
Lecture 12 
 

Advanced Stages of Stellar Evolution – II 
Silicon Burning and NSE  



     The solution of 
   reaction networks. 



Consider the reaction pair: 
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An explicit solution of the linearized equations would be
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In the usual case that the two species were not in equlibrium
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,  a large time step, Δt →∞, would lead to a 

divergent value for the change in Y, including negative values.

For large t, the  
answer could oscillate. 



 

On the other hand, forward or "implicit" differencing would give
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Add equations ⇒δY1= −δY2; substituting, one also has :
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(if 1/Δt >> λ, same as the explicit solution)

Even if  Δt →∞ the change in Y is finite and 
converges on the equilibrium value Y1λ1=Y2λ2

In general an  
n x n matrix 
n = 2 here 



Silicon Burning 

   Silicon burning proceeds in a way different from any nuclear process 
discussed so far. It is analogous, in ways, to neon burning in that it 
proceeds by photodisintegration and rearrangement, but it involves many 
more nuclei and is quite complex. 
 
   The reaction 28Si + 28Si  à (56Ni)* does not occur owing to the large  
Coulomb inhibition. Rather a portion of the silicon (and sulfur, argon, etc.) 
“melt” by photodisintegration reactions into a sea of neutrons, protons, and  
alpha-particles. These lighter constituents add onto the remaining silicon  
and heavier elements, gradually increasing the mean atomic weight until  
species in the iron group are most abundant. 



Initial Composition for Silicon Burning 

   The initial composition is mostly Si and S but which isotopes 
    depends on whether one is discussing the inner core or locations  
    farther out in the star. It is quite different for silicon core burning  
    in a presupernova star and the explosive variety of silicon burning  
    we will discuss later. 
 
   In the center of the star, one typically has, after oxygen burning, and 
a phase of electron capture that goes on between oxygen depletion and  
silicon ignition: 
 
             30Si, 34S, 38Ar and a lot of other less abundant nuclei 
 
Farther  outside of the core where silicon might burn explosively, one 
has species more characteristically with Z = N 
 
            28Si, 32S, 36Ar, 40Ca, etc. 
 
Historically, Si burning was discussed for a 28Si rich composition 



Neutron excess after  
oxygen core depletion 
in 15 and 25 solar mass 
stars. 
 
The inner core is becoming 
increasingly “neutronized”, 
especially the lower  
mass stars. 

15 

25 



Quasi-equilibrium 
   This term is used to describe a situation where groups of  
adjacent isotopes, but not all isotopes globally, have come into  
equilibrium with respect to the exchange of n, p, a, and g.  

   

   It begins in neon burning with  20Ne + γ 16O + α and
continues to characterize an increasing number of nuclei during
oxygen burning. In silicon burning, it becomes the rule
rather than the exception.
     A typical "quasiequilibrium cluster" might include the 
equilibrated reactions:

28Si 29Si 30Si 31P 32S 28Si
         n           n           p           p         α

By which one means    Y(28Si) Yn ρλnγ (28Si) ≈ Y(29Si) λγ n (29Si)

Y(30Si)Ynρλnγ (29Si) ≈Y(30Si)λγ n (30Si)

                                etc.



24 45 46 60 (at least)A A≤ ≤ ≤ ≤

Late during oxygen burning, many isolated clusters grow and merge 
until, at silicon ignition, there exist only two large QE groups 

Reactions below 24Mg, e.g., 20Ne(,)24Mg and 12C(,)16O are, in general, 
not in equilibrium with their inverses (exception, 16O(,)20Ne which 
has been in equilibrium since neon burning). 
 
Within the groups heavier than A = 24, except at the boundaries of the clusters, 
the abundance of any species is related to that of another by  
successive application of the Saha equation. 
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   The situation at the end of oxygen burning is that  
there are two large QE groups coupled by non-equilibrated 
links near A = 45. 

   Early during silicon burning these two groups merge  
and the only remaining non-equilibrated reactions are for 
A < 24. 

