
 
Lecture  7 – Part 1 

Sources of Stellar Opacity 
 
 Although the theory of stellar opacity is complex in detail, the end results are 
easily summarized, with important consequences for the macroscopic properties of stars.  
The electron scattering contribution to the frequency-dependent opacity reads 
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where n

e
 is the number density of free electrons. At temperatures higher than a few tens 

of million K, stellar interiors are virtually completely ionized, and electron scattering is 
the dominant opacity source.  The Rosseland mean then behaves as !  = constant. 
 
Kramers Law 
 
 At temperatures lower than a few times 107 K, the important thermal processes of 
emission and absorption are due to free-free, bound-free, and bound-bound transitions.  
Free-free radiation is the name astronomers give to the bremsstrahlung mechanism, when 
an electron in the presence of an ion makes a transition from one free (ionized) state to 
another free state.  (Electron-electron scattering yields no radiation because the two 
electrons move in opposite ways as to cancel any wave contribution to the electric field – 
two free electrons have no dipole moment). In the absorption counterpart of the emission 
process, the electron makes a transition from a positive-energy state to a higher positive-
energy state, absorbing a photon from the continuum of the radiation field (Figure 7.1). 

When free-free or bound-free processes dominate, Henrik Kramers (1894-1952) 
showed that the Rosseland mean opacity follows what is now known as Kramers law: 
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where C is a constant that depends on chemical composition.  The dependence on density 
to the first power arises because the product !"  must be proportional to 2!  in radiation 
processes that involve the participation of two material particles (e.g., an electron and an 
ion).   The dependence on T !7 /2  means that, at a given density, free-free radiation loses 
importance relative to electron scattering at high temperatures. 
 
Figure 7.1.  Free-free absorption of radiation boosts the orbit of a free electron from a 
lower-energy state (dashed path) to a higher-energy state (solid path). 
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Derivation of Kramers Law for Free-Free Radiation 
 

The time spent in the encounter of an electron and an ion in which the electron 
experiences significant acceleration can be shown in many astrophysical contexts to be 
short in comparison with the wave period of the radiation from the resulting 
brehmsstrahlung process (see Chapter 15 of Shu, Radiation).  As a consequence, the 
electron experiences a sharp impulse of acceleration, whose Fourier decomposition leads 
to a flat spectrum of emitted radiation as a function of frequency .!   (Recall that a Dirac 
delta function in time has a Fourier transform in frequency which is a constant.)  
However, physically, the emitted energy carried away by any photon !h  from any 
electron cannot exceed its total initial kinetic energy ! , since the maximum that can be 
emitted (and still have the electron in a free state) is that which brings the electron to rest 
at infinity with respect to the ion.  In a thermal distribution, the number of electrons that 
have kinetic energy !  is proportional to the Boltzmann factor )./exp( kT!"   As a 
consequence, the volume emissivity of free-free radiation must have a frequency 
dependence proportional to )./exp( kTh!"   For technical reasons, there is an additional 
temperature dependence of 2/1!

T , and since the basic process involves a two-body 
encounter between electron and ion, the volumetric rate must further be proportional to 
the product of the electron and ion number densities, 
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where we recognize the term in the square bracket as the LTE correction for stimulated 
emission.   
 A more exact calculation for the frequency-dependent free-free opacity, corrected 
for stimulated emission, yields equation (15.29) of Shu, Radiation: 
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where  g

ff
(!)  is a quantum-mechanical correction called the Gaunt factor that varies 

slowly with !  and is of order unity for most h! / kT  of practical interest.  (This 
statement is not true for applications in radio astronomy; see Problem Set 4 of Shu,  
Radiation).  The expression (7.3) clearly depends on the chemical composition; however, 
until hydrogen and helium are exhausted, the primary contribution to the free-free opacity 
comes from these two, relatively invariant species, as long as we are in deep enough 
layers where both hydrogen and helium exist in ionized form.  

If the free-free contribution were all that existed, the Rosseland 



mean opacity would be given by 
 

 ! !
" "

#
$

#
$

0 0 3

722/7

3/

7/2

2/9
,

]1[]1[

11
x

x

kTh

kTh

e

dxxeT

e

de

T %
&&

%' &

&

 

 
where the last integral is just a numerical constant equal to 4! 4

/ 15  times Strömgren’s 
function !(x)  evaluated at x equal to infinity, !(") # 196.  
A numerical fit in cgs units when ionized hydrogen and helium,  with mass fractions, 
respectively, of X and Y, provide the main scatterers of free electrons, yields Kramers’ 
law in the form: 
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Bound-Free Opacity 
 
 In the bound-free (photo-ionization) process, the absorption of a continuum 
photon of sufficient energy ejects a bound electron from an incompletely ionized atom 
into a free state, with the difference in energy !h of the photon and the ionization 
potential I going into the excess kinetic energy 2/v

2

e
m of the freed electron (Figure 7.2).  

