases,
but more noticeably the /@ ratio decreases by a large factor. This is calledfitis¢ dredge-ugphase
(later dredge-ups occur after He burning).

Some time later, at point E in Fig. 10.5 the H-burning shell has eaten its way dle tdis-
continuity left by the convective envelope at its deepest extent. Theskddenly finds itself in an
environment with a higher H abundance (and a lower mean molecular welght. consequence
it starts burning at a slightly lower rate, leading to a slight decrease in lumin@sity Fig. 10.6).
The resulting loop (the star crosses this luminosity range three times) resultargeanumber of
stars in this luminosity range in a stellar population. This ‘bump’ in the luminositytfondas been
observed in many old star clusters.

Mass loss on the red giant branch

Another process that becomes important in low-mass red giamass lossAs the stellar luminosity
and radius increase as a star evolves along the giant branch, thepenbettomes loosely bound and
it is relatively easy for the large photon flux to remove mass from the steltéacgu The process
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driving mass loss in red giants is not well understood. When calculatingffibet ©f mass loss in
evolution models an empirical formula due to Reimers is often used:

: L RM
M=-4x103y LR VQ Mo/yr (10.3)

wherey is a parameter of order unity. Note that the Reimers formula implies that a fixetibin of the

stellar luminosity is used to lift the wind material out of the gravitational potentidll Wewever, the

relation is based on observations of only a handful of stars with welltdé@ted stellar parameters.
Avalue of ~ 0.25- 0.5 is often used because it gives the right amount of mass loss on the RGB

to explain the morphology in the H-R diagram of stars in the subsequent helitmng phase, on

the horizontal branch The 1M, star of our example loses about 043 of its envelope mass by the

time it reaches the tip of the giant branch.

10.3 The helium burning phase

As the temperature in the helium core approaché¥]he 3 reaction starts to produce energy at
a significant rate. This is the onset of thelium burningphase of evolution. Unlike for hydrogen
burning, the reactions involved in helium burning (see Sect. 6.4.2) arathe ®r all stellar masses.
However, the conditions in the core at the ignition of helium are vefieint in low-mass stars
(which have degenerate cores) from stars of higher mass (with rgemdeate cores). Therefore
these cases will be discussed separately.

10.3.1 Helium burning in intermediate-mass stars

We again take the Bl star depicted in Figs. 10.2-10.3 as a typical example of an intermediate-mass
star. The ignition of helium takes place at point E in these figures. Sinceotedsnon-degenerate

at this point pc ~ 10*g/cm®, Fig. 10.1), nuclear burning is thermally stable and helium ignition
proceeds quietly. Owing to the high temperature sensitivity of the He-bumaiactions, energy
production is highly concentrated towards the centre which gives risednvective core. The mass

of the convective core is 0l initially and grows with time (unlike was the case for hydrogen
burning).

Initially, the dominant reaction is thex3eaction which converttHe into'?C inside the convec-
tive core. As thé2C abundance builds up, th&C+a reaction gradually takes over, so th&D is also
produced at a rate that increases with time (see Fig. 10.3b and compare@d®Fig§Vhen the central
He abundanc&ue < 0.2 the mass fraction of?C starts decreasing as a result of the diminishing
3a rate (which is proportional &3, ). The final*?C/*°0 ratio is about 0.3, decreasing somewhat
with stellar mass. This is related to the fact that in more massive stars the ¢entparature during
He burning is larger. Note that the fin®IC/60 ratio depends on the uncertain rate of tf@(«, y)
reaction, and the values given here are for the rate that is currentlghhtmbe most likely.

The duration of the central helium burning phase in oibstar (E-H) is about 22 Myr, i.e.
approximately @7 x tys. This seems surprisingly long given that the energy gain per gram of He
burning is only 10 % of that of H burning, while the luminosity of the star is (cerage) somewhat
larger than during the main sequence. The reason can be discerneiffo10.3a: most of the
luminosity during helium burning still comes from the H-burning shell surdog the core, although
the luminosity contribution of He burnind.{e) increases with time and becomes comparable towards
the end of this phase.

We can understand the behaviourlgfe by considering that the properties of the helium core
essentially depend only on the core miksand are hardlyféected by the surrounding envelope. Be-
cause the envelope is very extended the pressure it exerts on theaqd®eld) is negligible compared
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to the pressure inside the dense helium core. Inlfggtis a steep function o, analogous to the
main-sequencM-L relation —indeed, if the envelope were stripped away, the bare heliumvooitd

lie on ahelium main sequencelhe mass-luminosity relation for such helium main-sequence stars
can be approximately described by the homology relation (7.32) if the apat@palue ofu is used.

As a result of H-shell burning\. grows with time during the He-burning phase dng increases
accordingly. Another consequence is that in models computed with core@stershootind.ye is
larger on account of the larger core mass left after the main sequee8¢st. 9.3.4). Therefore the
duration of the He burning phase (i.e. the appropriate nuclear timesgale;s M¢/Lye) is shorterin
models with overshooting. A Bl star of the same composition computed with overshooting has a
main-sequence lifetimeys = 100 Myr and a helium-burning lifetime of 16 Myr.

During helium burning intermediate-mass stars describe a loop in the H-RatiagE—H in
Fig. 10.2). After He ignition at the tip of the giant branch, the envelope aotgr(on the nuclear
timescale for helium burning) and the stellar radius decreases. Initially thedsityiralso decreases
while the envelope is mostly convective (E-F) and the star is forced to mong &foHayashi line.
When most of the envelope has become radiative at point F, the star thavesl giant branch and
the @fective temperature increases. This is the start of a so-dallkedoop the hottest point of which
is reached at G wheXiye ~ 0.3. This also corresponds to a minimum in the stellar radius, after which
the envelope starts expanding and the star again approaches the giatit WwhenXye ~ 0.05. By
the end of core helium burning (H) the star is back on the Hayashi ling clese to its starting point
(E). If we consider stars of flerent masses, the blue extension of the loops in the HRD increases (the
loops extend to largefer values) for increasing mass, upltb ~ 12Mg. (The behaviour of stars of
larger masses can be more complicated, one of the reasons being stranipssaand we defer a
discussion of this until Chapter 12.) On the other handMog 4 M, the loops always stay close to
the red giant branch and do not become ’blue’.

The occurrence of blue loops is another example of a well-establisheld oésletailed stellar
evolution calculations, that is flicult to explain in terms of basic physics. The detailed models
indicate that the occurrence and extension of blue loops depends qusivedy on a number of
factors: the chemical composition (mairdy, the mass of the helium core relative to the envelope,
and the shape of the hydrogen abundance profile above the comelfidte also depends on whether
convective overshooting was assumed to take place during the main seqthés produces a larger
core mass, which in turn has th&ext of decreasing the blue-ward extension of the loops while
increasing their luminosity.

The blue loops are important because they correspond to a slow, nticieacale phase of evo-
lution. One therefore expects the corresponding region of the H-Raliatw be well populated.
More precisely, since intermediate-mass stars spend part of their iHeypuhase as red giants and
part of it in a blue loop, one expects such stars to fill a wedge-shapgaxhrie the HRD. Indeed one
finds many stars in the corresponding region, both in the solar neightmmdifRig. 1.1, although this
is dominated byow-massstars) and in open clusters with ages less thahGyr. The dependence
of the loops on overshooting also makes observational tests of ovérghasing He-burning stars
possible. Another significant aspect of blue loops is that they are seryef®or explaining Cepheid
variables (see Sect. 10.4), which are important extragalactic distancatordic

10.3.2 Helium burning in low-mass stars

In low-mass stars (wittvl < 2 Mg) the helium burning phaseftrs from more massive stars in two
important aspects: (1) helium ignition occurs under degenerate condifsg rise to ahelium
flash and (2) all low-mass stars start helium burning with essentially the samermassM. ~
0.45Mg, (Sect. 10.2.3). The luminosity of low-mass He-burning stars is thereforesalmiependent
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of their mass, giving rise to laorizontal branchn the HRD.

The helium flash

We again take a star of Ml as a typical example of all low-mass stars. Helium ignition occurs
whenT. ~ 18K andp; ~ 10° g/cm?, so the helium core is strongly degenerate (see Fig. 10.1).
We have seen in Sect. 7.5.2 that helium burning under these conditionsrisatlyeunstable: the
energy generated by the:Beaction causes a temperature increase, rather than a decreasslitand h
ignition thus initiates éhermonuclear runawayT he reason is that the degenerate pressure is basically
independent oT, so that the energy released by fusion does not increase the grassutherefore
leads to negligible expansion and negligible work done. All nuclear emetggsed therefore goes
into raising the internal energy. Since the internal energy of the degfersdectronsis a function
of p and hence remains almost unchanged, it is the internal energy of theegeneratéons that
increases and thus raises the temperature. As a result, the evolution iallyeugevard in theope-T,
diagram®

The thermonuclear runaway leads to an enormous overproduction igfyerad maximum, the
local luminosity in the helium core s~ 10'°L, — similar to a small galaxy! However, this only
lasts for a few seconds. Since the temperature increases at almosntalesisity, degeneracy is
eventually lifted wherlT ~ 3 x 108 K. Further energy release increases the pressure when the gas
starts behaving like an ideal gas and thus causes expansion and cddlitige energy released by
the thermonuclear runaway is absorbed in the expansion of the corapardf this nuclear power
reaches the surface. The expansion and cooling results in a deofdhseenergy generation rate,
until it balances the energy loss rate and the core settles in thermal equilibtilgn~ 108K and
pe ~ 2 x 10* g/em? (see Fig. 10.1). Further nuclear burning of helium is thermally stable.

Detailed numerical calculations of the helium flash indicate that this sequémrsents indeed
takes place, but helium is not ignited in the centre but in a spherical shall~at0.1 M, whereT
has a maximum. ThisfBcentre temperature maximum is dueneutrino lossesluring the preceding
red giant phase. These neutrinos are not released by nuclear meadtits by spontaneous weak
interaction processes occurring at high density and temperature (sgeenS&5). Since neutrinos
thus created escape without interacting with the stellar gas, this energyddssdegfective cooling

3This part of the evolution is skipped in thévl, model shown in Fig. 10.1, which is why a gap appears in the evolution
track. The evolution during the He flash is shown schematically as a disbddr the 1M, model in Fig. 8.4.
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of the central region of the degenerate helium core. The mass coordinatech T4« 0ccurs (and
where helium ignites) decreases somewhat with stellar mass.

The high local luminosity causes almost the entire region between the ignitioh (goim ~
0.1 Mg) up to the bottom of the H-burning shell (at 0.MB) to become convective. The energy
released in the He flash is thus transportéitiently to the edge of the core, where it is absorbed
by expansion of the surrounding non-degenerate layers. Convedtiormixes the product of the
He flash £2C produced in the @ reaction) throughout the core. About 3 % of the helium in the core
is converted into carbon during the flash. Because the convectivecsimdlining this carbon never
overlaps with the convective envelope surrounding the H-burning shislicarbon does not reach the
surface. (However, this may befiirent at very low metallicity.)

After the He flash, the whole core expands somewhat but remains parggiydrate. In detailed
models a series of smaller flashes follows the main He flash (see Fig. 109 éut.5 Myr, before
degeneracy in the centre is completely lifted and further He burning pilecstably in a convective
core, as for intermediate-mass stars.

The horizontal branch

In our 1M, example star, the helium flash occurs at point F in Fig. 10.5. Evolution thrtug
helium flash was not calculated for the model shown in this figure. Insteacdkvolution of the star
is resumed at point G when the helium core has become non-degenetdi@sasettled into TE with
stable He burning in the centre and H-shell burning around the coreddld@onstructed in this
way turn out to be very similar to models that are computed all the way througHdhkash, such
as shown in Fig. 10.7.) At this stage the luminosity and radius of the star haweaded by more
than an order of magnitude from the situation just before the He flash. wteegain see the mirror
principle at work: in this case the core has expanded (from a dederiera non-degenerate state)
and the envelope has simultaneously contracted, with the H-burning stied] as a ‘mirror’.

In the 1M, star of solar composition shown in Fig. 10.5, helium burning occurs betwemmd
H. The position of the star in the H-R diagram does not change very muaigdhis period, always
staying close (but somewhat to the left of) the red giant branch. The l@ityrie ~ 50L for most
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of the time; this value is determined mainly by the core mass. Since the core maesstrttof
helium burning is~ 0.45M,, for all low-mass stars, independent of stellar mass, the luminosity at
which He burning occurs is also almost independent of mass. If we earidietburning stars of

a given composition (e.g. in a star cluster), only the envelope mass mayrganysfar to star. At
solar metallicity, all such stars occupy about the same position in the HRD. ¥eis gse to a so-
calledred clumpin observed colour-magnitude diagrams of low-mass stellar populationsl¢vieib
instance in Fig. 1.1). However, the radius afittetive temperature of He-burning stars depends on
their envelope mass. Stars with a small envelope mass (either because dlea isitial mass, or
because they $iered a larger amount of mass loss on the RGB) can be substantially hottéinehan
one shown in Fig. 10.5. Furthermore, at low metallicity the critical envelope,rhaksv which He-
burning stars become small and hot, is larger. Stars wifarént amounts of mass remaining in their
envelopes can then formherizontal branchin the HRD (Fig. 10.9). Horizontal branches are found
in old stellar populations, especially in globular clusters of low metallicity (an el@raphe globular
cluster M3 shown in Fig. 1.2). The observed distribution of stars along Bi@dfies greatly from
cluster to cluster, and the origin of thes&eientHB morphologiess not fully understood.

The duration of the core helium burning phase is about 120 Myr, agagperdent of stellar
mass. While this is longer than in intermediate-mass stars, it is a much shortemfrafcthe main-
sequence lifetime because of the much higher luminosity of the He-burnirsg plhae evolution of
the stellar structure during helium burning is qualitatively similar to that of interatednass stars;
see Figs. 10.5a and 10.8. The most strikin@edences are:

e The contribution of He-burning to the stellar luminosity is larger, especiallyrtisvidne end of
the phase. This is due to the relatively small envelope mass.

e The development of a substante@mi-convectiveegion on top of the convective core. This
is related to a dference in opacity between the C-rich convective core and the He-riwh zo
surrounding it, and gives rise to partial (non-homogeneous) mixing inalgism.

e The occurrence of ‘breathing pulses’, giving rise to the sudden jumpegicentral compaosition
and in the luminosity. Whether these are real or simply a numerical artifactestionensional
stellar models is not cleér.

4For details about the latter twdfects, see eitheraBaris & Cassisi or John Lattanzio’s tutorial at
http://www.maths.monash.edu.au/iohnl/StellarEvolnDemo/.

154



T T T T T T T T [ T T T T [ T T I T T [ T T T T [ T T T T [ T T T T [ T

B (m-M)° = 18.54

logP<1: Mg’ = (-2.683£0.077) log P + (-0.99540.049); 5=0.27, N=570 | logP<1: M’ = (-2.963£0.056) log P + (-1.38540.036); 0=0.20, N=579 |

10gP>1: My? = (-2.15120.134) log P + (-1.404%0.177); 6=0.35, N= 109 | logP>1: M, = (-2.567+0.102) log P + (-1.634%0.135); 6=0.27, N= 110
Lo e by e by e e b b by by e by by

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
log P log P

Figure 10.10. The period-luminosity relation for classical Cepheidgie Large Magellanic Cloud. Luminos-
ity is expressed as absolute magnitude in the B band (left)rathe V band. Figure from Sandage et al. (2004,
A&A 424, 43).