45A >

24 45A≤ ≤

The non-equilibrated link 
has to do with the double 
shell closure at Z = N = 20 



  

Y ( A Z ) = C( A Z ,ρ,T9 )Y (28 Si)Yα
δαYp

δ pYn
δ n

where δα = largest integer ≤ Z-14
2

δ n = N −14− 2δα

δ p = Z −14− 2δα e.g.,35 Cl 17 protons; 20 neutrons

δα =1 δ p = 1 δ n = 2
40K  19 protons  21 neutrons

δα = 2 δ p = 1 δ n = 3

Within that one group, which contains 28Si and the vast  
majority of the mass, one can evaluate any abundance  
relative to e.g., 28Si 

Need 6 parameters: Y, Yp, Yn and 
Y(28Si) plus T and , but … 
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where

                         Q =  BE(A Z ) − BE(28
Si) − δαBE(α )

i.e., the energy required to dissociate the nucleus AZ into 
28Si and     alpha particles. The binding energy of a neutron or 
proton is zero. 
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where 328.36  = BE(α )/kT

This reduces the number of independent variables to 5, but 
wait … 

Moreover there exist loops like: 
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   The cluster evolves at a rate given by 24Mg(,)20Ne 

   The photodisintegration of 24Mg 
provides a’s (and n’s and p’s since 
Ya =CaYn

2Yp
2) which add onto  

the QE group gradually increasing 
its mean atomic weight. As a  
result the intermediate mass group, 
Si-Ca gradually “melts” into the  
iron group. 

  
Y ( A Z ) = C( A Z ,ρ,T9 )Y (28 Si)Yα

δαYp
δ pYn

δ n
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The large QE cluster that includes nuclei from A = 24 through  
at least A = 60 contains most of the matter (20Ne, 16O, 12C, and  	

are all small), so we have the additional two constraints 

The first equation can be used to eliminate one more  
unknown, say Yp, and the second can be used to replace 
Yn  with an easier to use variable, . Thus 4 variables now  
specify the abundances of all nuclei heavier than magnesium .  
These are 
 
                        , T9, , and Y(28Si) 

mass conservation 
 
 
charge conservation 



Nature of the burning: 
    Lighter species melt away while the iron group grows 



But this assumes 28Si burns to 56Ni ( = 0.002 approximation) 



This is all a bit misleading because, except explosively 
(later), silicon burning does not produce 56Ni. There has  
been a lot of electron capture during oxygen burning and 
more happens in silicon burning. 

 

E.g., Si ignition in a 15 M


star      η
c
≈0.07 Y

e
≈ 0.46

        Si depletion ηc ≈0.13 Y
e
≈ 0.44

Under these conditions silicon burning produces 54Fe, 56Fe, 58Fe and

other neutron rich species in the iron group.

 Suppose 
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 30Si   → 56Fe

      qnuc  =  9.65 ×  1017 492.26( ) / 56− 255.62( ) / 30⎡⎣ ⎤⎦
             =  2.6 ×  1017  erg g-1  which is closer to correct for Si 

                 core burning  than 1.9 ×  1017  erg g−1

i.e., qnuc = 9.65×10
17 Xi

Ai
BE(Ai )∑



This is very like neon burning except that 7 alpha-particles 
are involved instead of one. 



Reaction rates governing the rate at which silicon burns: 

    Generally speaking, the most critical reactions will be those connecting equilibrated 
nuclei with A > 24 (magnesium) with alpha-particles.  The answer depends on 
temperature and neutron excess: 
 
   Most frequently, for   small, the critical slow link is  24Mg(,)20Ne 
 
   The reaction 20Ne(,)16O has been in equilibrium with 16O(,)20Ne ever  
since neon burning.  At high temperatures and low Si-mass fractions, 
20Ne(,)24Mg equilibrates with 24Mg(,)20Ne and 16O(,)12C becomes 
the critical link. 
 
 
   However for the values of   actually appropriate to silicon burning in 
a massive stellar core, the critical rate is 26Mg(p,)23Na(p,)20Ne 



To get 24Mg 

To get %











Nucleosynthesis 

     Basically, silicon burning in the star’s core turns the products of  
oxygen burning (Si, S, Ar, Ca, etc.) into the most tightly bound nuclei  
(in the iron group) for a given neutron excess, .	