The cross-section for the bound-free process is zero below threshold, i.e., for photon 
energies lower than I; it generally reaches a maximum value at the ionization edge; and it 
declines typically as !"3  at higher frequencies (Figure 7.3).  In a hydrogenic atom of  
 
Figure 7.2.  Bound-free absorption. 
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Figure 7.3.   Schematic plot of frequency dependence of typical photo-ionization cross-
section. 
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nuclear charge Z and one bound electron in a level with principal quantum number n, the 
photo-ionization cross-section reads (Chapter 23 of Shu, Radiation): 
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where g

bf
(!)  is a slowly-varying, order-unity, bound-free Gaunt factor. 

 The total contribution to the frequency-dependent bound-free cross-section then 
reads 
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The ionization edges prevent the frequency-integrated Rosseland-mean associated with 
bound-free transitions from behaving exactly as T !7 /2

.  However, these frequency edges 
occur at higher values for partially-ionized elements of effective nuclear charge Zi, and 
the cosmic abundance of high-Z elements is lower, typically, than for low-Z elements.  A 
coincidence then occurs where the net behavior of !"# (bf)  is similar, except for minor 
bumps, to !"# (ff).   This results in a net temperature dependence that still goes as T !7 /2

.  
One might think that the density dependence of  bound-free transitions in !" is 

linear rather than quadratic in  ! .  In fact, the primary contributions come from heavy 
ions with only one bound electron that has number density n

Z
i

, where most of the 
corresponding element of atomic number Z , atomic weight A, and fractional abundance 



by mass X
Z

 is completely ionized with number density n
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, is also proportional to !  
(see Part 2 of this Lecture).  

Thus, !
"
(bf)  contributes approximately the same density and temperature 

dependence to the Rosseland mean !
R

 as !
"
(ff).   A rough numerical fit for the 

Rosseland mean of the bound-free opacity of an elemental mix scaled to the solar 
composition is 

 

! R (bf) = 3"10
25

(1# X #Y ) 1+ X +
3

4
Y

$
%&

'
()
*T #7 /2

.     (7.6) 

 
We recognize the factor (1-X-Y)  as the mass fraction of elements heavier than hydrogen 
and helium, which is taken to be completely ionized in stellar interiors with mass 
fractions, respectively of X and Y.  The factor (1+X+3Y/4) comes from the abundance of 
free electrons under these circumstances (see Problem Set 2). 

A comparison of equations (7.4) and (7.6) shows that the larger peak cross-
sections of bound-free processes imply that bound-free transitions typically dominate 
free-free transitions as long as heavy-element abundances exceed about 10!3  by mass, as 
true for a Population I star, but not an extreme Population II or a hypothetical Population 
III star.  Thus, when one speaks of a Kramers law of the form of equation (7.2), one 
generally has in mind a mixture of bound-free and free-free processes. 

 
Bound-Bound Opacity 
 

The bound-bound process involves the absorption of a line photon which causes 
an electron in an incompletely ionized atom to make an upward transition from a lower 
atomic energy-level to a higher atomic energy-level.  The bound-bound process involves 
the absorption of a line photon which causes an electron in an incompletely ionized atom 
to make an upward transition from a lower atomic energy-level to a higher atomic 
energy-level.  Since bound-bound (bb) absorption involves a narrow band of frequencies 
surrounding a discrete value and since there are a relatively limited number of 
incompletely ionized states of atomic species in the deep interiors of stars, their 
contribution to the total opacity is usually less important than those from electron 
scattering (es) and the free-free (ff) and bound-free (bf) processes.   For this reason, we 
shall generally disregard this contribution to the total opacity for stellar interiors work 
(but not for stellar atmospheres).  Nevertheless, one of the recent major contributions of 
the OPACITY project in the revision of opacities in the solar envelope was the 
meticulous calculation of the contribution of bound-bound transitions from all the 
important elements in the periodic table. 

 
Opacity Due to H- 
 
 When the temperatures drops below about 54

1010 !  K, hydrogen and helium 



recombine into neutral atoms (helium before hydrogen), and the free electrons necessary 
to produce free-free absorption largely drop out of the matter mix.  The bound-free 
contributions from more easily ionized, neutral, heavy atoms are offset by the fact that an 
exponentially small number of photons are available to produce the photo-ionization in a 
Planck function when the temperature T is low.  Thus, the Sun’s surface layers have no 
obviously important sources of opacity, yet when we try to peer into the deeper layers of 
the Sun from the outside, we quickly encounter an opaque yellow ball with a color 
temperature (characterizing the quality of radiation) close to the effective temperature of 
5800 K(characterizing the quantity of radiation).  The near equality of color and effective 
temperatures yields an astronomical puzzle as to what provides the opacity in the outer 
layers (the photosphere) of the Sun.  Until the 1940s, astronomers had no answer to this 
question, i.e., no one had a fundamental explanation for why the Sun was yellow. 
 Rupert Wildt (1905-1976) provided the correct suggestion in 1939, and a few 
years later, Subrahmanyan Chandrasekhar (1910-1995) performed the crucial quantum-
mechanical calculations that justified Wildt’s suggestion.  Wildt proposed that the opacity 
in the photosphere of the Sun, and other relatively cool stars, was supplied by the !