10.4 Pulsational instability during helium burning

During their post-main sequence evolution, stars may undergo one or nisoelep during which
they are unstable to radial pulsations. The most important manifestation efghésstions are the
Cepheidvariables, luminous pulsating stars with periods between about 2 and $80Itdaurns out
that there is a well-defined correlation between the pulsation period anchtiveolsity of these stars,
first discovered for Cepheids in the Small Magellanic Cloud. A modernioresf this empirical
relation is shown in Fig. 10.10. Their importance for astronomy lies in the fatttie period can
be easily determined, even for stars in other galaxies, and thus provideimate of the absolute
luminosity of such a star, making Cepheids imporstandard candlefor the extragalactic distance
scale.

Cepheids lie along a pulsational instability strip in the H-R diagram (see Figl10DQuring
the evolution of an intermediate-mass star, this instability strip is crossed up otthres. The
first crossing occurs during H-shell burning (C-D in Fig. 10.2) butithsuch a rapid phase that the
probability of catching a star in this phase is very small. In stars wifficgently extended blue loops,
another two crossings occur (F-G and G—H) during a much slower evolpkiase. Cepheids must
thus be helium-burning stars undergoing a blue loop. EquivalentlRhkeyraevariables seen in old
stellar populations lie along the intersection of the instability strip and the horlzmatzch.

Since pulsation is a dynamical phenomenon, the pulsation period is closdlydrétathe dy-
namical timescale (eq. 2.18). Therefore the pulsation pdiidgsl related the mean density: to first
approximation once can wri@ « p~2 o« M~Y/2R%2, Each passage of the instability strip yields a
fairly well-defined radius and luminosity. Passage at a latgmrresponds to a larg&and therefore
to a largedl, because the variation in mass is smaller than that in radius and enters tha nslttio
a smaller power. This provides a qualitative explanation of the period-luityre$ation. The min-
imum observed period should correspond to the the lowest-mass stagoimdea blue loop. Also
the number of Cepheids as a function of period must correspond to the tirkestfta a star of the
corresponding mass to cross the instability strip. Thus Cepheids provideeatipl test of stellar
evolution models.
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10.4.1 Physics of radial stellar pulsations

The radial oscillations of a pulsating star result from pressure waveslred waves that resonate in
the stellar interior. These radial oscillation modes are essentially standiregywaith a node at the
centre and an open end at the stellar surface — not unlike the sounsl wareorgan pipe. Similarly,
there are several possible modes of radial pulsatiorfuttdamental modeaving just one node at the
centre, while thdirst andsecond overtonmodes have one or two additional nodes between the centre
and surface, etc. Most radially pulsating stars, such as Cepheidss@liating in their fundamental
mode.

In order to understand what powers the pulsations of stars in the instalilfy Iet us first
reconsider the dynamical stability of stars. We have seen in Sec. 7.5.énall dynamical stability
requireSyaq > %. In this situation a perturbation of pressure equilibrium will be restoredgtering
force being larger the morg,yq exceeds the critical value @f In practice, due to the inertia of the
layers under consideration, this will give rise to @sctillation around the equilibrium structure. A
linear perturbation analysis of the equation of motion (2.11) shows that adayeass coordinate
having equilibrium radiusg will undergo radial oscillations with a frequency

Gm
w? = (3yad—4) = (10.4)
0

if we assume the oscillations are adiabatic. Note thfat- 0 as long as/aq > %, consistent with
dynamical stability. On the other hand, fayg < % the frequency becomes imaginary, which indicates

Figure 10.11. Occurrence of various classes
of pulsating stars in the H-R diagram, over-
laid on stellar evolution tracks (solid lines).
Cepheid variables are indicated with ‘Ceph’,
they lie within the pulsational instability strip
in the HRD (long-dashed lines). Their equiv-
alents are the RR Lyrae variables among
HB stars (the horizontal branch is shown as
a dash-dotted line), and th& Scuti stars
(6 Sct) among main-sequence stars. Pulsa-
tional instability is also found among lumi-
nous red giants (Mira variables), among mas-
sive main-sequence starspCep variables
y and slowly pulsating B (SPB) stars, among
-2 - extreme HB stars known as subdwarf B stars
DA‘% | (sdBV) and among white dwarfs. Figure
: from Christensen-Dalsgaard (2004).
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log Ty
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an exponential growth of the perturbation, i.e. dynamical instability. A preperage ofw over
the star yields the pulsation frequency of the fundamental mode. We cain abtapproximate
expression by replacing with the total massM andrg by the radiusR, and takingy,q constant
throughout the star. This yields

1/2

21 3
o= V(Byad— 4)GM/R3 B ((37ad— 4)G,5) ' (10.5)

This is indeed the same expression as for the dynamical timescale, to withitoeadhanity. One
can write

—\-1/2
I = Q(i) : (10.6)
Po
where the pulsation consta@Qtdepends on the structure of the star andfedent for diferent modes
of pulsation. For the fundamental modg~ 0.04 days and) is smaller for higher overtones.

Driving and damping of pulsations

In an exactly adiabatic situation the oscillations will maintain the same (small) amplitundeality
the situation is never exactly adiabatic, which means that the oscillations wiltajlsniee damped,
unless there is an instability that drives the oscillation, i.e. that makes their anepdjtaa.

The requirement for growth of an oscillation is that the net work done byssmakement in the
star on its surroundings during an oscillation cycle must be pos'gﬁ\FedV > 0. By the first law of
thermodynamics, this work is provided by a net amount of heat beingladxsby the element during
the cycle,

$dQ=§Pav >0.

The change in entropy of the mass elemenH8s-ddQ/T. Since entropy is a state variabﬁdQ/T =

0 during a pulsation cycle. A mass element maintaining condtahiring a cycle therefore cannot
absorb any heat. Suppose that the temperature undergoes a smallvarigtie To + 6T (t) around
an average valu€. Then

0= 95 dTQ ) 95 Tod+Q5T - 95 i_?(l_ %) (oD

or
9§dQ ~ Sng % (10.8)

Eqg. (10.8) means that heat must enter the elemént(@) when the temperature is highil( > 0), i.e.
when the layer is compressed, gortheat must leave the layer@d< 0) during the low-temperature
part of the cycledT < 0), i.e. during expansion. This is known in thermodynamics lasa engine
and is analogous to what happens in a normal combustion motor, suchrasmgicee. In a pulsating
star, some layers may absorb heat and do work to drive the pulsation, ottelayers may lose
heat and thereby damp the puIsation;ﬁiﬂQ = SEPdV < 0). To determine the overalffect, the
contributionsSE P dV must be integrated over all mass layers in the star.
In stars there are two possible mechanisms that can drive pulsations:
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e If nuclear reactions occur in a region that is compressed during a pulstien the increase
in T will lead to an increase in the energy generation &tg This satisfies the criterion
(10.8) and is known as themechanismAlthough this is always present, the amplitudes of the
oscillations induced by this mechanism in the core of a star are usually so satatlchnnot
drive any significant pulsations. It may have importafieets in very massive stars, but it is
certainly not relevant for explaining Cepheid pulsations.

e If during the compression of a layer it becomes mmpaque then the energy flowing through
this layer will be ‘trapped’. The resulting increase in temperature andspregushes the
layer outward. During the resulting expansion, the gas will become mosptieent again and
release the trapped heat. This so-calkedechanisntan thus maintain the oscillation cycle
and drive radial pulsations.

The condition for thec-mechanism to work is therefore that the opacity must increase when the gas
is compressed. The compression during a pulsation cycle is not exactlyatidjeotherwise the
mechanism would not work, but it is very close to adiabatic. Then the conditio be written as
(dInk/dInP)4q > 0. We can write this as

dInk olnk dlnk dinT
(dInP)ad (aln P)T+(6InT)P(dInP)ad Kp T KT Vad (10.9)
wherexp andxr are shorthand notation for the partial derivatives af With respect to IP and InT,
respectively. For successful pulsations we must therefore have

kp + kT Vag > 0. (10.10)

The instability strip and the period-luminosity relation

In stellar envelopes the opacity can be roughly described by a Kramerg dagT ~3°, which when
combined with the ideal-gas law implies ~ 1 and«r ~ —4.5. Since for an ionized ideal gas
Vad = 0.4, we normally havep + 1 Vag < 0, i.€.x decreases upon compression and the star will not
pulsate. In order to satisfy (10.10) one must have either:

e k1 > 0, which is the case when the ldpacity dominates, dt < 10* K. This may contribute to
the driving of pulsations in very cool stars, such as Mira variables (ig.1), but the Cepheid
instability strip is located at too highg for this to be important.

¢ In case of a Kramers-like opacity, a small valueVgfj can lead to pulsation instability. For
kp ~ 1 and«t ~ —4.5, eq. (10.10) implie¥ 54 < 0.22. Such small values df54 can be found
in partial ionization zonesas we have seen in Sec. 3.5 (e.g. see Fig. 3.5).

Stars generally have two important partial ionization zones, orle at 1.5 x 10*K where both

H & H* + e and He— He" + e occur, and one af ~ 4 x 10*K where helium becomes twice
ionized (H& < He™" + e7). These partial ionization zones can explain the location of the instability
strip in the H-R diagram, as follows.

e AtlargeTer (for Teg 2 7500 K, the ‘blue edge’ of the instability strip) both ionization zones lie
near the surface, where the density is very low. Although this region i®thden-adiabatic,
the mass and heat capacity of these zones is too small to drive pulsdtexively.

e As T decreases, the ionization zones lie deeper into the stellar envelope. Theanths
heat capacity in the partial ionization zones increase, while remainingdiahadic enough to
absorb sfficient heat to drive pulsations.
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o At still smaller Ty (for Teg < 5500 K, the ‘red edge’ of the instability strip) the partial ioniza-
tion zones lie at such high density that the gas behaves almost adiabatidiigugh these
zones still have a destabilizingfect, they cannot absorb enough heat to make the star as a
whole unstable.

Thus the instability strip occupies a narrow region in the H-R diagram, as tedicaFig. 10.11. Its
location is related to the depth of the partial ionization zones. Since these aoogr in a specific
temperature range, the instability strip also occurs for a narrow ranggyofalues, and is almost
vertical in the H-R diagram (and parallel to the Hayashi line).

We can understand the period-luminosity relation from the dependence péikkation period on
mass and radius (eg. 10.6). Since Cepheids follow a mass-luminosity relstienL*, and since
L oc R?TZ., we can write

B2 @420

Mx Q—— xQ
1/2 3
MY/ Teff

With & ~ 3 andTes ~ constant, we findI o« L6 or logL ~ 1.7 logIl + const. Detailed numerical
models give
logL = 1.270 logll + 2.570 (10.11)

for the blue edge, and a slope of 1.244 and a constant 2.326 for thdged Ehe smaller slope than
in the simple estimate is mainly due to the fact that theaive temperature of the instability strip is
not constant, but slightly decreases with increasing

Suggestions for further reading

The contents of this chapter are also covered by Chapters 25.3.2 ar@@6.bf Maeber, while
stellar pulsations and Cepheids are treated in detail in Chapter 15. Seamisaikin & W EIGERT,
Chapters 31 and 32.

Exercises

10.1 Conceptual questions
(a) Why does the luminosity of a star increase on the main seg®eWhy do low-mass stars, like
the Sun, expand less during the main sequence than higlesrstaas?

(b) Explain what happens during the ‘hook’ at the end of thénnsaquence of stars more massive
than the Sun.

(c) What isconvective overshootiffgThink of at least threefiects of overshooting on the evolution
of a star.

(d) Explain the existence of Hertzsprung gapn the HRD for high-mass stars. Why is there no
Hertzsprung gap for low-mass stars?

(e) What do we mean by thmirror principle?

() Why does the envelope become convective on the red giamchf What is the link with the
Hayashi lin@
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10.2 Evolution of the abundance profiles

(a) Use Fig. 10.3 to sketch the profiles of the hydrogen andimeabundances as a function of the
mass coordinate in aM,, star, at the ages corresponding to points C, E, G and H. Trg tasb
guantitative as possible, using the information providethe figure.

(b) Do the same for a M, star, using Figs. 10.5 and 10.8, at points B, D, F and H.

(c) The abundances plotted in Figs. 10.3 and 10.8 are ceftwaldances. What happens to the abun-
dances at the surface?

10.3 Red giant branch stars

(a) Calculate the total energy of the Sun assuming that thsityes constant, i.e. using the equation
for potential energyEy, = —%G M?/R. In later phases, stars like the Sun become red giants, with
R ~ 100R,. What would be the total energy, if the giant had constantiten&ssume that the
mass did not change either. Is there something wrong? If sp isit?

(b) What really happens is that red giants have a dense, degengure helium cores which grow to
~ 0.45M,, at the end of the red giant branch (RGB). What is the maximuriusatthe core can
have for the total energy to be smaller than the energy of thr® SN.B. Ignore the envelope —
why are you allowed to do this?)

(c) For completely degenerate stars, one has

M -1/3
R=26x10 ,ue_5/3(M—) cm, (10.12)

0]

wherepe is the molecular weight per electron aag= 2 for pure helium. Is the radius one finds
from this equation consistent with upper limit derived inb

10.4 Core mass-luminosity relation for RGB stars
Low-mass stars on the RGB obey a core mass-luminosity ealatvhich is approximately given by
ed. (10.2). The luminosity is provided by hydrogen shelhiing.
(a) Derive relation between luminosityand the rate at which the core growglg dt. Use the energy
released per gram in hydrogen shell burning.
(b) Derive how the core mass evolves in time, Mg,= Mc(t).

(c) Assume that a star arrives to the RGB when its core mass%s df the total mass, and that it
leaves the RGB when the core mass is W5 Calculate the total time aM, star spends on
the RGB and do the same for &, star. Compare these to the main sequence (MS) lifetimes of
these stars.

(d) What happens when the core mass reacheshNd.Z5Describe the following evolution of the star
(both its interior and the corresponding evolution in thel)R

(e) What is the dference in evolution with stars more massive thawi2?

10.5 Jump in composition
Consider a star with the following distribution of hydrogen

/01 form<me
X(m) = { 0.7 form<m (10.13)

(&) In this star a discontinuous jump in the composition peafccurs am = m.. What could have
caused such a chemical profile? Explain vihgndT must be continuous functions.
(b) Calculate the jump in densityp/p.

(c) Also calculate the jump in opacityix/«, if the opacity is given as:
- Kramers:kps ~ Z(1+ X)pT 35
- Electron scatteringke = 0.2(1+ X)
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Chapter 11

Late evolution of low- and
Intermediate-mass stars

After the central helium burning phase a central core composed dfrcartd oxygen is formed. As
discussed before, the further evolution of a stéiieds greatly between massive stars on the one hand,
and low- and intermediate-mass stars on the other hand. The evolution dferstass, in which the
core avoids degeneracy and undergoes further nuclear burnitescwill be discussed in the next
chapter.

