Lecture 1

Overview
Time Scales, Temperature-density
Scalings, Critical Masses



l. Preliminaries

The life of any star is a continual struggle between

the force of gravity, seeking to reduce the star to a point,
and pressure, which holds it up. Stars are gravitationally
confined thermonuclear reactors.

So long as they remain non-degenerate and have not
encountered the pair instability, overheating leads to
expansion and cooling. Cooling, on the other hand, leads

to contraction and heating. Hence stars are generally stable.
The Virial Theorem works.

But, since ideal gas pressure depends on temperature, stars
must remain hot. By being hot, they are compelled to radiate.
In order to replenish the energy lost to radiation, stars must

either contract or obtain energy from nuclear reactions. Since
nuclear reactions change their composition, stars must evolve.



The Virial Theorm implies that if a star is neither too

degenerate nor too relativistic (radiation or pair dominated)
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That is as stars of ideal gas contract, they get hotter and since
a given fuel (H, He, C etc) burns at about the same temperature,
more massive stars will burn their fuels at lower density, i.e.,

higher entropy.
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Four important time scales for a (non-rotating) star to adjust its
structure can be noted. The shortest by far is the time required
to approach and maintain hydrostatic equilibrium. Stars not in
a state of dynamical implosion or explosion maintain a balance
between pressure and gravity on a few sound crossing times.
The sound crossing time is typically comparable to the free fall

time scale.
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So the escape speed and the sound speed in the deep interior
are comparable




The free fall time scale is ~R/v, . so
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The number out front depends upon how the
time scale is evaluated. The e-folding time for the
density is 1/3 of this
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which is often used by the nuclear astrophysicist



The second relevant adjustment time, moving up In

scale, is the thermal time scale given either by radiative
diffusion, appropriately modified for convection.

This is the time it takes for a star to come into and

maintain thermal steady state, e.g., for the energy generated
in the interior to balance that emitted in the form of radiation
at the surface.

R? nb. Th_ese two tim_e s_cales, Tup ANd Tyem
B = sometimes place limits on the accuracy
Dy with which jobs run in one code can

be remapped into another (e.g., 1D -> 3D).
Ty can also be important



The thermal diffusion coefficient (also called the thermal
diffusivity) 1s defined as
D= ( conductivity j _ K
heat capacity C.p
where K appears in Fourier's equation
heat flow =-K VT

For radiative diffusion the "conductivity", K, is given by

3
K = dacl (see Clayton 3-12)
3kp
where K is the opacity (cm” g™'), thus
3
D= 4a cT :
3xC,p

where C, is the heat capacity (erg g™ K™)

D here thus has units cm? s~
Note that

D ~ C aT* [ ¢ || radiation energy content
kp )\ pC,T Kp total heat content

J



If radiation energy density is a substantial fraction of the internal
energy (not true in the usual case), D ~ ¢/kp with k the opacity,

and taking advantage of the fact that in massive stars electron scattering

dominates so that k =0.2 to 0.4 cm” g_l, the thermal time scale then
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scales like
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however, massive stars have convective cores so the

thermal time 1s generally governed by the diffusion
time in their outer layers. Since the dimensions are still
(several) solar radii while the densities are less and the

opacity about the same, the radiative time scales are somewhat

less than the sun ( ~ 10° yr; Mitalas and Sills, ApJ, 401, 759 (1992)).



Possible point of confusion. The radiative diffusion time
vs the thermal time. The former is the time for a photon

to diffuse out ) R? ) R

Trad g C C
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The latter is the time for an appreciable fraction of the
heat content to diffuse out. It is longer if most of the
heat is in the ions, not the radiation

_ total thermal energy in star
thermal —“rad | - radjation content of star

In the sun these differ by a factor of about 100 and the
thermal time is of order the Kelvin Helmholtz time
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In general a diffusion coefficient is given by

1
D~—vl
3

where v 1s a typical speed (light or a convective
element) and [ 1s a characteristic length scale (mean

free path or pressure scale height)



A closely related time scale 1s the Kelvin Helmholtz time scale

NGMZ M3l
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Except for very massive stars, L. on the main sequance

1s proportional to M to roughly the power 2 to 4, and p decreases
with M so the Kelvin Helmholtz time scale 1s shorter for more
massive stars. Note that there are numerous Kelvin

Helmholtz time scales for massive stars since they

typically go through six stages of nuclear burning.

