ASTRONOMY 220C

ADVANCED STAGES OF STELLAR EVOLUTION
AND NUCLEOSYNTHESIS

Spring, 2015



This is a one quarter course dealing chiefly with:

Nuclear astrophysics and the relevant nuclear physics

The evolution of massive stars - especially their advanced stages
Nucleosynthesis — the origin of each isotope in nature
Supernovae of all types

First stars, ultraluminous supernovae, subluminous supernovae
Stellar mass high energy transients - gamma-ray bursts, novae,
and x-ray bursts.
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Our study of supernovae will be extensive and will cover not only
the mechanisms currently thought responsible for their explosion,
but also their nucleosynthesis, mixing, spectra, compact remnants
and light curves, the latter having implications for cosmology.

The student is expected to be familiar with the material presented in
Ay 220A, a required course in the UCSC graduate program, and thus
to already know the essentials of stellar evolution, as well as basic
gquantum mechanics and statistical mechanics.



The course material is extracted from a variety of sources, much
of it the results of local research. It is not contained, in total, in
any one or several books. The powerpoint slides are on the web, but
you will need to come to class. A useful textbook, especially for
material early in the course, is Clayton’s, Principles of Stellar Evolution
and Nucleosynthesis. Also of some use are Arnett’ s Supernovae and
Nucleosynthesis (Princeton) and Kippenhahn and Weigert' s Stellar
Evolution and Nucleosynthesis (Springer Verlag).

Course performance will be based upon four graded homework sets
and an in-class final examination.

The anticipated class material is given, in outline form, in the
following few slides, but you can expect some alterations as we go
along. The course will begin with material that is more “classical”
in nature, especially some basics of nuclear reaction theory. By mid-
quarter however, we should advance to more current, and consequently
less certain results and challenges.
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Author . Comments
price
Good overall introduction to
.R. Stellar Structure Free :
: . stellar evolution at the upper
Pols and Evolution (on line) .
division undergraduate level.
Kippenhahn and Stellar Structure $88.67 Great “introductory” textbook
Weigert and Evolution (hardcover) (more for 220A though)
Good on things Arnett has
: $35.92 worked on. Abundances, reaction
David Supernovae and : )
. (used rates peripherally. Massive star
Arnett Nucleosynthesis :
paperback)  evolution and supernova models
very good, but somewhat dated
_ A classic. Great on nuclear
Don Princip les. of Stellar $40.85 physics and basic stellar physics.
Evolution and :
Clayton Nucl hesi (paperback)  Good on the s-process, but quite
HCTCOSYTIRESTS dated otherwise. Buy it.




Abundances Now and Then
What, where, and how?
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Nuclear Physics

Stable nuclei
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Number of Protons

Liquid drop model

Shell model

non-resonant reactions
resonant reactions

neutron star . . . .

processes semi—emirical estimates

- individual stellar cross sections
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Number of Neutrons

Typical nuclear data deck for stellar nucleosynthesis (BDAT) includes
9442 nuclei and 105,000 reactions (plus their inverses). Fortunately not all are
equally important. Most (non-r-process) studies use about 1/3 of this.



Stellar Evolution

And the codes to
study it all with:

10 to 120 M,

(no neutrino wind)

Yields averaged over a Salpeter (I" = 1.35)
_ Go initial mass function.
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AGB stars + r-process
not included here

Responsible for producing the
elements 4 <7 <39
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Mesa stellar evolutionary code (open source)
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Kepler — 1D Implicit Hydrodynamics
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Supernovae

All types:

la, Ib, Ic, Il p, Il L, Il L-n,
BL SN Ic, | ap, etc.

And Models

Exploding white dwarfs
Chandrasekhar
sub-Chandrasekhar
Merging WDs

Massive star (gravity powered)

Neutrino transport
Magnetar powered

Massive star (thermonuclear)
Pulsational Pair
Pair

GR unstable

Colliding shells



1. Introduction and overview — course overview. General principles
of stellar evolution — temperature-density scalings, critical
masses, entropy, abundances in the cosmos, some simple
aspects of Galactic chemical evolution.
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2. Abundances — Abundances in the sun and meteorites. Abundances
in other stars, especially low metallicity stars. Abundance evolutionary
trends. Some aspects of galactic chemical evolution
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3) Nuclear Physics - 1- The nuclear force. Physics of the atomic nucleus.

Binding energy. The liquid drop model.
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4) Nuclear physics —2 The shell model
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5) Nuclear Physics — Nuclear reaction theory. Astrophysical reaction
rates. Resonant and non-resonant rates
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6) Fundamental nuclear cross sections — Some key rates for astrophysics.
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7 and 8) The evolution of massive stars on the main sequence and
as red giants — general properties of massive stars, convection,
semi-convection, mass loss, rotation, nucleosynthesis, metallicity
dependence, Wolf-Rayet stars.
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Hot hydrogen burning — classical novae and x-ray bursts on neutron stars
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10. The s-process — Helium burning and the s-process
Relevant nuclear physics, abundance systematics, solving
the rate equations, occurrence in massive stars and AGB stars

production factor (ejecto)
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11) Neutrino losses and the advanced burning stages in massive stars —
Thermal neutrino losses, nuclear physics of carbon, neon, oxygen
and silicon burning. Concepts of balanced power and nuclear
quasi-equilibrium.
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12) Advanced evolution of model stars in the 8 to 100 solar
mass range — Silicon burning, quasiequilibrium, nuclear
statistical equilibrium. Onset of core collapse




13) Presupernova models, core collapse and bounce -
Current models in 1, 2 and3D. Limits of the mechanism.
Role of rotation and magnetic fields.
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14) Explosion and mixing — Observation and physics.
Fall back. Neutron star and black hole birth.
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15) Explosive nucleosynthesis and the r-Process — General properties.
Products and uncertainties. Possible sites. The neutrino powered wind.

Yields averaged over a Salpeter (I' = 1.35)5

10 to 120 M,

(no neutrino wind)

initial mass function.
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Magnitude

16) Observational aspects of core-collapse supernovae
- spectra and light curves. Neutrino signal. Gamma-ray
line astronomy. Shock break out.
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17) Type la supernovae — Models and how they explode.
Chandrasekhar mass models, sub-Chandrasekhar mass models,
Merging white dwarfs
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18) Type la supernovae — More models, light curves, nucleosynthesis, and spectra.
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19) Population III Stars — Evolution, pair instability and pulsational
pair instability supernovae, formation and stability of Pop III stars,
nucleosynthesis, light curves. Black hole remnants. Ultra iron poor stars.

First generation stars may have formed
with higher masses and almost certainly

died with higher masses.

Central temperature (10° K)

time to collapse (10* s)

U.Ub pC

Starting at ~80 solar masses
(31 solar mass helium core) the
pulsational pair instability sets in.






20) . Magnetar-powered supernovae, ultraluminous supernovae,
and gamma-ray bursts —

2704 BATSE Gamma-Ray Bursts

Observations

Models: Collapsars
and magnetars