In low- and intermediate-mass stars, up to abdutg8the C-O core becomes degenerate and their
late evolution is qualitatively similar. These stars evolve along the so-cadhgdptotic giant branch
(AGB) in the H-R diagram. The AGB is a brief but interesting and importansela evolution,
among other things because it is the site of rich nucleosynthesis. AGB Earsufier from strong
mass loss, which eventually removes their envelope and leaves the deggedé core, which after
a brief transition stage as the central star of a planetary nebula, becdoreslaved coolingwhite
dwarf.

11.1 The asymptotic giant branch

The AGB phase starts at the exhaustion of helium in the centre. In the exadaifplee 5 and M
stars discussed in the previous chapter, this occurs at point H in theieadiacks (Figs. 10.2 and
10.5). The star resumes its climb along the giant branch, which was intedrbapteentral helium
burning, towards higher luminosity. In low-mass stars the AGB lies at similar lusitias but some-
what higher &ective temperature than the preceding RGB phase. This is the origin of the na
‘asymptotic’ giant branch. For stars more massive than aboutig.the AGB lies at higher lumi-
nosities than the RGB and the name has no morphological meaning.

One can distinguish two or three phases during the evolution of a star aledg3B. These are
highlighted in Fig. 11.1 for our M, example star, but the evolution of lower-mass stars is qualita-
tively similar.

The early AGB phase

After central He exhaustion the carbon-oxygen core contracts. @aribrief transition all layers
below the H-burning shell contract (shortly after point H), until He lngrshifts to a shell around
the CO core. The star now has two active burning shells and a double eftor operates: the core
contracts, the He-rich layers above expand, and the outer envelofecstatracting. However, due
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Figure 11.1. Evolution of luminosities (upper
20000y | panel) and internal structure (lower panel) with
Ll time in a 5M,, star (with compositiorX = 0.70,

] \\ T Z = 0.02) during the last stages of helium burning

and on the AGB. Compare with Fig. 10.3 for the
same star. The early AGB starts at point H, when
He burning shifts quite suddenly from the cen-
tre to a shell around the former convective core.
The H-burning shell extinguishes and at point K
second dredge-up occurs. The H-burning shell
is re-ignited some time later at point J. This is
the start of the double shell-burning phase, which
soon afterward leads to thermal pulses of the He-
burning shell (and break-down of this particular
model). The first thermal pulses can be seen in
the inset of the upper panel which shows the last
20000 yr of this model calculation. Strong mass

loss is then expected to remove the stellar enve-
0 g, | 1 ,CT(,)| el lope within< 10°yr, leaving the degenerate CO
105 106 107 108 core as a cooling white dwarf.
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to expansion of the He-rich zone the temperature in the H-shell decraaddise H-burning shell is
extinguished. Thus only one ‘mirror’ remains and now the entire enveldfeerich layer plus H-rich
outer envelope — starts expanding in response to core contractionlyddaig-lived phase follows in
which the stellar luminosity is provided almost entirely by He-shell burninggef&K in Fig. 11.1).
This is called theearly AGBphase.

The He-burning shell gradually adds mass to the growing CO core, wieichnies degenerate
due to its increasing density. As the envelope expands and cools thetomevelope penetrates
deeper until it reaches the composition discontinuity left by the extinct H-ahgoint K.

Second dredge-up

In stars of sfficiently high massM = 4 M, (depending somewhat on the initial composition and
on whether overshooting is included) a convective dredge-up epadeccur, called theecond
dredge-up At point K in Fig. 11.1 the convective envelope is seen to penetrate ddathia helium-
rich layers. This is due to a combination of the continuing expansion and goafithese layers,
which increases their opacity, and the growing energy flux producebebifie-burning shell — note
that the luminosity has been steadily growing. For lower-mass stars thertiiigushell remains
active at a low level, which prevents the convective envelope fromtpdimey deeper into the star.
Consequently, the second dredge-up does not occur in lower-mess sta

In the material that is dredged up hydrogen has been burned into heliita X and'®0O have
been almost completely converted idfdl by the CNO-cycle. The amount of He- and N-rich material
dredged up is about OM, in the example shown, and can be as much ks, In the most massive
AGB stars. This material is mixed with the outer convective envelope andaeppe the surface.
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Thus the second dredge-up has a qualitatively similar, but much more draefiaticthat the first
dredge-up phase that occurred on the RGB.

An additional important #ect of the second dredge-up is the reduction of the mass of the H-
exhausted core, thus limiting the mass of the white dwarf that rematfextizely, the occurrence of
second dredge-up thus increases the upper initial mass Niwjit,of stars that produce white dwarfs.

The thermally pulsing AGB phase

As the He-burning shell approaches the H-He discontinuity, its luminosityedses as it runs out of
fuel. The layers above then contract somewhat in response, thusghéegiextinguished H-burning
shell until it is re-ignited. Both shells now provide energy and a phadewble shell burnindpegins.
However, the shells do not burn at the same pace: the He-burning shelhles thermally unstable
and undergoes periodibermal pulsesdiscussed in detail in Sec. 11.1.1. This phase is thus referred
to as thehermally pulsing AGBTP-AGB).

The structure of a star during the TP-AGB phase is schematically depicted.iiE2. The
thermally pulsing phase of the AGB has a number of salient properties:

e The periodic thermal pulses alternate with mixing episodes and give rise tquemucleosyn-
thesisof (among others}?C, 1N, and elements heavier than iron (Sec. 11.1.2). This process
gradually makes the stellar envelope and atmosphere more carbon-rich.

e Similar to the RGB, the stellar properties mainly depend on the size of the dateQ&D core.
In particular there is a tightore mass-luminositselation,

L=59x10L, (% - 0.52), (11.1)

©

which is not as steep as the RGB relation (10.2).

CS envelope Figure 11.2. Schematic structure of

an AGB star during its thermally puls-
ing phase. The CO core is degenerate
and very compact, and is surrounded
by two burning shells very close to-
gether in mass coordinate. The con-
vective envelope by contrast is very ex-
tended and tenuous, having a radius
10*~1® times the size of the core.
This loosely bound envelope is gradu-
ally eroded by the strong stellar wind,
which forms a dusty circumstellar enve-
lope out to several hundreds of stellar
radii. The convective envelope, stellar
atmosphere and circumstellar envelope
have a rich and changing chemical com-
position driven by nucleosynthesis pro-
cesses in the burning shells in the deep
interior.

stellar wind

convective
envelope

H burning

He burning

deg. core

0.01Rg 100-500R ~1 pc?
0.5-1.0Mg 0.1-fewMg
~0.05 R,
0.001-0.02M,
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e Strongmass losg10~7 — 107* My/yr), probably driven by dynamical (Mira) pulsations com-
bined with radiation pressure on dust particles formed in the cool atmosfBece 11.1.3),
gradually removes the envelope and replenishes the interstellar medium winthesized
elements.

e The extended stellar atmosphere and circumstellar envelope, formed hytfllbevohave a rich
molecular and dust chemistry. This is mainly revealed in their infra-red speghich have
been observed by space telescope missions such as ISO and Spitzer.

11.1.1 Thermal pulses and dredge-up

After the H-burning shell is reignited, the He-burning shell that lies umeksth it becomes geomet-
rically thin. Nuclear burning in such a thin shell is thermally unstable, for thears discussed in

Sect. 7.5.2. This gives rise to periodieermal pulse®f the He-burning shell. What happens during
a thermal pulse cycle is depicted schematically in Fig. 11.3.

e For most of the time, the He-burning shell is inactive. The H-burning sldel$ anass to the
He-rich region between the burning shells (the intershell region), whimeases the pressure
and temperature at the bottom of this region.

e When the mass of the intershell region reaches a critical value, helium isdgmigée unstable
manner, giving rise to a thermonuclear runaway calledlaim shell flash(Note the dfference
with thecoreHe flash in low-mass red giants, where electron degeneracy causesrthenio-
clear runaway.) Values dfye ~ 108 L, are reached during 1 year. The large energy flux
drives convection in the whole intershell region (producinggershell convection zonéCz).

convective envelope

dredge—up

mass —>

3¢ pocket
intershell ez Ny
region
ﬁe —->C,0
_______________ ~ . '
degenerate core | He shell flash |
time

Figure 11.3. Schematic evolution of an AGB star through two thermal-pwgcles. Convective regions are
shown as gray shaded areas, where ‘ICZ’ stands for the h@kionvection zone driven by the He-shell flash.
The H-exhausted core mass is shown as a thin red solid linéhantde-exhausted core mass as a dashed line.
Thick red lines indicate when nuclear burning is active iestshells. Only the region around the two burning
shells is shown, comprising 0.01M,. The hatched region indicates a shell or ‘pocket’ ricH38 that is
formed at the interface of the H-rich envelope and the C-ntérshell region, following a dredge-up episode.
Note that the time axis is highly non-linear: the He sheldffland dredge-up phases (lastind00 years) are
expanded relative to the interpulse phase (1Q0° years).
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Figure 11.4. Evolution of a 3M, star with X =
0.7,Z = 0.02 during the TP-AGB phase. Time is
counted since the first thermal pulse. The three pan-
els show (a) the growth of the hydrogen-exhausted
core mass and helium-exhausted core mass, (b) the
He-burning luminosity and (c) the changes in surface
abundances by mass fraction BtC, 1N and 1°0.
Except for the first few pulses, each thermal pulse
is followed by a dredge-up episode (sudden drop in

100000 500000 or0 50206 core mass) and a sudden increasé® abundance.

Time (years) Figure adapted from Stanfik et al. (2004, MNRAS
352, 984).

This mixes'?C produced by the Breaction, as well as other elements produced during He
burning, throughout the intershell region.

The large energy release by the He-shell flash mostly goes into expasfsiba intershell
region against the gravitational potential. This eventually allows the Heriushell to expand
and cool as well, so that the He-shell flash dies down after sevena. ye&@hase of stable He-
shell burning follows which lasts up to a few hundred years. As a re§tiiecexpansion and
cooling of the intershell region after the He-shell flash, the H-burnimg sitinguishes.

Expansion and cooling of the intershell region can also lead to a deepetrgi@on of the
outer convective envelope. In some cases convection can penetyateditde now extinct
H-burning shell, such that material from the intershell region is mixed into titer @nvelope.
This phenomenon is callatird dredge-up Note that this term is used even for stars that do
not experience the second dredge-up, and is used for all sulnéeljedge-up events following
further thermal pulses. Helium as well as the products of He burning, riicplar 12C, can
thus appear at the surface.

Following third dredge-up, the H-burning shell is reignited and the Haibgrshell becomes
inactive again. A long phase of stable H-shell burning follows in which thesnad the inter-
shell region grows until the next thermal pulse occurs. The durationi®frtterpulse period
depends on the core mass, lasting between 50,000 yrs (for low-masstasBvith CO cores
of ~ 0.5 M) to < 1000 yrs for the most massive AGB stars.

This thermal pulse cycle can repeat many times, as shown fdviga AGB star in Fig. 11.4.
The pulse amplitude (the maximum helium-burning luminosity) increases with eds#, puhich
facilitates dredge-up after several thermal pulses. In the example stiawhdredge-up first occurs
after the 7th thermal pulse-(5 x 10° yr after the start of the TP-AGB phase) and then follows after
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every subsequent pulse. Th&&i@ency of dredge-up is often measured by a paramgtarich is
defined as the ratio of the mass dredged up into the envelope over the masishyhe H-exhausted
core has grown during the preceding interpulse period (see Fig. 11.3),

_ AMdu
AMy’

Third dredge-up has two important consequences. First, unlike tharidstecond dredge-up which
only mix up H-burning products, the third dredge-up bring productsetitim burningo the surface.
This leads to important nucleosynthesis (see Sec. 11.1.2). Second,rddgkelip limits the growth

of the CO core mass. fEcient dredge-up witil ~ 1 means that in the long run, the core mass does
not increase.

1 (11.2)

11.1.2 Nucleosynthesis and abundance changes on the AGB

The main €ect of thermal pulses and third dredge-up operating in AGB stars is theaepe

of helium-burning products at the surface, in particular a large producticarbon. In the 31,
model shown in Fig. 11.4, the surfat&C abundance increases after every dredge-up episode and
thus gradually increases, until it exceeds ¥#@ abundance after3x 10°yr.

At the low temperatures in the stellar atmosphere, most of the C and O atomsuackibtm CO
molecules, such that the spectral features of AGB stars strongly depetice GO number ratio.

If n(C)/n(0O) < 1 (simply written as ‘@O0 < 1’), then the remaining O atoms foramxygen-rich
molecules and dust particles, such as TiQOHaNnd silicate grains. The spectra of such O-rich AGB
stars are classified as type M or S. As a result of repeated dredgetugisme point the O ratio

can exceed unity. If © > 1 then all O is locked into CO molecules and the remaining C forms
carbon-richmolecules and dust grains, e.g;, N and carbonaceous grains like graphite. Such
more evolved AGB stars are classifiedcasbon starswith spectral type C.

Besides carbon, the surface abundances of many other elementstapeéssthange during the
TP-AGB phase. The direct evidence for active nucleosynthesis in 8188 was the detection in
1953 of technetium, an element with only radioactive isotopes of which thestiged one °Tc)
decays on a timescale of210°yrs. AGB stars are nowadays considered to be major producers in
the Universe of carbon, nitrogen and of elements heavier than iron s/recess They also make
an important contribution to the production’8f, 2°Mg, 2Mg and other isotopes.

Production of heavy elements: the s-process

Spectroscopic observations show that many AGB stars are enrichedhiergkeheavier than iron,
such as Zr, Y, Sr, Tc, Ba, La and Pb. These elements are producsldwiaeutron capture reactions
on Fe nuclei, the so-callestprocess In this context ‘slow’ means that the time between successive
neutron captures is long compared to fhdecay timescale of unstable, neutron-rich isotopes.

The synthesis of s-process elements requires a source of freengwutioch can be produced in
the He-rich intershell region by either of two He-burning reactidf€{e, n)*60 and?’Ne(a, n)*>Mg.

The latter reaction can take place during the He-shell flash if the tempeeatceeds 3 x 10°K,
which is only reached in rather massive AGB stars. 3Ie required for this reaction is abundant
in the intershell region, because tH& that is left by the CNO-cycle is all converted imtéNe by
He-burning:*N(a, y)8F(8+)180(a, v)**Ne.

The main neutron source in low-mass stars (uph,3is probably thé3C(a, n)!°0 reaction. The
current idea is that a thin shell or ‘pocket’ 8iC is formed (shown as a hatched region in Fig. 11.3)
by partial mixing of protons and?C at the interface between the H-rich envelope and the C-rich
intershell region, which producésC by the first step of the CN-cycle. THEC subsequently reacts
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with helium when the temperature reache$§ KQreleasing the required neutrons. The s-enriched
pocket is ingested into the ICZ during the next pulse, and mixed througheduntershell region,
together with carbon produced by He burning. The carbon and gsanaterial from the intershell
region is subsequently mixed to the surface in the next dredge-up EeesEig. 11.3).