During the stages after helium burning, L. in the heavy

element core 1s given by pair neutrino emission and the

Kelvin Helmhotz time scale becomes quite short - e.g.

a protoneutron star evolves in a few seconds.



Finally, there is the nuclear time,

.

Thuc — By

where X is the mass fraction of the chief
combustible fuel.

Usually, 7qp < Tthermal < TKH < Tnuc.
During the late stages of massive stellar evo-

lution, however, the inequality Tihermal <
Tnue actually begins to break down. During
“explosive nucleosynthesis” in a supernova,
there is near equality between ¢ and 7g p.

The life of a (non-degenerate) star is then
typically a series of nuclear burning stages
separated by periods of Kelvin-Helmholtz

contraction. Hydrostatic equilibrium is main-

tained throughout the interior and thermal
steady state is maintained if Ty} o 18 short
enough.

e.g., the sun is in thermal
steady state. A presupernova
star is not.
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Advanced Nuclear Burning Stages

(e.g., 20 solar masses)

Fuel Main Secondary Temp Time
Product Products (10° K) (yr)
/ N 0.02 107
C,0 130,*Ne 0.2 10°
/ / S- process
C Ne, Mg Na 0.8 10°
/ 0, Mg Al P 1.5 3
O - Si, S Cl, Ar 2.0 0.8
/ K, Ca
Fe T1, V, Cr 3.5 1 week

Mn, Co, Ni




Final composition of a 25 M,, star:
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25 M Presupernova Star (typical for 9 - 130 M)
1400 R | 05R
©)

240,000 L

S1, S, Ar, Ca
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Examples of Time Scales

® In stellar explosions, the relevant time scale is the hydrodynamic
one.

® Explosive nucleosynthesis happens when t,;, ~ 7

nuc

® During the first stages of stellar evolution 7, <7t
occurs on a Kelvin Helmholtz time

w« The evolution

n

® In a massive presupernova star in its outer layers, 7. < Tyerma- 1N€
outer layers are not in thermal equilibrium with the interior. It also
happens in these same stars that 7. (core) <7, (envelope). The
core evolves like a separate star.

nuc

® Rotation and accretion can add additional time scales. E.g. Eddington
Sweet vs nuclear. Accretion vs nuclear. Convection also has its own
time scale.



Central Conditions for Polytropes

So long as a star is in hydrostatic equilib-
rium, it satisfies

P GM(1)p(r)
_GM@)plr),

dr r
If the density is assumed to be constant, and hence
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More generally, for a polytrope of index n,
P o p'; v = (n+ 1)/n, see e.g., Clayton, Eq. 2-313
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where (; is the Emden constant given, e.g.,

in Table 2.5 of Clayton.
From this it follows that

P M

= 47 GP ( )
pe ¢
where ¢ is a constant given by solution of
the polytropic equation for index n,

¢ = (n+1)%% (;l]g) C
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n=0 ¢ = 4.8088 =+24
n=3 ¢ = 16.145
n=3/2 ¢=10.73

Now, if P is Pgea (NR, ND, ionized),

N pk
Pgeal = T pT

where p is the mean molecular weight

Aside: Abundance nomenclature

In general the mass fraction of a species
“i” is X;. The number density of 7 is then

Xi
A;
with A; the atomic mass number (integer)
of isotope ¢ and N4, Avogadro’s number,
6.02205 x 1023 particles/mole, or approxi-
mately the reciprocal mass of the nucleon in

grams.

n; = pNa

most stars have
1.5<n<3



In this class we will extensively use the
notation

where Y is like a dimensionless number den-
sity

.
Y; = 4
" pNy

Similarly we can define an electron abun-
dance variable
Ne

- pNy

The total gas pressure for an ideal, non-

Ye

relativistic, non-degeneratelionized/ gas is then

Pgeal = pNAKT [2Y; + Ye|

which implies

p=[CY;+ Y]

Also the mean atomic weight, A, is given

Actually the dimensions
of Y are Mole/gm and

N, has dimensions

particles per Mole.
P=xnkT = N4k op
U



Yy nZAZ B pNA ¥ }/ZAZ B ) XZ Xiz mass fraction

A= n INAYY, -y Y, of species “p’
=(=Y)~
Similarly
VoS ZV, pN,Y.=n = Zn
and = PN, ZZ"Y"
u=(2(1+Zi)§/Z_)—1’ 0.5<u<?