H  ion 
(see below).  In some sense, the neutral hydrogen atom is both an alkali metal and a 
halogen in that it both likes to give up its valence electron (to become )H +  and add a 
valence electron (to become !

H ).  The importance of this realization is that !
H  as a two-

electron system contains exactly one bound state and an infinity of “ionized” states (a 
free electron moving in the weakly attractive potential of a neutral hydrogen atom whose 
electronic configuration is polarized by the presence of the extra electron).  The bound 
state is separated from the ionized states (H + !

e ) by an ionization potential of only 
0.754 eV, which means that optical photons in the photosphere of the Sun are readily 
capable of ionizing !

H , thereby producing a non-negligible contribution to the bound-
free opacity.  Moreover, the negative ion !

H  itself can act as a partner to other free 
electrons to provide an unusual kind of free-free opacity. 

 



 The bound-free and free-free contributions of !
H  do not lead to the usual 

Kramers law, equation (7.2), because the !
H  abundance in the solar photosphere is 

highly sensitive to other considerations.  When the temperature drops below about ,10
4
K  

the opacity curve (for given density) reaches a peak (with the partial ionization of atomic 
hydrogen) and then declines as a very steep function of decreasing temperature (as the 
opacity due to !

H  takes over as the main source of continuum opacity).  The steep 
functional dependence on temperature arises because the free electrons that are needed in 

!
H  combine with atomic H in the chemical reaction, 
 
 !

H  = H + e !                                                
 
are supplied by the ionization of trace specifies like sodium (Na) or potassium (K), which 
have low enough ionization potentials to be ionized by the non-energetic radiation field 
of the surface of the Sun.  This means that the abundances of !

H  and free electrons 
decrease rapidly for decreasing temperatures T.  

To compute the abundance of H-, We assume the concentration of all relevant 
species to be in LTE.  General principles of chemistry then require the number densities 
of atomic hydrogen (the dominant constituent in the solar atmosphere), free electrons, 
and the !

H  ion to satisfy the law of mass action: 
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where K1(T) is the chemical “constant” of the reaction.  Part 2 of Lecture 7 gives 
Meghnad Saha’s derivation of the expression for K1(T) for general ionization equilibria 
involving ideal gases.  Here we only wish to note that free electrons at the relatively low 
temperatures of the solar atmosphere are quite rare.  They mostly come from the 
ionization of t trace specifies like sodium (Na) or potassium (K) that have very low 
ionization potentials.  In turn, the ionization equilibrium of such metals, M+ + =

!
e  M, 

satisfies its own law of mass action: 
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If we suppose for simplicity that the ionization of M is the only source of free electrons, 
then charge neutrality requires .+=

Me
nn   Keeping track only the temperature 

dependences, we obtain for the free-free opacity due to !
H : 
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The factor )()( 21 TKTK gives the right-hand side of equation (7.7) a very steep 
(increasing) functional dependence on temperature T.  
 



Total Opacity 
 
In Lecture 5, we recounted how the Norwegian astronomer Svein Rosseland 

(1894-1985) showed how to combine and average all the contributions to obtain a mean 
value of the opacity that is appropriate for the problem of radiative transfer in stellar 
interiors.  Figure 7.4 gives a schematic drawing of the net result when we take the 
Rosseland mean (5.28) of the sum of the individual contributions (5.27) from electron 
scattering, free-free absorption, bound-free absorption, and bound-bound transitions. 
 At high temperatures the expression (7.3) decreases relative to the expression 
(7.1).  If there is not a compensating increase in the density, electron scattering becomes 
dominant over other forms of stellar opacity when the temperature in stellar interiors 
much exceeds about 2 !107  K (as they do in stars appreciably more massive than the 
Sun).  In the Sun, the change in temperature more than compensates for the change in 
density, and the opacity increases slowly as we move outwards from the center.  This 
trend does not continue right to the surface, since realistic opacities cannot physically 
diverge as T → 0.  Thus, as the stellar gas becomes predominantly neutral, equation (7.4) 
obtains contributions only from those species that are still capable of free-free and bound-
free transitions in the low photon-energy environment that characterizes cool stellar 
photospheres.  In practice, this means H- , whose abundance is highly sensitive, as 
explained in the previous section, to the exact value of the ambient temperature.  This 
sensitivity gives the precipitous decline of !  at low T apparent in Figure 7.4.  An 
illuminating plot of the Rosseland opacity that shows both the density and temperature 
dependence appears in Chapter 3.3  in the textbook by Clayton. 
 
Figure 7.4.  Schematic plot of !log  versus Tlog  for fixed .!   Recall that power laws 
appear as straight lines in a log-log plot. 
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