Hot bottom burning

In stars withM > 4-5 M, the temperature at the base of the convective envelope during the Iagerpu
period becomes so higigce = 3 x 10°K) that H-burning reactions take place. The CNO cycle
then operates on material in the convective envelope, a process kisdvat bottom burning Its
main dfects are: (1) an increase in the surface luminosity, which breaks therass-luminosity
relation; (2) the conversion of dredged-t4€ into 1N, besides many other changes in the surface
composition. Hot bottom burning thus prevents massive AGB stars froomtiag carbon stars, and
turns such stars intdigcient producers afitrogen Other nuclei produced during hot bottom burning
are’Li, 2°Na, and?>?%Mg.

11.1.3 Mass loss and termination of the AGB phase

Once a star enters the TP-AGB phase it can experience a large nuntivemoél pulses. The number
of thermal pulses and the duration of the TP-AGB phase is limited by (1) threaling mass of the
H-rich envelope and (2) the growing mass of the degenerate CO cottee @O core mass is able
to grow close to th&€handrasekhar mas#ich ~ 1.46 Mg, carbon will be ignited in the centre in a
so-called ‘carbon flash’ that has the power to disrupt the whole staGkapter 13). However, white
dwarfs are observed in rather young open clusters that still containv@asain-sequence stars. This
tells us that the carbon flash probably never happens in AGB starsy#namthe total mass isM,
much larger tharMcp. The reason is thahass losvecomes so strong on the AGB that the entire
H-rich envelope can be removed before the core has had time to growcagtlifi The lifetime of
the TP-AGB phase, 2 x 10°yr, is essentially determined by the mass-loss rate.

\ start 3rd DU—~

(2nd DU)—/,

Figure 11.5. Schematic evolution track
of a low-mass star in the H-R diagram,
showing the occurrence of the various
dredge-up episodes. Stars on the upper
AGB are observed to be enriched in s-
process elements (S stars) and in carbon
(C stars).

eff
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Figure 11.6. Mass loss of AGB stard_eft: the observed cor- B i 3
relation between the pulsation periBdf Mira variables and e
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radiation pressure on the dust then pushes the mass out.

AGB mass loss

That AGB stars have strong stellar winds is clear from their spectrabgrdistributions, which
show a large excess at infrared wavelengths. Many AGB stars (kmew@HIR stars) are even
completely enshrouded in a dusty circumstellar envelope and are invisibfgiealovavelengths.
The mechanisms driving such strong mass loss are not yet completelstaumdibut a combination
of dynamicalpulsationsandradiation pressureon dust particles formed in the atmosphere probably
plays an essential role. Stars located on the AGB in the H-R diagram amd fowndergo strong
radial pulsations, they are known Rbra variables (see Fig. 10.11). An observational correlation
exists between the pulsation period and the mass-loss rate, shown in Fig. &k.@& star evolves
towards larger radii along the AGB, the pulsation period increases addesthe mass-loss rate,
from ~ 1078 My/yr to ~ 1074 M/yr for pulsation periods in excess of about 600 days.

The basic physical picture is illustrated in Fig. 11.6b. The pulsations induaeksvaves in
the stellar atmosphere, which brings gas out to larger radii and thus sesré@e gas density in the
outer atmosphere. At aboutsl- 2 stellar radii, the temperature is low enough(500 K) that dust
particles can condense. The dust particles are very opaque ardth@ychave formed, can easily
be accelerated by the radiation pressure that results from the high staliaogity. In the absence
of pulsations, the gas density at such a distance from the star would bemao form dust. Even
though the gas in the atmosphere is mostly in molecular forpy D, etc.) and the dust fraction
is only about 1%, the molecular gas is dragged along by the acceleratepbdiicles resulting in a
large-scale outflow.

Observationally, the mass-loss rate levef at a maximum value ok 107 Mg/yr (this is
the value inferred for dust-enshrouded (Ristars, the stars with the largest pulsation periods in
Fig. 11.6). This phase of very strong mass loss is sometimes called a ‘snger®@nce an AGB
star enters this superwind phase, the H-rich envelope is rapidly remdtezimarks the end of the
AGB phase. The high mass-loss rate during the superwind phase tieatefermines both the maxi-
mum luminosity that a star can reach on the AGB, and its final mass, i.e. the ntassadiite-dwarf
remnant (Fig. 11.7).
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Post-AGB evolution

When the mass of the H-rich envelope becomes very smalf, 4003 M, depending on the core
mass, the envelope shrinks and the star leaves the AGB. The resultiegskear stellar radius occurs
at almost constant luminosity, because the H-burning shell is still fully aetingethe star keeps
following the core mass-luminosity relation. The star thus follows a horizordaktm the H-R
diagram towards higherfiective temperatures. This is tipest-AGBphase of evolution. Note that
the star remains in complete equilibrium during this phase: the evolution towigltsr i is caused
by the decreasing mass of the envelope, which is eroded at the bottonshglHurning and at the
top by continuing mass loss. The typical timescale for this phasel¥ yrs.

As the star gets hotter afidgs exceeds 30,000 K, twdtects start happening: (1) the star develops
a weak but fast wind, driven by radiation pressure in UV absorptiors l{sénilar to the winds of
massive OB-type stars, see Sec. 12.1); and (2) the strong UV flwogedtre dust grains in the
circumstellar envelope, dissociates the molecules and finally ionizes theagasf e circumstellar
envelope thus becomes ionized (an HIl region) and starts radiating imbéeation lines, appearing
as aplanetary nebula Current ideas about the formation of planetary nebulae are that thelf re
from the interaction between the slow AGB wind and the fast wind from theaesiar, which forms
a compressed optically thin shell from which the radiation is emitted.

When the envelope mass has decreased t®NIg, the H-burning shell is finally extinguished.
This happens whefigs ~ 10°K and from this point the luminosity starts decreasing. The remnant
now cools as a white dwarf. In some cases the star can still experiencd thémmal pulse during
its post-AGB phase (kate thermal pulsg or even during the initial phase of white dwarf cooling (a
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Figure 11.7. Left: Relation between between the initial and final mass of lovd iatermediate-mass stars,
from Kalirai et al. (2008, ApJ 676, 594). The data points espnt white dwarfs observed in open clusters,
for which the mass has been determined from their spectra.agb of the clustdg and the cooling time of
the white dwarft,y have been used to estimate the initial mass, becausd,,y corresponds to the lifetime
of the progenitor star. The solid line shows model preditifor the core mass of a star at the start of the
TP-AGB phase (from Marigo 2001, A&A 370, 194) for solar métdtly. The dotted line shows the final mass
of these models, which is reasonably consistent with the jgaihts. The growth of the core mass on the AGB
is severely limited by dredge-up and strong mass loss.

Right: Observed mass distribution of white dwarfs, for a large dangp DA white dwarfs and a smaller
sample of DB white dwarfs (from Bergeron et al. 2007). Thera sharp peak between 0.55 andM£ as
can be expected from the initial-final mass relation becausst white dwarfs come from low-mass stars with
M < 2 M.
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very late thermal pul9e This can temporarily bring the star back to the AGB (sometimes referred to
as the ‘born-again AGB’ scenario).

11.2 White dwarfs

All stars with initial masses up to about\g, develop electron-degenerate cores and lose their en-
velopes during the AGB phase, and thus end their lives as white dwatfsle&t fusion no longer
provides energy and white dwarfs shine by radiating the thermal entngadsn their interiors, cool-

ing at almost constant radius and decreasing luminosities. The faintestawratés detected have

L ~ 104%L,. Observed WD masses are mostly in a narrow range arourid{).6ee Fig. 11.7b,
which corresponds to the CO core mass of low-m&saN,) AGB progenitors. This sharply peaked
mass distribution, along with the observationally induced initial-to-final mastaeléFig. 11.7a),

are further evidence that AGB mass loss is veficent at removing the stellar envelope.

The great majority of white dwarfs are indeed composed of C and O. WitiseM < 0.45Mg
are usually He white dwarfs, formed by a low-mass star that lost its envelogedy on the RGB.
This is not expected to happen in single stars, but can result from himtaraction and indeed most
low-mass WDs are found in binary systems. White dwarfs with> 1.2 M, on the other hand,
are mostly ONe white dwarfs. They result from stars that underwehbodsurning in the core but
developed degenerate ONe cores, which is expected to happen in a stadliviass range around
8 Me.

The surfacecomposition of white dwarfs is usually completelyffdrent than their interior com-
position. The strong surface gravity has resulted in separation of themigreech that any hydrogen
left is found as the surface layer while all heavier elements have settlegpedlayers. Most white
dwarfs, regardless of their interior composition, therefore show speotmnpletely dominated by H
lines and are classified as DA white dwarfs. A minority of white dwarfs shoky belium lines and
have spectroscopic classification DB. These have lost all hydrogemtfre outer layers during their
formation process, probably as a result of a late or very late thermal. pulse

11.2.1 Structure of white dwarfs

As discussed earlier, the equation of state of degenerate matter is indapehtemperature, which
means that the mechanical structure of a white dwarf is independent ofritsahroperties. As a
white dwarf cools, its radius therefore remains constant. As long as theogle@re non-relativistic
the structure of a white dwarf can be described ausa% polytrope with constanK. Such stars
follow a mass-radius relation of the forR «« M~Y3, depicted in Fig. 11.8 as a dashed line. A
proper theory for WDs should take into account that the most energeticais in the Fermi sea
can move with relativistic speeds, even in fairly low-mass white dwarfs. Thismmthat the equation
of state is generally not of polytropic form, but the relati®fp) has a gradually changing exponent
betweeng and%, as shown in Fig. 3.3. The pressure in the central region is therefaneveat
smaller than that of a purely non-relativistic electron gas. Thus WD raglisaraller than given by
the polytropic relation, the ffierence growing with increasing mass (and increasing central density).
The relativistic theory, worked out by Chandrasekhar, predicts the-naasus relation shown as a
solid line in Fig. 11.8. As the mass approaches the Chandrasekhar nvasshygieq. (4.22),

2
2
Mch = 1.459(—) Mo, (11.3)

He

the radius goes to zero as all electrons become extremely relativistic. Whaidsdwore massive
thanMch must collapse as the relativistic degeneracy pressure iffitisnt to balance gravity.
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Chandrasekhar’s white dwarf theory assumes the electrons are fgépeeate and non-interacting.
In reality, certain corrections have to be made to the structure, in parteleletrostatic interactions
between the electrons and ions (see Sec. 3.6.1). These give a negathation to the electron pres-
sure, leading to a somewhat smaller radius at a particular mass. Furthegatrfugh densitiegwverse
B-decayshecome important. Examples are the reactions

Mg + e > **Na+v, 2Na+ e — Ne+v.

A neutron-rich nucleus such &¥Na is normally unstable t8-decay £*Na — 2*Mg + e + V), but at
high density is stabilized by the Fermi sea of energetic electrons: the dep@vented because the
energy of the released electron is lower than the Fermi energy. Reastionss these (also called
electron capturgsdecrease the electron pressure at high density. Their nfi@ict & a lowering of
the dfective Chandrasekhar mass, from the ‘ideal’ value of 1M5%or a CO white dwarfto 1.Ms.

11.2.2 Thermal properties and evolution of white dwarfs

In the interior of a white dwarf, the degenerate electrons provide a higm#teonductivity (Sec.
5.2.4). This leads to a very small temperature gradient, especially belcasisdso very low. The
degenerate interior can thus be considered to a have a constant temgpdfatuever, the outermost
layers have much lower density and are non-degenerate, and hegy &aasport is provided by
radiation. Due to the high opacity in these layers, radiation transport is mashgfective than
electron conduction in the interior. The non-degenerate outer layerathus insulate the interior
from outer space, and here a substantial temperature gradient intprese

We can obtain a simple description by starting from the radiative envelopgos@uliscussed in
Sec. 7.2.3, assuming an ideal gas and a Kramers opacity tawg pT ="/, and assuming andT
approach zero at the surface:

. 17 3  «kou L
TY2=BP> with B== — —.
4 l6racG R M

ReplacingP = (R/u)pT and solving forp, we find that within the non-degenerate envelope

(11.4)

o= B‘l/z% TL3/4 (11.5)
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Let us assume that the transition point with the degenerate interior is locatye e degenerate
electron pressure equals the ideal-gas pressure efébgonsn the envelopePe = (R/ue)pT, since
the ions are non-degenerate everywhere. At this point, denoted wihrgutdb’, we have

5/3

R b
—ppTh = KNR (p_)
He H

e

Tp andpp, must match the value given by eq. (11.5) at the transition point. Eliminatjigives

pe_ Roug o SR gL (11.6)
b K32 64racGK, u M

Since the degenerate interior is nearly isothermglis approximately the temperature of the entire
interior or ‘core’ of the white dwarf. We can thus write (11.6)'5£2 = aL/M. To evaluate the
proportionality constant we have to substitute appropriate valuesdgmland the compositionué
andu), which is somewhat arbitrary. Assuming bound-free absorption (88) andue = 2 in the
envelope, which is reasonable because the envelope is H-depletgd fexdbe very surface layers,
we gete ~ 1.38x 107°Z/u in cgs units. In a typical DA white dwarf, most of the non-degenerate
layers are helium-rich so assumidg= 0.02 andu ~ 1.34 is reasonable. With these assumptions we
obtain the following relation between the temperature in the interior and the lumirogltynass of
the white dwarf,

L/Ly )2/7

Te~ 7.7x 10'K
o> fIX (M/Mo

(11.7)
The typical masses and luminosities of white dwaMs~ 0.6 My, andL < 1072 L, imply ‘cold’
interiors withT < 2 x 10" K.