Some examples:
P (The limit u=2 is

achieved as A goes to
infinity and Z = A/2,
i.e. electrons dominate)

a) Pure hydrogen:

_ 1
p=(1+1) 1=5
Fldeal = 2pNAKT
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b) 75% H, 25% He:

) 25\ !
A= (0.75 + ﬁ)

1
=1.23

0.25
= 0.875

0.25,1™

p=(1+1)075) + (1+2)(=)

= (0.5926

Pgeal = 1.69 pNgKT

As an exercise to the reader, for pure he-
lium, A =4, Y, = 050, p = 4/3, and
Peal = 0.75pNAKT . For a mixture of 50%
2C and 50% 100, A = 13.71, Yo = 0.50
(as it always does for a gas of isotopes hav-
ing neutron number = proton number), u



c

TC
<P

1.1. TEMPERATURE-DENSITY SCALINGS: 13

= 1.745, and P,jeq = 0.573pN4ET, (0.50
from e7; 0.073 for ions).

Back to the main discussion:

7
—< oM
Pe
thus implies for an ideal gas equation of state
T3

Pe

Therefore, for a given temperature, as might
be necessary to burn a given fuel, for exam-
ple, the central density will be lower for a
star of higher mass. And, in fact, for a given
constant mass and composition, so long as
the star closely resembles a single polytrope,
and the pressure remains ideal, the central
density will scale as

3
T.
Pe X <_(> T
I c

For advanced stages of
evolution where A > 1, most
of the pressure is due to the

electrons (and radiation)

) 3 This would suggest that the
— x M*p ratio would increase as the
star evolved and 1 became greater.

1/3

< 1P,



log Central T [K]

10

N |||||h||||||||
The decline of T3/p mostly reflects the fact

— that beyond H burning the star becomes

a red giant and no longer is a single polytrope.

M

compensates for the increase in u. A decreasing
B also decreases T>/p. In the final
stages degeneracy becomes important.

core

is essentially reduced. This more than

/7
Msdn

7’
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Since p increases as the fuel burns to heavier
ashes, the relation p o< T3 works pretty well
at the stars center but tends to be an over-
estimate. The onset of degeneracy or near
relativistic motion of the electrons at high
temperature can also cause deviations.
Now, especially for massive stars, the ra-
diation pressure will not be negligible. One
traditionally defines a quantity

Pideal + Prad L
Piot = Pdeal/
Then P3/p% oc M?,  implies
T_g o M2 ,33 ;U'3 |
Pc
that is, so long as beta doesn’t change much,
one gets the same relation as before.

‘[)) — Pidca,l _ })ideal

Decrease inf as star evolves
acts to suppress T3/p.



CRITICAL MASSES

Dropping, for now, the explicit dependence
on i and 3, a contracting protostar of con-
stant mass, or the contracting core of a mas-
sive star in between burning stages, so long
as that core has an approximately constant
polytropic index, will obey T, o< p(l;/ S M2/3,
Contraction leads to heating. The greater
weight of the more compact configuration
requires more pressure to hold it up and the
pressure rises by increasing both T and p. A
plot of log T, vs. log p. gives a straight line
with an upward slope of 1/3. Lines for larger
mass will lie above those for lower mass. As
the density grows ever higher, three possibil-
ities emerge: a) collapse to a black hole; b) a
dynamical event of some sort (e.g., neutron
star formation) or c¢) the onset of degener-
acy. For now, we are most interested in c).

Ideal gas plus radiation
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A completely degenerate gas can be char-
acterized by an equation of state of the form
Pyeg = K5(pYe)” with 7 between 4/3 and
5/3.