We can use these properties of white dwarfs to obtain a simple model for tdading, i.e. the
change in WD luminosity with time. Since there are no nuclear energy souhecsirial theorem
applied to degenerate objects tells us that the luminosity radiated away comethé&aecrease of
internal energy. Since the electrons fill their lowest energy states up teeting level, their internal
energy cannot change and neither can energy be released byctiontrdhe only source of energy
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Figure 11.10. Observed and theoretical distri-
butions of white dwarf luminosities in the Galac-
tic disk, from Wood (1992, ApJ 386, 539), based
on cooling models similar to the one shown in
Fig. 11.9. The curves are for assumed ages of the
Galactic disk between 6 and 13 Gyr. The paucity
of observed white dwarfs with log{L,) < —4.3,

| shown as a slanted box, implies an age of the local
0 —2 -4 —6  Galactic disk of 8—-11 Gyr.
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available is the thermal energy stored in the non-degenerate ions, thauméhke bulk of the mass
of the white dwarf. Since the interior is isothermal at temperatyréhe total thermal energy is

Ein = cMT, (11.8)

wherecy is the specific heat per unit mass. For ions behaving as an ideal gaveve/ha %R/,uion
which is a constant. The luminosity is thus given by

dEm ch
L=— = —CcyM— 11.9
at Cv at ( )
whereL is related toM and T by eq. (11.6). If we write this relation &% = o L/M we obtain
ar
T = —an—dtC,

which can be easily integrated between an initial ti;y@vhen the white dwarf forms, and a generic
timet to give

2 _ _
T=t-to=zooy (Tg 2T 2. (11.10)

Once the white dwarf has cooled significantly, its core temperature is much sithaltethe initial
value so thaﬂ'c‘g’/2 can be neglected. We thus obtain a simple relation between the cooling tifne
a white dwarf and its core temperature, and thus betwesrd the luminosity,

-5/7

i 2 L
T~ Zacy To2? = Zoy azﬁ(m) . (11.112)

Making the same assumptions in calculatings in eq. (11.7), and substitutiog = %R/,uion, we can
write this relation as

(11.12)

_ . 105x 108yr( L/Ly )‘5/7
Hion M/Mo

This approximate cooling law was derived by Mestel. It shows that moreiveashite dwarfs evolve
more slowly, because more ionic thermal energy is stored in their interior, liis@asing the mean
mass of the iongion in @ white dwarf of the same total mass decreases the cooling time, becagse ther
are fewer ions per unit mass storing heat. For a CO white dwarf composegdidt parts of C and O,

Hion ~ 14.
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This simple cooling law, depicted in Fig. 11.9 for a 86 CO white dwarf, predicts cooling times
greater than 1 Gyr wheh < 103 L., and greater than the age of the Universe when 10°° L.
More realistic models take into account theet of contraction of the non-degenerate envelope,
which provides some additional energy during the initial cooling phaseraré importantly, the
effects of Coulomb interactions and afystallizationin particular. As the ion gas cools, electrostatic
interactions become more important (Sec. 3.6.1) and the ions settle into a latticteirstruThis
releases latent heat (in other wordsg, > %R/,uion) and the cooling is correspondingly slower than
given by the Mestel law. Once crystallization is almost complgtelecreases and cooling speeds up
again. A more detailed WD cooling model that includes thdBects is shown in Fig. 11.9. White
dwarfs that have cooled for most of the age of the Universe canwetieached luminosities much
less than 1¢P L, and should still be detectable. Observed white dwarf luminosities thus pravide
way to derive the age of a stellar population (e.g. see Fig. 11.10).

Suggestions for further reading

The evolution of AGB stars is treated in Chapter 26.6—-26.8 afd¥k and Chapter 33.2—-33.3 of
KrpenaaaN & WeIGert. White dwarfs are discussed in more detail in Chapter 351ofekuanN &
WEeiGert and Chapter 7.4 of &Saris & Cassist.

Exercises

11.1 Core mass luminosity relation for AGB stars

The luminosity of an AGB star is related to its core mass veaRaczynski relation (11.1). The nuclear
burning in the H- and He-burning shells add matter to the abeerate oM./Mg = 1.0x 1071Y(L, /Lo).
Assume that a star enters the AGB with a luminosity of L9 and a total mass of Ri,.

(a) Derive an expression for the luminosity as a functionroétafter the star entered the AGB phase.

(b) Assume thaler remains constant at 3000 and derive an expression for thgsras a function of
time.

(c) Derive an expression for the core-mass as a functiomraf. ti

11.2 Mass loss of AGB stars

The masses of white dwarfs and the luminosity on the tip ofAB& are completely determined by
mass loss during the AGB phase. The mass loss rate is verytaincdut for this exercise assume that
the mass loss rate is given by the Reimers relation, eq.)1Wig n ~ 3 for AGB stars. Now, also
assume that a star entered the AGB phase with a masMgfahd a luminosity of 1®L.

(a) Derive an expression for the mass of the star as a funcofigime, usingL(t) and R(t) from
Exercise 11.1. (Hint=-MM = 0.5d(M?)/dt).
(b) Use the expression from (a) and the oneNtt) from Exercise 11.1 to derive:
e the time when the star leaves the AGB,, =~ 0).
¢ the luminosity at the tip of the AGB.
e the mass of the resulting white dwarf. (This requires a nicaksolution of a simple equa-
tion).
(c) Derive the same quantities in the cases when the masgalessn the AGB is three times larger,
i.e.,n =9, and when it is three times smaller, i+ 1.
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Chapter 12

Pre-supernova evolution of massive stars

We have seen that low- and intermediate-mass stars (with masses«up ) develop carbon-
oxygen cores that become degenerate after central He burning.dksagquence the maximum core
temperature reached in these stars is smaller than the temperature requigtddm fusion. During
the latest stages of evolution on the AGB these stars undergo strong nmmsghiok removes the
remaining envelope, so that their final remnants are C-O white dwarfs.

The evolution ofmassive stars is different in two important ways:

e They reach a diiciently high temperature in their cores x10? K) to underganon-degenerate
carbon ignition (see Fig. 12.1). This requires a certain minimum mass for the CO core after
central He burning, which detailed evolution models puMalo_core > 1.06 My. Only stars
with initial masses above a certain limit, often denoted/gg in the literature, reach this criti-
cal core mass. The value bfy, is somewhat uncertain, mainly due to uncertainties related to
mixing (e.g. convective overshooting), but is approximatei8

Stars with masses above the lifMt,. ~ 11 Mg, also ignite and burn fuels heavier than carbon
until an Fe core is formed which collapses and causes a supernovaierpld/e will explore
the evolution of the cores of massive stars through carbon burning, tine formation of an
iron core, in the second part of this chapter.

e For masseM 2 15M,, mass loss by stellar winds becomes important during all evolution
phases, including the main sequence. For masses abdvig 8te mass-loss ratdd are so
large that the timescale for mass logg, = M/M, becomes smaller than the nuclear timescale
Thuee Therefore mass loss has a very significaffiéeat on their evolution. The stellar wind
mechanisms involved are in many cases not well understood, seltisatften quite uncertain.
This introduces substantial uncertainties in massive star evolution. fidget ef mass loss on
massive star evolution is discussed in the first part of this chapter.

12.1 Stellar wind mass loss

Observations in the ultraviolet and infrared part of the spectrum shawthanous stars, with masses
above about 1M, undergo rapid mass outflows (stellar winds) that gradually erode thigr laty-
ers. An empirical formula that fits the average observed mass-loss fasts® of roughly solar
metallicity in the upper part of the HR diagrarm £ 10° L) was derived by De Jager and others in
1988:

log(-M) ~ —8.16+ 1.77 Iog(LL) -1.68 Iog(%ﬁ) (in Mg/yr). (12.1)
0}
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Figure 12.1. Evolution tracks in the HR diagram (left panel) and in thedggdog T, diagram (right panel) for
stars withZ = 0.02 andM = 10, 15 and 2%, computed with a moderate amount of overshooting. The $rack
end when carbon is ignited in the centre, under non-degenesaditions.

For example, for the 2Bl star depicted in Fig. 12.1 you can check by estimatimyndTes from the
graph that this implies a mass loss ok3.0°8 M/yr at the ZAMS, increasing up t0:6 1077 My/yr
at the end of the main sequence. By the end of the evolution track, whetathe a red supergiant,
the mass-loss rate implied by the above formula has increasex 105 M/yr.

The observed strong mass loss is probably causedftgrefit mechanisms in fierent parts of
the HR diagram.

Radiation-driven stellar winds

Hot, luminous stars (OB-type main-sequence starsbaumlsupergiants, BSG) undergo a fasadia-
tion-driven stellar wind. Radiation pressure at frequencies corresponding to absorptionHities
spectrum, where the interaction between photons and matter is strongs aausdward acceleration.
An upper limit to the mass-loss rate that can be driven by radiation is obtajnassiiming that the
photons transfer their entire momentum to the outflowing matter:

. L
MVDO < E (122)

wherev,, is the terminal wind velocity at large distance from the star (‘infinity’). A typicalue
of the terminal velocity is about three times the escape velogityy 3vesc (@bout 1000-3000 kra
for O-type stars). Comparing the mass-loss rates from eq. (12.1) witlpghex limit shows that the
empirical rates are indeed smaller, but only by a fact8itd 1/6: apparently momentum is transferred
quite dficiently from the photons to the wind. This can be attributed to the acceleratitve @find:
the associated Doppler broadening of the spectral lines means a largétparflux can be used (the
outflowing atoms can absorb photons of figtient, higher frequency as they get accelerated). This is
a positive feedback mechanism that reinforces the wind driving.

The theory for radiation-driven winds is quite well developed, but thertitecal predictions for
M are uncertain due to inhomogeneities in the wind (‘clumping’). The uncertamping factor
also dfects the mass-loss rates inferred from observations, and currenttestamatypically a factor
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~ 3 lower than the the empirical rate of eq. (12.1). Radiation-driven masssl@sso dependent on
metallicity, because it is mostly the lines of the heavier elements that contribute toefuilimg. A
dependencé! « Z%7 has been inferred both theoretically and from observations.

Red supergiant mass loss

Cool, luminous stars known aed supergiants (RSG) undergo a slow but copious stellar wind that
is probably driven by the same mechanism as the ‘superwind’ of AGB: stax@mbination of stellar
pulsations and radiation pressure on dust particles that form in the ctesl@mosphere. There are
no theoretical predictions, so we must rely on observations which implyhighyvalues oM up to
10~4Mo/yr (eq. 12.1).

Stars withM < 40M,, spend a large fraction of thetore He-burning phase as red supergiants.
During this phase a large part or even the entire envelope can be aiepbby the wind, exposing
the helium core of the star as a Wolf-Rayet (WR) star (see Sect. 12.1.2).

12.1.1 The Humphreys-Davidson limit and luminous blue varibles

Observations of the most luminous stars in our Galaxy and in the Magellanid€have revealed a
clear upper limit to stellar luminosities that depends on fffiecéive temperature (see Fig. 12.2). In
particular there are no red supergiants in HR diagram withHdg{) > 5.8, which corresponds to the
expected RSG luminosity of a star of ¥Q,. Apparently stars wittM > 40M, do not become red
supergiants.

The upper limit in the HRD is known as theéumphreys-Davidson limit after its discoverers,
Roberta Humphreys and Kris Davidson. Bg above 10000 K the maximum luminosity increases
gradually to logl/Ly) = 6.8 at 40 000K (O stars).

The existence of the HD limit is interpreted as a (generalized) Eddington limit. Wedeen in
Sec. 5.4 that when the luminosity of a star exceeds the classical Eddingtorelimi.88),

4ncGM
LEdd = , (12.3)

Ke
wherexe is the electron-scattering opacity, the outward force due to radiationuypeess the free
electrons exceeds the gravitational force (on the nuclei) inwards. [€b&astatic coupling between

B L L B B L B B B Figure 12.2. The HRD of
-12 . the brightest supergiants in
1 L ’ | the LMC. The shaded region
contains several hundred red
-10 supergiants that are not indi-
9 L vidually shown. The upper
3 envelope of observed stars
= 8r traced by the dotted line is
- L known as the Humphreys-
Davidson limit (the lower
6 envelope is simply an ob-
-5 servational cut-fi). Figure
a4 [ adapted from Fitzpatrick &
L . ) Garmany (1990, ApJ 363,
-3 PN I IR U SN SO N SN AU NN SN UMY T SR NI TN BT S 119)
48 47 46 45 44 43 42 41 40 39 38 37 386 35 34
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electrons and ions means that the outer layers are accelerated outmdtids star becomes unstable.
However, theactual opacity in the atmosphere is larger than the electron-scattering opacity, and
decreases with temperature. Therefore the luminosity at which the radpagsadure limit is reached

is lower than the classical Eddington limit, and the decrease of the HD limit witledsitrgT o can

be explained at least qualitatively by thi$ezt.

Luminous stars located near the HD limit are indeed observed to be venblamsiadergoing
large excursions in the HRD and episodic mass loss Witk 103 Mo/yr during outbursts. These
stars are known dsiminous blue variables (LBVs), examples of which in our Galaxy areCarinae
and P Cygni. The remnants of the vigorous mass loss episodes are sgsuasstellar nebulae,
which in the extreme case gfCar containss 10M,, ejected during an outburst in the mid-1800s.
The nebula is considerably enriched in nitrogen, showing that the layecegsed by CNO-cycling
are being ejected. Stars losing mass due to LBV outbursts are destineaindisblf-Rayet stars.
The strong LBV mass loss prevents them from ever becoming red sumtstgia

12.1.2 Wolf-Rayet stars

Wolf-Rayet (WR) stars are hot, very luminous stars with bright emission Iiméeir spectra. The
emission indicates very strong, optically thick stellar winds, with mass-loss oétles ~ 107> —
104 My/yr. They are often surrounded by circumstellar nebulae of ejected mafEniawinds are
probably driven by radiation pressure as for O stars, but multiple ptsatatiering in the optically
thick outflow can increase the mass-loss rate to well above the single-sealimit (eq. 12.2).

The spectra of WR stars reveal increased CNO abundances, indittairthey are the exposed
H- or He-burning cores of massive stars. On the basis of the suffarelances they are classified
into several subtypes:

WNL stars have hydrogen present on their surfaces (ith< 0.4) and increased He and N abun-
dances, consistent with equilibrium values from the CNO-cycle

WNE stars are similar to WNL stars in terms of their He and N abundances, but they lalrkhdan
(X =0)

WC stars have no hydrogen, little or no N, and increased He, C and O abund@uwesstent with
partial He-burning)

WO stars are similar to WC stars with strongly increased O abundances (as expectedafrly
complete He burning)

This is interpreted as avolutionary sequence of exposure of deeper and deeper layers, as a massive
star is peeledfbto a larger and larger extent by mass loss (see Sec. 12.2).

12.2 Evolution of massive stars with mass loss in the HR diagram

Fig. 12.3 shows evolution tracks in the HRD for massive stars calculated with loss at metallicity
Z = 0.02. As revealed by this figure, the evolutionary journey of a massivatstargh the HRD can
be rather complicated. Evolution proceeds at nearly constant luminosiigube massive stars do
not develop degenerate cores and most of the mass is in radiative eqguililbtawever, the evolution
track shows several left-right excursions and loops which depetiteomass of the star. The relation
between the theoretical evolution tracks and the zoo of observed typesssive star encountered in
Sec. 12.1 is described by the followiegolution scenario, originally proposed by Peter Conti:
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Figure 12.3. Evolution tracks of massive stars (2220M,) calculated with mass loss and a moderate amount
of convective overshooting @5Hp). The shaded regions correspond to long-lived evoluticeisph on the
main sequence, and during core He burning as a RSG (ai4og 4.0) or as a WR star (at 100 > 4.8).
Stars with initial masv > 40M, are assumed to lose their entire envelope due to LBV episadgsnever
become RSGs. Figure from Maeder & Meynet (1987, A&A 182, 243)

M < 15Mg MS (OB) — RSG (- BSG in blue loop?» RSG)— SN II
mass loss is relatively unimportariifew Mg, is lost during entire evolution

15Mp; £ M <25My MS (0O)—» BSG— RSG— SN I
mass loss is strong during the RSG phase, but not strong enough to remove
the whole H-rich envelope

25My <M <40M, MS (0O)— BSG— RSG— WNL —» WNE - WC — SN Ib
the H-rich envelope is removed during the RSG stage, turning the star into a
WR star

M = 40Mg MS (O) » BSG— LBV — WNL —» WNE — WC — SN Ib/c
an LBV phase blowsft the envelope before the RSG can be reached

The limiting masses given above are only indicative, and approximately apphassive stars of
Population | composition ~ 0.02). Since mass-loss rates decrease with decredsitite mass
limits are higher for stars of lower metallicity. The relation of the final evolutiogesta the supernova
types indicated above will be discussed in Chapter 13.

The scenario for the most massive stars is illustrated in Fig. 12.4 fol\6&ar. After about
3.5 Myr, while the star is still on the main sequence, mass loss exposes latdiaherly belonged
to the (large) convective core. Thus CNO-cycling products (nitroge@yevealed, and the surface
He abundance increases at the expense of H. During the very $lase petween central H and He
burning ¢ = 3.7 Myr), severalM, are rapidly lost in an LBV phase. During the first part of core
He burning (3.7 — 3.9 Myr) the star appears as a WNL star, and subgggas a WNE star (3.9 —
4.1 Myr) after mass loss has removed the last H-rich layers outside thertiigshell. After 4.1 Myr
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material that was formerly in the He-burning convective core is expasihe gurface: N, which was
consumed in He-burning reactions, disappears while the products btithég, C and O, appear.
The last 0.2 Myr of evolution this star spends as a WC star.

In general, mass-loss rates during all evolution phases increase with staltg, resulting in
timescales for mass loss that are less that the nuclear timescadie 2080 M,. As a result, there
is aconvergence of the final (pre-supernova) masses-t® — 10Mg. However, this &ect is much
diminished for metal-poor stars because the mass-loss rates are genaratlgttow metallicity.

12.3 Advanced evolution of massive stars

The evolution of the surface properties described in the previous secdtiioesponds to the hydrogen
and helium burning phases of massive stars. Once a carbon-oxygehas formed after He burning,
which is massive enough-(1.06 M) to undergo carbon ignition, the subsequent evolution of the
core is a series of alternating nuclear burning and core contraction cyclesdhk succession (see
Fig. 12.5). The overall evolution trend is an increase of central temperand central density,
roughly following T. « pc'/3 as expected from homologous contraction in our schematic evolution
picture (Chapter 8). For central temperaturesx 108 K, the evolution tracks deviate from this trend,
sloping towards somewhat higheyand lowerT.. This is the result of cooling of the core by strong
neutrino emission (see Sect 12.3.1).

The main &ect of neutrino energy losses, however, is not visible in Fig. 12.5: thegdsup the
evolution of the core enormously. Less than a few thousand years g@gsdn the onset of carbon
burning until the formation of an iron core. During this time the mass of the C+® reanains fixed.
Furthermore, the stellanvelope hardly has time to respond to the rapid changes in the core, with the
consequence that the evolution of the envelope is practically disconrfemtedhat of the core. As
a result the position of a massive star in the HR diagram remains almost gechduaring carbon
burning and beyond. We can thus concentrate on the evolution of thefctire star from this point
onwards.
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Figure 12.5. Evolution of central temperature and density ofM5 and 25M, stars aZ = 0.02 through all
nuclear burning stages up to iron-core collapse. The ddsiesthdicated where electrons become degenerate,
and the dash-dotted line shows where electrons becomaistlat(e, ~ m.c?). The dotted line and arrow in-
dicates the trendl; « p.Y/® that is expected from homologous contraction. Non-moriotgmon-homologous)
behaviour is seen whenever nuclear fuels are ignited anenaective core is formed. Figure adapted from
Woosley, Heger & Weaver (2002, Rev. Mod. Ph. 74, 1015).

12.3.1 Evolution with significant neutrino losses

In Sect. 6.5 we discussed several weak interaction processes thiairepontaneous neutrino emis-
sion at high temperatures and densities, such as photo-neutrinos, plaatriaes and pair annihila-
tion neutrinos. When the central temperature exceefis 10° K, these neutrino losses are the most
importantenergy leak from the stellar centre, taking away energy much more rapidly than photon
diffusion or even convection can transport it to the surface. From this poimards the neutrino
luminosity from the core far exceeds the luminosity radiated from surfgce; L.

The dependence of the nuclear energy generatiorzfatand the neutrino loss ratg on temper-
ature are depicted in Fig. 12.6, for the centre of a typical massive stdolliosving an evolution track
approximating those shown in Fig. 12.5). Bettande,c increase strongly with temperature, but the
T-dependence af,cis larger than that of,. During nuclear burning cycles energy production and
neutrino cooling are in balancey, = ¢€,, and this condition (the intersection of the two lines) defines
the temperature at which burning takes place.

During each nuclear burning phade,,c = Enue ~ L,, which thus results in a much shorter
nuclear timescale than if neutrino losses were abseqnis = Enuc/Ly < Enye/L. Similarly, in
between burning cycles the rate of core contraction (on the thermal timespaleds upEgr ~ L,
so thatryy = Eg/L, < Eg/L. Therefore the evolution of the core speeds up enormously, at an
accelerating rate as the core continues to contract and heat up. The libét@aeh nuclear burning
stage can be estimated from Fig. 12.6 by approximatig~ 9/enuc, Whereq is the energy gain per
unit mass from nuclear burning (4.0, 1.1, 5.0 and 19 x 10" ergqg for C-, Ne-, O- and Si-burning,

!Note that becausg,. is a steeper function df thane,, nuclear burning is stable also in the presence of neutrino losses:
a small perturbatiodT > 0 would increase the local heat conteqt.{ > €,), leading to expansion and cooling of the core
until thermal equilibrium is re-established.
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Figure 12.6. Energy generation rate and neutrino loss rate during tharaehd evolution of a massive star.

The stellar center is assumed to follow a track approxingativat shown in Fig. 12.5. The intersections of
the nuclear burning lines with the neutrino loss line deftreliurning temperature of the corresponding fuel.
Figure from Woosley, Heger & Weaver (2002).

respectively) andp, is the energy generated per gram and per second at the intersectias imith
Fig. 12.6. Thus the lifetime ranges from several §ars for C-burning to about a day for Si-burning!

12.3.2 Nuclear burning cycles: carbon burning and beyond

When the temperature in the contracting C-O core reache8 % 10% K (depending on the mass of
the core), carbon is the first nuclear fuel to be ignited. The reaction$vew in carbon burning and
further nuclear burning cycles were treated in Sec. 6.4.3. In the follogéotons we briefly review
these and discuss the consequences for the structure and evolutierstdrthA typical example of
the interior evolution is shown in Fig. 12.7 for a I&, star, and the corresponding stellar properties
are given in Table 12.1.

Table 12.1. Properties of nuclear burning stages in aMbstar (from Woosley et al. 2002).

burning stage T (1°K) p (g/cm®)  fuel main products timescale
hydrogen 0.035 5.8 H He Ax 107 yr
helium 0.18 14x10° He C,0 20x 10° yr
carbon 0.83 2Ax10° C O, Ne 20x 10°yr
neon 1.6 2x10F Ne 0, Mg 0.7yr
oxygen 1.9 &x10° O,Mg SiS 2.6yr
silicon 3.3 43x 10" Si,S  Fe, Ni 18d
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Carbon burning

Carbon burning proceeds via th&C + 12C reaction, which produces a mixture of products, mainly
2ONe and somé*Mg. Most of the energy produced escapes in the form of neutrinosalgch small
fraction is carried away by photons. In stars with masses up to abddg 208e photon luminosity is
large enough to produce a convective core (as shown in Fig. 12.Bpot 8.5M. In more massive
stars carbon burns radiatively, because the intfi@l abundance is smaller and the luminosity not
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Figure 12.7. Kippenhahn diagram of the evolution of alif star showing convective regions (cross-hatching)
and nuclear burning intensity (blue shading) during cémirand He burning (top panel) and during the late
stages in the inner B, of the star (bottom panel). A complicated series of convecltiurning cores and
shells appear, due to respectively carbon burning (aroegich 3), neon burning (around ldg~ 0.6), oxygen
burning (around log ~ 0) and silicon burning (around ldg~ —2). Figure from Woosley, Heger & Weaver
(2002.)
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carried away by neutrinos can all be transported by radiation. Théiauef the C-burning phase is
of the order of 18yrs. It should be noted that these results are sensitive to the uncettif the
12C(a, ¥)*®0 rate, which determines théC abundance left after He-burning — a lower rate will leave
more?C to be burned and this increases both the size of the convective cotieeadidration of the
C-burning phase.

Following carbon exhaustion in the centre, the core — which is now compuoestly of O and
Ne — contracts on its neutrino-accelerated Kelvin-Helmholtz timescale andrchuoning continues
in a convective shell around this core. Several such convectivetshaing episodes can occur in
succession, as shown in Fig. 12.7, their number depending on the masst#rthTr he discrete nature
of these shell burning events can also produce a discrete (discorgjraependence of the final state
of the core on the initial stellar mass.

In stars with masses up to about M} (C-O core masses less than 1N38) carbon burning
proceeds somewhatftirently. The C-O core becomes partially degenerate and neutrino Idsses e
fectively cool the centre of the star, so that carbon does not ignite inethieecbut in an fi-centre
shell in a mildly degenerate flash (analogous to, but much less violent thatetfiash in low-mass
stars). After one or more of these mild carbon flashes the burning frome¢sno the centre and
stable carbon burning in a convective core follows. After carbonibgrrthe O-Ne core becomes
degenerate and no further nuclear fuels are ignited. The structuressf gitars is then very similar to
those of AGB stars with degenerate CO cores, discussed in Ch. 11luemndtars have been named
super-AGB stars. The fate of such stars is uncertain and depends on whether the CréNearoreach
the Chandrasekhar limit by shell burning. If this is the case the core elgntollapses, producing a
supernova explosion. On the other hand, if mass loss is strong enouwgghdoe the envelope before
the Chandrasekhar limit is reached, the final remnant is a O-Ne white.dwarf

Neon and oxygen burning

In stars with masses 11 M, once the temperature in the contracting O-Ne core reaghes<10° K
neon is ‘burned’ into oxygen and magnesium by a combination of phototeligation andv-capture
reactions (Sec. 6.4.3). Neon burning always occurs in a convectieeregardless of stellar mass. By
this time increased neutrino losses have accelerated the rate of evolutidadbgra- 10° compared
to the carbon-burning phase (see Fig. 12.6). The duration of thelmeoing phase is therefore very
short, of order 1 year. Neon burning then shifts to a shell, as was tedaasarbon burning, but in
this case the time left until the next fuel is ignited is so short that no signifeait burning occurs.

WhenTg ~ 2.0 oxygen is ignited in the core by means of #i@+ 150 reaction, producing mostly
283 and®?s with a significant admixture of other isotopes (see below). Oxygen matéo occurs in
a convective core, with a typical mass-0fL.0 M, (see Fig. 12.7). The duration is somewhat longer
than that of neon burning, of order 1 year, despite the higher neutrgsorége at this stage. The
reasons for this longer duration are the large oxygen mass fraetifr7, and the large energy gain
per gram compared to Ne burning. Similar to carbon burning, after centyglen burning a number
of convective oxygen-burning shells appears in quick successigrhiB point the remaining time
until core collapse< 1yr) is so short that the overlying helium- and carbon-burning shellsirema
frozen into the stellar structure.

Apart from28Si and®?S, oxygen burning produces several neutron-rich nuclei suéfSas®>S
and3’Cl. Partly these result from-captures on n-rich isotopes already present during C-burning,
and partly from weak interactions (electron captures) suclrR@& , v)3°Si. As a result the overall
number of neutrons in the remnant Si-S core exceeds the number ofpfotpr> 1) and therefore
that of electrons (implying thate > 2).
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Figure 12.8. Schematic overview of
the onion-skin structure of a massive
star at the end of its evolution.

Silicon burning

When the central temperature exceeds B K, a process known as silicon burning starts. Rather
than a fusion reaction this is a complex combination of photo-disintegration-@agture reactions.
Most of these reactions are in equilibrium with each other, and their abaeda@an be described by
nuclear equivalents of the Saha equation for ionization equilibriumTFer4 x 10°K a state close

to nuclear statistical equilibrium (NSE) can be reached, where the most abundant nuclei are those
with the lowest binding energy, i.e. isotopes belonging tatbe group. The abundances are further
constrained by the total number of neutrons and protons present. Due tetlkron excess of the
oxygen burning ashes (see above), the final composition is m8E#yand>Cr.

Silicon burning also occurs in a convective core~xofl M and its duration is extremely short,
of order 102yr. As in previous phases, several convective shell-burning egisosually follow in
quick succession. The precise extent and number of these conveetines determines the exact
value of the final mass of thieon core, which has important consequences for the following core
collapse and supernova phase (see Sec. 13.2).

12.3.3 Pre-supernova structure

We have obtained the following general picture of the final stages in thefldentassive star. The
C-0O core left by helium burning goes through a rapid succession dééauburning stages, during
which the stellar envelope (and the star’s position in the H-R diagram) remagsyainchanged.
After the exhaustion of a fuel (e.g. carbon) in the centre, the remainiregamtracts and burning
continues in a surrounding shell. Neutrino losses speed up the contrantidmeating of the core,
until the next fuel (e.g. neon) is ignited in the centre. At each subséduening stage the outer
burning shells have advanced outward, while neutrino cooling has bevoneedficient, resulting in
a smaller burning core (in mass) than during the previous stage. Eventusliyatis to amonion-skin
structure, depicted schematically in Fig. 12.8. The star is composedtefedit concentric shells,
which consist of heavier nuclei as one moves from the from the envetoyperds the centre, and
which are separated by burning shells. Often the nuclear burning, béile icentre and in shells,
causes convective regions to appear that partially mix the various okilotagers. This leads to
rather complicated abundance profiles at the moment when the inner cogeima through silicon
burning and is composed of iron-group elements. An example of this steustshown in Fig. 12.9
for a 15M,, star.

At this point the mixture of nuclei in the inner core has reached the minimunmigpesaiclear
binding energy, given the ratio of neutrons to protons that is presenthé@e&omposition is mainly
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Figure 12.9. Final composition profiles of a 18, star (see Fig. 12.7), just before core collapse. “Iron”nefe
to the sum of neutron-rich nuclei of the iron group, espéciziFe. Figure from Woosley, Heger & Weaver
(2002).

6Fe. From this iron core no further energy can be extracted by nucls@nt it has become inert.
The iron core rapidly becomes unstable and starts collapsing, giving r&ssupernova explosion.
The collapse of the core and its consequences are discussed in tichayabetr.

Suggestions for further reading

The evolution of massive stars, including theets of mass loss and rotation, is treated in detail in
Chapters 27 and 28.1-4 of Adber. A thorough review of the current state of our understanding of
the evolution of massive stars, their explosions and nucleosynthesiseis lgyvWoosley, Heger &
Weaver (2002, Rev. Mod. Ph., 74, 1015). Several of the figuoas this article are reproduced in this
chapter.

Exercises

12.1 Mass loss of massive stars during the main sequence

The mass-luminosity relation for massive stars on the maguence is approximately
L M
lo (—) ~ 0,781+ 2.760x lo (—')
g L + x log My
whereM; is the initial mass. The mass loss rate of massive stars camiobe approximated by
. L
logM ~ -1276 + 1.3 x log (—)
Lo
The duration of the main sequence phagein years is approximately

log Tws ~ 7.719— 0.655x Iog(%).
o
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(a) Calculate the fraction of mass that is lost by massives stith M; = 25,40,60,85 and 12M,
during the main sequence phase.

(b) A star with an initial mass of 881, on the zero age main sequence has a convective core that
contains 83 % of the mass. Calculate the time at which predfatuclear burning will appear at
the surface.