The case v = 4/3 has a well known sin-
gularity. For an n = 3 polytrope, which is
appropriate here,

4
P3 4 M \? /3p(.Y note cancellation
P(» 16.14 p(: of p,
207453, \
M= — y:

K4/3 = 1.244 x 10" dyne cm 2

=145M_ if Y, =0.50

Mﬁ =5.80 Y2 neglecting Coulomb corrections
©

if they are included.

and relativistic corrections. 1.39 M o



For lower densities and hence degenerate cores
significantly less than the Chandrasekhar mass
non-relativistic degeneracy pressure gives another

solution (y = 5/3)

, 2
P—.3 — 47 G3 (i)

pi 10.73
A GBS M?
e = K3 3 Y2(10.73)2

—4.05 x 10 0-5 (M : m 3
= N o C
7 Y.) \M,) °

This implies, for each mass, a stable perma-
nent configuration of fixed p. independent

of T..

This is the well known central density mass relation for
(non-relativistic) white dwarfs



Specifying a core mass gives a maximum temperature
achieved before degeneracy supports the star. If that maximum
temperature exceeds a critical value, burning ign/ites

Tdeal /
A // D‘-ﬁfm“a}.c
M, >M, //
M <M, ~ Toran )
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Critical Temperatures

Fuel Main Secondary Temp Time
Product Products (10° K) (yr)
/ N 0.02 107
C,0 130,*Ne 0.2 10°
/ / S- process
C Ne, Mg Na 0.8 10°
/ 0, Mg Al P 1.5 3
O - Si, S Cl, Ar 2.0 0.8
/ K, Ca
Fe T1, V, Cr 3.5 1 week
Mn, Co, Ni

1




These calculations give critical masses:

C ~1.0
Ne ~1.25
O 1.39
Si 1.39

More detailed and physical calculations ex-
ist in the literature, see especially Nomoto
and Hashimoto (1986). The following should
be regarded as standard

Fuel Min. Mass

He 0.25
C 1.06
Ne 1.37
O 1.39
Si 1.39

These are core masses. The corresponding

main sequence masses are larger.

All stars with main sequence mass
above the Chandrasekhar
mass could in principle go on to
burn Si. In fact, that never
happens below 9 solar masses.
Stars develop a red
giant structure with a low density
surrounding a compact core.
The convective envelope
“dredges up " helium core
material and causes it to shrink.
Only for stars above about 7
or 8 solar masses does the He
core stay greater than the
Chandrasekhar mass after
helium burning.



Main Sequence Critical Masses
0.08 M, Lower limit for hydrogen ignition

045 M, helium ignition

725 M, carbon ignition

900 M, neon, oxygen, silicon ignition (off center)
105 M, ignite all stages at the stellar center

~80 M, First encounter the pair instability (neglecting mass loss)

~35 M, Lose envelope if solar metallicity star

These are for models calculated with the KELER code
including semiconvection and convective overshoot mixing
but ignoring rotation. With rotation the numbers may be
shifted to slightly lower values. Low metallicity may raise the
numbers slightly since less initial He means a smaller

helium core. Other codes give different results typically

to within 1 solar mass.



Between 7.25 and 10.5 solar masses the evolution
can be quite complicated and code dependent
owing to the combined effects of degeneracy and
neutrino losses. Off-center ignition is the norm for
the post-carbon burning stages.

Mass loss introduces additional uncertainty, especially
with regard to final outcome. Does a 8.5 solar mass
main sequence star produce a NeO white dwarf

or an electron-capture supernova (TBD).

Above 9 solar masses an iron core eventually
forms — on up to the pair instability limit — around 150
solar masses.
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The death of a star and how it may potentially
explode is also very sensitive to:

® The density structure surrounding the
iron core

® The rotation rate of the core and that
material

The density structure depends on the entropy of presupernova
cores (TBD). Higher entropy cores occur for higher masses
and are less degenerate and less centrally condensed.



Density Profiles of Supernova Progenitor Cores
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Density Profiles of Supernova Progenitor Cores
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Sukhbold and Woosley (2015)
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Mass (solar End point Remnant
masses)

<7to~8 planetary nebula CO white dwarf

degenerate core Ne-O WD below 9?
~8 to ~11

low energy SN neutron star above 9
neutrino powered
supernova;
~11 - ~20 SN Ibc in binary. neutron stars and
Islands of explosion at black holes

higher mass

without mass loss
probably no SN (unless
20 -85 rotationally powered);
with mass loss SN Ibc

black hole

if enough mass loss
neutron star

pulsational pair SN

85-150 )
if low mass loss

black hole

pair instability SN

150 - 260 .
if low mass loss

none

pair induced collapse if
> 260 low black hole
mass loss