(c) Wolf-Rayet (WR) stars are massive stars that have lost practically ttoenplete hydrogen rich
envelope. They can be classified according to their surfagedances:

WC No hydrogen, high abundances of He, C and O
WNE No Hydrogen, NHe ratio consistent with CNO equilibrium
WNL Some Hydrogen, He ratio consistent with CNO equilibrium

Put the sub-classifications in ‘chronological order’. Whaitet of WR is the star in question b)?
12.2 Maximum mass loss rate for a radiation driven wind

(a) Assume that all photons transfer their entilementum to the outflowing wind. Show that the
maximum mass loss rate that can be driven by radiation isdiye
. L
M < Mpax = —,
max VooC
wherev,, is the velocity of the wind at a large distance of the star.

(b) Show that with this maximum mass loss rate,kimetic energy of the wind is only a small fraction
of the luminosity, i.e.

1.
EMmaxvso <L (Voo = 3Vesd

12.3 Burning stages
(a) Explain why the timescales of the burning stages fronu@ng onward are very short compared
to the H- and He-burning phases.

(b) Why does neon burning precede oxygen burning (why doexitraat a lower temperature) even
though?°Ne is a heavier nucleus thaf0?

(c) The end result of nuclear burning in a massive star is @nelike structure of the ashes of the
various nuclear burning stages. Try to identify these Isyand the nuclear reactions that are
responsible for them, in Figure 12.9.
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Chapter 13

Stellar explosions and remnants of
massive stars

13.1 Supernovae

Supernovae are stellar explosions during which the luminosity of a stareedd — 10'° L, at maxi-
mum, remaining bright for several months afterward. At least eight sopae have been observed in
our Galaxy over the past 2000 years, by Chinese and in some casbyg d&guanese, Korean, Arabian
and European astronomers (see Table 13.1). The remnants of thesgosae are in most cases still
visible as luminous expanding nebulae, containing the matter that was expeledexplosion. The
supernova that left the remnant known as Cas A has not been repitstegplosion date has been
inferred from the expansion rate of the nebula. Recently, howeveligiiteecho of this supernova,
as well as that of Tycho's supernova of 1572, have been deteasu\ithich the supernova type
has been determined. No supernova is known to have occurred in taxyGa the last 340 years.
Most of our observational knowledge comes from extragalactic sopaen the first of which was
discovered in 1885 in the Andromeda galaxy, and which are currentlg\dised at a rate of several
hundred per year thanks to dedicated surveys. A Galactic superatavafrabout 1 every 30 years
has been inferred from this.

Table 13.1. Historical supernovae.

year (AD) V (peak) SNremnant SNtype compact object

185 -2 RCW 86 la? -
386 ? ?
393 -3 ? ?
1006 -9 PKS1459-41 la? -
1054 -6 Crabnebula 1l NS (pulsar)
1181 -1 3C58 I NS (pulsar)
1572 -4 ‘Tycho’ la -
1604 -3 ‘Kepler’ la? -
~1667  2+6 Cas A IIb NS
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Supernova classification

On the basis of their spectra, supernovae (SNe) have been historiealtjfied into Type | (those
that do not show hydrogen lines) and Type Il (those that do). A maaldd classification scheme
that is currently used, is shown in Fig. 13.1.

Type la The main spectral features are the lack of H lines and the presencengf Siridlines around
maximum brightness. After several months, lines of Fe and Co appear ipgdhga Type la
supernovae occur in galaxies of all types, including elliptical galaxiesiwindy contain old
stellar populations, indicating that SNe la can have long-lived, low-maggepitors. They are
caused by théhermonuclear explosion of a CO white dwarf that reaches the Chandrasekhar
limit Mcp, by mass accretion in a binary system (see Sec. 13.3). About 25-30%seifved
supernovae are of Type la. They are (on average) the most lumifalisopernova types and
their lightcurves (see Fig. 13.2) form a rather homogeneous grouphwra&es them of great
interest as cosmological probes.

Type Il The spectra of Type Il supernovae are dominated by H lines, while linéa,dd and Mg are
also present. SNe Il occur in the spiral arms of galaxies where star tiorriakes place, and
therefore correspond to the explosion of massive stars with short lifetikivéd about 50%
of all supernovae, these are the most common type of stellar explosionll fxia the main
class of explosions associated with ttoee collapse of massive stars that have hydrogen-rich
envelopes. In several cases, the progenitor stars of Type |lrsoyser have been detected be-
fore the explosion. With the notable exception of SN 1987A (see Sec. 1,3#8e progenitor
stars wereaed supergiants with masses 81, < M < 16 M.

Type Il supernovae show a variety of lightcurve shapes (Fig. 13m2he basis of which they
are often sub-classified infiype II-P (showing, after an initial rapid rise and decline in bright-
ness, along ‘plateau’ phase of almost constant luminosity lasting 2—3 mbaetbse a slow ex-
ponential decay) andlype II-L (which lack the plateau phase). In addition, one distinguishes
Type llb, in which the spectral signatures change from Type Il to Type Ib (sé@; and
Type lIn, showing narrow emission lines on top of broad emission lines, which argiated

as resulting from heavy mass loss prior to the explosion.

Type Ib and Ic Type Ib supernovae have strong He lines in their spectra, which aiadgokType Ic
supernovae. Both types show a lack of hydrogen, and strong lines@d @d Mg are present.
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. Figure 13.2. Schematic super-
nova lightcurves. Typical max-
imum B-band magnitudes are
. —195 for SNe la,—17.6 for both
SNe Ibc and Il-L, and-17.0

§ for SNe II-P. The lightcurves of
SNe Ic resemble those of SNe Ib.
Figure from Filippenko (1997,
ARA&A 35, 309).
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Similar to SNe I, they are found in star-forming regions, and their late-timetspare also
similar to Type Il. Hence Type Jbo supernovae are also associated with core collapse of massive
stars, namely those that have lost their H-envelopes prior to explosiaether they consti-

tute about 20% of all supernovae. A subclass of very bright Typeipesovae, known as
hypernovae, may be associated with gamma-ray bursts.

13.2 Core collapse and explosion of massive stars

As indicated in Fig. 13.1, essentially all types of supernova — exceptl@pappear to be associated
with the core collapse of massive staxsd M) at the end of their evolution. The distinction between
the diferent types and subtypes of core-collapse supernovae is relatdtetenties in the structure
and composition of the envelopes of the progenitor stars. For exampleragengors of Type Il
supernovae are still surrounded by a massive H-rich envelope at theemaf explosion, while
SN Ib progenitors have lost their H-rich envelopes and SN Ic progenitave also lost most of the
He layers surrounding the core. This sequence can be the conseqfemass loss from stars of
increasing initial mass (see Sec. 12.2), but can also result from interadgtiva binary companion.

13.2.1 The collapse of the iron core

Despite these dierences in appearance, tpigysical mechanism is similar in all core-collapse su-
pernovae. We have seen in Sec. 12.3.3 that starsMith 11 M, form an inner core composed of
iron-group elements (mostRfFe) at the end of their evolution. From this iron core no further energy
can be extracted by nuclear fusion: it has become inert.

The iron core is in a peculiar state in several respects. Because dhoedoling during the late
evolution stages, the core typically has a considerable degree of eldegeneracy, except for the
largest stellar masses (see Fig. 12.5). However, the high temperatuterssity & 10° g/cm®) mean
that the electrons are always relativistic (their typical energy exceedf3. In that case contraction
cannot be stopped, even if the core is degenerate, and must contirthe very rapid, neutrino-
mediated thermal timescale. Furthermore, since the relativistic electron gasatiesrine pressure,
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the adiabatic exponentg is close tog‘. The iron core is therefore very close to a state of dynamical
instability. Two processes occur at high density and temperature thatbeetto accelerating the
(already rapid) contraction into a dynamical collapse of the core.

Electron captures At very high density free electrons can be captured and bound intovo#eer
B-unstable heavy nuclei. This process, also known as iny&deray, occurs when the most
energetic electrons have energies high enough to overcomeffagedce in nuclear binding
energy (see also Sec. 11.2). As a result, the composition becomes iimgleagutron-rich
— a process known aweutronization. Furthermore, the electron pressure decreases which can
destroy the precarious state of hydrostatic equilibrium and trigger the seltzfgthe core.

If the core is significantly degenerate, the Chandrasekhar mass playpartant role. For a
composition of predominantl§Fe one would exped¥ich = 5.83ug? My ~ 1.26M,. Elec-

tron captures increase the average mass per free eleptjoand thus decrease théextive

Chandrasekhar mass. This can bring the core mass above this criticahnabfcilitate its
collapse.

Electron captures can also trigger the collapse of stars with initial masses bseld M,
which develop degenerate O-Ne cores at the end of their lives. If the @h#sis core can grow
(through shell burning) to 1.3W,, electrons are captured B$Mg and?°Ne which initiates the
collapse of the core. Stellar explosions caused by this mechanism are eeatkedn-capture
supernovae.

Photo-disintegration If the temperature in the contracting core reaches values close"t& 1the
energy of the photons becomes large enough to break up the heaviiniaclghter ones, in
particular®®Fe is disintegrated into particles and neutrons:

®Fe+y o 13%He+4n (13.1)

This reaction is in statistical equilibrium and the abundances of the nucldveware de-
termined by a Saha-type equation, the balance shifting more towards théaigtside the
higher the temperature. The process is thus similar to the ionization of hygrage results in
loweringyaqto below the critical value o% The core therefore becomes dynamically unstable.
This process dominates in relatively massive iron cores.

The photo-disintegration 8PFe requires a lot of energy, about 2 MeV per nucleon. This energy
is absorbed from the radiation field and thus ultimately from the internal groéthe gas. As

a result the pressure decreases quite drastically, triggering an alnmsalifreollapse of the
core.

The collapse is extremely rapid, taking of the order of 10 msec, becauke short dynamical
timescale at the high density (L0'°g/cm?®) when the collapse is initiated. During the collapse the
temperature and pressure keep rising, but never enough to reversglpse until nuclear densities
are reached. Further photo-disintegrations can occur due to thedimggzhoton energies, which
was once thought (prior to 1980) to dissociate everutiparticles completely into free protons and
neutrons fHe + y — 2p+ 2n, which would require another 7 MeV per nucleon of internal energy
from the gas). It has since become clear that full dissociatiéPFef intoa particles and free nucleons
does not occur during the collapse. On the other hand, electron caphniteprotons (e~ — n+v)
inside the heavy nuclei continue the process of neutronization, creatirgand more neutron-rich
nuclei. These eventually merge, creating what is essentially a gigantic stelr-nucleus, when
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approaches nuclear densities of the ordéf* fi&m?®. The composition inside the core is predom-
inantly neutrons, which become degenerate and thereby modify the eqoatitate to suddenly
become ‘sfii’, i.e. the neutron gas becomes almost incompressible. This terminates theealtap
core radius oR; ~ 20 km.

Energetics of core collapse and supernova explosion

The gravitational energy released during the collapse of the core cestibeated as

GM? .\ GMZ GMZ
Rei Ref Ref

assuming homologous collapse of a cordvef ~ 1.4 M from an initial radiusR;; ~ 3000 km to a
final radiusR;s ~ 20 km <« R;. Let us compare this with the energy necessary to expel the envelope,
which has no time to follow the core collapse,

M 2
Gm GM
Eenv = fc T dm <« T (133)

Egr ~ — ~ 3x 10%erg (13.2)

The upper limit (13.3) isc 10°3erg forM = 10M,, but taking into account a realistic mass distribu-
tion in the envelope, this estimate comes dowiE¢g, ~ 10°Cerg. Only a very small fraction of the
energy released in the collapse of the core is needed to blow away tHepmvPart of the energy
goes into kinetic energy of the ejected envelope and energy radiatedogvibg supernova. For a
typical Type Il supernova, the ejected envelope 19 M, and observed ejecta velocities are about
10*kmys, giving Exin ~ 10°1erg. The supernova has a luminosityr 2 x 10° L, for up to several
months, so that the total energy lost in the form of radiatidBpis~ 10*erg. Therefore

such that only a small fraction of the energy released in the collapse isrudeslactual explosion.
The question is how this fraction of about 1% of the gravitational enengypeaonverted into kinetic
energy of the envelope, which turns out to be a vefigdilt problem.

13.2.2 The explosion mechanism

When the collapsing core reaches nuclear densjtigs € 3 x 10'g/cm®) the neutrons become de-
generate, resulting in a strong increase in pressure. Furthermoleaniocces between the nucleons
become important. Thesé&ects reverse the collapse. When the inner part of the core is compressed
to ~ 1.5 times nuclear density, it bounces back like a spring — an event nemnebounce.

As the velocity of the inner core material is reversed, it encounters matter the still free-
falling outer part of the core. If the collision were perfectly elastic, the roabee would bounce
back to its initial radius even if the inner core were stationary. The outward motithe inner core
thus gives the possibility of a ‘super-elastic’ core bounce that mightetealoly explode the star.
The impact of the infalling matter is supersonic and creates a shock wav&ekaens as it travels
outward into regions of lower density. The kinetic energy stored in thekslvage was once thought
to be sifficient to blow df the envelope, giving rise to a so-callpbmpt explosion. However, two
problems arise that prevent such a prompt explosion to occur.

First, as the shock wave travels through the infalling matter which still mostly densisron-
group nuclei, it heats up the nuclei and disintegrates thiéectévely into protons and neutrons. We
can estimate the energy spent in photo-disintegration by noting that the biewéngy of ar’®Fe
nucleus is about 9 MeMucleon, so that the disintegration of an iron core of M4 (1.7 x 10°7
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nucleons) requires about>x210°2erg. Note that this amounts to absorbing, during a fraction of a
second, practically all of the nuclear energy that was released dugrligetime of the star!

Second, electron captures on the free protons created behind tlkepsbdace energetic neutri-
nos by means of

p+€ —n+wv.

These neutrinos take away the largest fraction, about 90%, of thgyereleased in the collapse,
especially as the shock moves into relatively low-density regiariot? g/cm?®) from where they can
easily escape. In the case of supernova 1987A these neutrinosd@velétected (see Sec. 13.2.3).
As a result, the shock wave fizzles out before it reaches the envefape gtar and no prompt
explosion occurs.

Effects of neutrinos

The role played by neutrinos during core collapse requires closer ex@mnindhe neutrinos pro-
ducedbefore the collapse set in had typical energies of the order of the thermal eokthg elec-
trons (see Sect. 12.3.1). During the collapse neutrino production byon&étion (electron captures)
dominates. The typical energy of these neutrinos is of the order of tinei Eaergy of the relativistic
electrons,

E, _Er E_h(?, p)

M2 Me? M MeC \87 pemy

1/3 1/3

~ 1072 (ﬁ) , (13.4)
He

using eq. (3.33) and the relatipn= uemyne, and withp in g/cm? in the last equality. In the presence
of heavy nuclei, the neutrinos interact mainly through so-called cohscatiering with these nuclei,
with a typical cross section of the order

2
oy~ 10—45A2(E—V2) cn?, (13.5)
MeC
which gives together with eq. (13.4),
2/3
o, ~ 10—49A2(ﬁ) cn?. (13.6)
He

If n=p/(Amy) is the number density of nuclei, the mean free gatbf the neutrinos in the collapsing
core can then be estimated as

-5/3

~ 2% 1025i(” ) cm (13.7)

l, ~ —
" noy, peA \ e

Takingue ~ 2 andA ~ 100, we find with eq. (13.7) that wheniue ~ 4 x 10° g/cm®, the neutrino
mean free pattf, ~ 10’ cm, which is the typical dimension of the collapsing core. Apparently,
neutrinos can no longer escape freely at the high densities prevailingdoltapsing core. The core
becomes opaque for neutrinos, which can onfjude out of the core via many scattering events.
Towards the end of the collapse phase, when3 x 10 g/cm?, the difusion velocity even becomes
smaller than the infall velocity of the gas, so that neutrinostemgped in the core. Analogous to
the photosphere of a star, one can define a ‘neutrinosphere’ in thelayges of the core where the
density is low enough for the neutrinos to escape. Interior to this, there&u#rino trapping surface’
below which the neutrinos are trapped.
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The real situation is much more complicated becatsdepends on the neutrino energy, so that
the neutrino transport problem has to be solved in an energy-dependgn The congestion of
neutrinos in the core causes them to become degenerate (since neutif@srdons) with a high
Fermi energy. Electron capture becomes less probable, becausevtheutenos have to be raised
to the top of the Fermi sea. Neutronization therefdfeatively stops whep ~ 3 x 102 g/cne.
Only after some neutrinos havefilised out of the core can further neutronization take place. The
process of neutronization therefore takes about 3—10 seconds, tivhiollapse only takes a few
milliseconds.

The deposition of neutrino energy in the core provides an energy esdliat may revive the
shock wave and cause an explosion. Neutrin@sising out of the collapsed core (the proto-neutron
star) heat the region through which the former shock wave has passieth, stretches from-30 km
to 100-300km, and cause it to become convectively unstable. Convectisptbvides a way to
convert some of the thermal energy from neutrino deposition into kinetiggnklulti-dimensional
hydrodynamical calculations show that the outward force thus createaleacome the ram pressure
of the outer layers that are still falling onto the core and launch a suctesgflosion, but only for
rather low initial stellar masses (up 1011 Mg).

A recently proposed alternative is that the proto-neutron star becorsésblato g-mode oscil-
lations, which generate acoustic energy that builds up in the shockedh reffi@se acoustic waves
eventually cause an anisotropic explosion, whereby the core still ascretene side while the explo-
sion occurs in the other direction. The asymmetric explosion that results rf@gxmain the large
space velocities of radio pulsars, which indicate that neutron starseecéiick’ at birth.

13.2.3 Lightcurves of core-collapse supernovae
The main physical parameters that determine the appearance of a siap&neo
¢ the total kinetic energy imparted by the explosion into the envelope,

¢ the structure (density profile and chemical composition) of the pre-sopeistar, as well as
the possible presence of circumstellar material lost by the star earlier in itgieno

e energy input by decay of radioactive isotopes ejected in the explosion.

As we have estimated above, the typical kinetic energy of the explosion ieafrtler of Eyj, ~
10°1erg! Given the uncertainty in the precise physical mechanism that convé#sof the core-
collapse energy into an explosion (Sec. 13.2.2), one usually models ttssiens by injecting a
specified amount of energy at the bottom of the envelope by means oten’piBoth Ey;,, and the
mass boundary between core and envelope (or ‘mass cut’) are unaarthare usually treated as
free parameters.

The visible supernova explosion starts when the shock wave induceck Ipiston reaches the
stellar surface, giving rise to a short puls€0 minutes) of soft X-ray emission. The luminosity then
declines rapidly as the stellar surface expands and cools. The exgamlielope remains optically
thick for a sficient amount of time that most of the explosion energy is converted into kinetigy
of the outflow. When the envelope has expanded enough to become ogtidallgnly ~1% of the
initial kinetic energy has been converted into radiation, as the total amoemieody radiated away
in the supernova is about 4%erg.

When a massive H-rich envelope is present, the recombination of ioniziddsn provides an
additional source of energy once the envelope has become optically thooals dficiently. As the

1The quantity of 16" erg is sometimes referred to as 'f.o.e.” in the supernova literatucehas recently been defined
as a new unit ‘bethe’ (1 B: 10°* erg) after Hans Bethe, a pioneer in supernova studies.
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envelope keeps expanding, a recombination wave moves inward in madset®, while staying at
roughly the same radius and temperature. This gives rise to the plateauiplts lightcurve of a
Type 1I-P supernova. This phase ends when the recombination waseuti@s it meets the denser
material of the inner envelope which expands at smaller velogityOf knys). If the H-rich envelope
is not massive enough to sustain such a recombination wave, the platessuiplabsent (Type II-L
lightcurves).

In the last phase of the supernova the lightcurve is determined by the cadéodecay of iso-
topes released in the explosion. The main source of radioactive enéfiNi,isvhich undergoes two
electron captures to produce stafiEe:

Ni +e” — 56C0+V+7 (T1/2 =6.1d)
%Co+e — ®Fe+v+y  (112=770d)

The exponential decline of the luminosity after 50—100 days corresporttie decay of°Co. The
amount oP°Ni ejected in the explosion, required to explain the observed lightcurvesig 8.07M,
for a typical Type Il supernova. This puts constraints on the positionefritass cut’ between the
collapsing core and the ejected envelope (the remainder dfMiesynthesized is locked up in the
collapsed compact object). The lightcurves of Type Ib and Ic supamare completely dominated
by this radioactive decay, after the initial luminosity peak caused by shreekout. Other radioactive
isotopes (with longer half-lives tha3Co) can also play a role in the lightcurve at later stages.

SN 1987A

This supernova (Type 1l) in the Large Magellanic Cloud was the neargstrnova observed since
Kepler's supernova in 1604. Its progenitor is known from images takdord the supernova: sur-
prisingly it was ablue supergiant, witi. ~ 1.1 x 10° L, andTes ~ 16 000K, and a probable initial
mass of about 1B, Its relative faintness at peak magnitude is probably related to the comgsctne
of the progenitor star compared to the red supergiant progenitors ofISHN 1987A is the only
supernova from whicheutrinos have been detected, shortly before the visible explosion. During 10
seconds, detectors in Japan and the USA detected 20 neutrinos witlesmertgveen 8 and 40 MeV.
These energies and the 10 sec time span correspond to the transfornia@ioRe core into a hot
proto-neutron star during core collapse (see Sec. 13.2.2).

13.2.4 Final masses and remnants

Figure 13.3 shows the possible relation between the initial mass of a starofsaédlicity, the mass
just before the moment of explosion and the final mass of the remnant. This figgbased on a
particular set of stellar models, and the precise masses are depentiembssumed mass-loss rates,
convective overshooting etc., and also depend on metallicity. The pegrsaya mass is determined
by mass loss during the evolution of the star, which becomes important for misistes 15Mg
(Sec. 12.2). For masses abov@0 M, mass loss is strong enough to remove the H-rich envelope as
well part of the material that was inside the He core and even the C-Ogstmen as green shading.
The type of stellar remnant left behind depends, first of all, on whetlecahapse of the iron
core successfully generates a supernova explosion. As discus®eg] ¢his is still an area of large
uncertainty. Detailed numerical simulations do indicate, however, that @ssfot explosion is more
likely the lower the initial mass of the star, or rather, the lower the mass of its Gr® Stars with
initial masses up to 20, probably leaveneutron star remnants. With increasing mass, the amount
of kinetic energy generated by the collapse decreases, while the bintbngyeof the envelope in-
creases. If only a weak explosion is generated, some of the materialdejeatefall back onto the

195



proto-neutron star. If accretion causes the mass to exceed the maximsilgaosass of a neutron

star — which is uncertain but probably lies in the range 23 then the proto-neutron star will col-
lapse and form &lack hole. The mass limit separating stars that form neutron stars and those that
leave black holes is probably in the range 20MR5 but is sensitive to the details of the explosion
mechanism as well as to the maximum neutron-star mass. It is even possibuth#o, the non-
linear behaviour of mass loss, the relation between initial mass and final nemmeon-monotonic

and that stars above a certain mass again leave neutron stars (asexiggesy. 13.3). On the other
hand, if mass loss is weak and a massive C-O core is left prior to core sm|laguccessful supernova
shock may not develop at all and the entire star may collapse directly intolahmée
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Figure 13.3. Initial-final mass relation for stars of solar compositidime blue line shows the stellar mass after
core helium burning, reduced by mass loss during earliesggha=omM = 30 M, the helium core is exposed as

a WR star, the dashed line gives two possibilities dependintp® uncertain WR mass-loss rates. The red line
indicates the mass of the compact stellar remnant, reguttiom AGB mass loss in the case of intermediate-
mass stars, and ejection of the envelope in a core-collapszrsova for massive stars. The green areas indicate
the amount of mass ejected that has been processed by helimmdand more advanced nuclear burning.
(Figure from Woosley et al. 2002).
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13.3 Type la supernovae

Type la supernovae are fundamentallffetient from other SN types, because they are not associated
with the core collapse of massive stars. Instead they are caused tigtmenuclear explosion of a
CO white dwarf that reaches a critical mass for carbon ignition.

Carbon-burning reactions can occur in a low-temperature degenesiéthe density is fii-
ciently high, about % 10° g/cm?® (these are known gsycno-nuclear reactions, see Sec. 6.2.3). These
densities are reached in the centre when the mass is very close to the Gb&hdranass of 1 M.
Because the gas is strongly degenerate, carbon burning is unstabadado a strong increase in
temperature at constant density and pressure. This is analogous tbapipains during the core He
flash in low-mass stars, except that the degeneracy is so strong thatdhlyabe lifted when the
temperature has reached about®#0. The ignition of carbon therefore causes the incineration of all
material in the core of the white dwarf to Fe-peak elements (in nuclear statistjadibrium). An
explosive burning flame starts to propagate outwards, behind which nhategiergoes explosive nu-
clear burning. The composition of the ashes depends on the maximum tempeeaithed behind
the flame, which decreases as the burning front crosses layers ofdodiéower densities (although
still degenerate). The composition is maififiNi in the central parts, with progressively lighter el-
ements (Ca, S, Si, etc) in more external layers. The total energy relbgsedlear burning is of
order 18t erg, which is stiicient to overcome the binding energy of the white dwarf in the explosion.
Therefore no stellar remnant is left.

The lightcurve of a Type la supernova is powered by the radioactivaydef the®®Ni formed in
the explosion. The nickel mass is a substantial fraction of the mass of thedmaté 05— 1.0 M,
which is the main reason for the greater peak luminosities of SNe la compamemstaore-collapse
supernovae. About 50 days after maximum brightness, an exponestt) df the lightcurve occurs
due to radioactive decay 8fCo into°°Fe.

In single stars of intermediate mass, the degenerate CO core cannot glmv@bandrasekhar
limit because mass loss quickly removes the envelope during the AGB phlas&1()C Even if the
Chandrasekhar limit were reached, the remaining H-rich envelope waulskca strong hydrogen
signature in the supernova spectrum which is not seen in SNe la. ©hefefs commonly agreed
upon that the CO white dwarfs that cause SN la explosions grow bytegrmass in a binary
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Figure 13.4. Critical mass transfer rates for
hydrogen-accreting white dwarfs, as a func-
tion of the WD mass. Only for a small range
of mass transfer rates (hatched area) can the
material quietly burn on the WD surface, and
thus lead to a growth of the WD mass to-
wards the Chandrasekhar mass and a SN la
explosion. (Figure from Kahabka & van den
Heuvel 1997).
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system. However, the exact mechanism by which this happens is still a matkebate. Two types
of progenitor scenarios are being discussed:

The single degenerate scenaridn this scenario the white dwarf accretes H- or He-rich matter from
a non-degenerate binary companion star: a main-sequence starjantagl @ helium star (the
stripped helium core of an initially more massive star). TH&dlilty is that steady burning of
H and He, leading to growth of the mass of the white dwatrf, is possible onlyfi@rrow range
of accretion rates (see Fig. 13.4). If accretion is too fast, a H-richlepeés formed around
the white dwarf (which would have an observable signature if the WD erglodf accretion is
too slow, the accreted matter burns in unstable flagtm& Eutbursts) that throwfdalmost as
much mass as has been accreted, such that the WD mass hardly gronesehit guch models
are too restrictive to explain the observed rate of SN la in galaxies.

The double degenerate scenaridn this case the Chandrasekhar limit is reached by the merging of
two CO white dwarfs in a close binary system. Such a close double WD cand®ia result
of strong mass and angular momentum loss during binary evolution (a proaksdcommon
envelope evolution). Once a close double WD system is formed, angular momentumyloss b
gravitational waves can bring about the eventual merger of the systemoughhat present
no convincing evidence exists for a double WD binary with a total mass irsexaf@cp, the
theoretical merger rate expected from binary evolution models appdicsesu to explain the
observed SN la rate (note, however, that these models have largeaimttes). The main doubt
about this scenario is whether the C-burning initiated by the WD merger ledds tequired
incineration and explosion of the merged white dwarf, or proceeds guidg@nd results in a
core collapse.

Suggestions for further reading

See Chapter 28.4-6 of Mper.

Exercises

13.1 Energy budget of core-collapse supernovae

(&) Neutron stars have a radius of about 10 km. Use this tmattithe energy generated during a
core collapse supernova (Hint: assume that before thepsellthe core is like a white dwarf with
massM; = Mcp, whereMgy, is the Chandrasekhar mass, and thatfitess no significant mass loss
after the collapse).

(b) The kinetic energy measured in the supernovae ejectaist &y, = 10°* erg. What is a typical
velocity of the ejecta, if the original star was one ofNIg?

(c) The supernova shines with a luminosity ok2(® L, for about two months. Estimate the total
energy in form of photons.

(d) Which particles carry away most of the energy of the supega® Assuming an average energy of
5MeV of those particles, how many of them are created by arsopa?
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13.2 Neutrino luminosity by Si burning

13.3

Silicon burning forms iron out of silicon. Assume that 5 Me¥emergy are liberated by creating one
56Fe nucleus from silicon, and that the final result of this imgrs an iron core of about ®,. Silicon

burning only lasts about one day, as most of the liberatedygrie converted into neutrinos (of about
5MeV each).

(@) Compare the corresponding neutrino luminosity to tfi@uwpernova 1987A, which can be well
approximated by the calculations in Exercise 13.1.

(b) Now, knowing that this supernova was 50 kpc away, anddbaut 10 neutrinos were detected

during one second: how close does the silicon burning star teebe, such that we can detect the
neutrino emission?

Carbon ignition in a white dwarf

When a white dwarf approaches the Chandrasekhar mass, ttalcgensity exceeds 2 10° g/cn?®,
carbon is ignited under degenerate conditions which wiitkjy burn the whole white dwarf to iron-
group elements (mainly®Ni). Compare the energy liberated by nuclear fusion to trevitational
binding energy of the white dwarf. What will be the outcomeglhe masses 6fC, 150 and®®Ni

nuclei in Table 6.1, and assume that the white dwarf is coegbag equal mass fractions &C and
160_)
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