	

     The silicon-burning nucleosynthesis that is ejected by a super- 
nova is produced explosively, and has a different composition dominated 
by 56Ni. 
 
   The products of silicon-core and shell burning in the core are both so neutron- 
rich ( so large)  that they need to be left behind in a neutron star or 
black hole. However, even in that case, the composition and its evolution 
is critical to setting the stage for core collapse and the supernova explosion  
that follows. 



Following Si-burning at the middle of a 25 solar mass star: 
 

54Fe        0.487 
58Ni        0.147 
56Fe        0.141 
55Fe        0.071 
57Co       0.044 

Neutron-rich nuclei in the iron peak. 
    Ye =  0.4775 

Following explosive Si-burning in a 25 solar mass supernova, interesting 
species produced at Ye = 0.498 to 0.499. 

44Ca            44Ti 
47,48,49Ti      48,49Cr 
 51V             51Cr 
 55Mn           55Co 
50,52,53Cr      52,53Fe 
54,56,57Fe      56,57Ni 
59Co             59Cu 
58,60,61,62Ni    60,61,62Zn 

product       parent 

Silicon burning nucleosynthesis 

44Ti and 56.57Ni are important 
targets of -ray astronomy 



 
25 M



η = neutron excess

25 Solar Mass 
Pop I 

PreSupernova 
 

(Woosley and  
Heger 2007) 

Explosive 
burning will 
happen here 

This part 
will collapse 
and make  
a shock 



Nuclear Statistical Equilibrium 
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   As the silicon abundance tends towards zero (though it  
never becomes microscopically small), the unequilibrated 
reactions below A = 24 finally come into equilibrium 

The 3 reaction is the last to equilibrate. Once this occurs, 
every isotope is in equilibrium with every other  
isotope by strong and electromagnetic reactions 
(but not by weak interactions) 



  

In particular, Y(28Si) = f (T ,ρ)Yα
7  with the result that now

only 3 variables, ρ, T
9
,and η now specify the abundances 

of everything
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At high T, though (see earlier discussion of nuclear level density)
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Until the temperature becomes very high (kT >> 1 MeV)
The most abundant nuclei are those with large binding energy
per nucleon and "natural" values of η. For example,

                 η  = 0         56Ni

                        0.037   54Fe

                        0.071    56Fe
                            etc.

In general, the abundance of an isotope peaks at its
natural value for η. E. g.,

              η(56Fe)   =  
N − Z

A
= 30 - 26

56
=0.0714



The resultant nucleosynthesis is most sensitive to .	




True Equilibrium  

   If the weak interactions were also to be balanced,  
(e.g., neutrino capture occurring as frequently on the daughter 
nucleus as electron capture on the parent), one would have a  
state of true equilibrium. Only two parameters, r and T, would  
specify the abundances of everything. The last time this occurred 
in the universe was for temperatures above 10 billion K in the Big  
Bang. 
 
    However, one can also have a dynamic weak equilibrium where 
neutrino emission balances anti-neutrino emission, i.e., when 

0
e

dY

dt
=

   This could occur, and for some stars does,  
when electron-capture balances beta-decay globally, but not on 
individual nuclei. The abundances would be set by  and T, but 
would also depend on the weak interaction rate set employed. 



Weak Interactions 

     Electron capture, and at late times beta-decay, occur for a variety of 
isotopes whose identity depends on the star, the weak reaction rates 
employed, and the stage of evolution examined. During the late stages 
it is most sensitive to eta, the neutron excess.  
 
   Aside from their nucleosynthetic implications, the weak interactions 
determine Ye, which in turn affects the structure of the star. The  
most important isotopes are not generally the most abundant,  
but those that have some combination of significant abundance and  
favorable nuclear structure (especially Q-value) for weak decay. 
 
  From silicon burning onwards these weak decays provide neutrino 
emission that competes with and ultimately dominates that from 
thermal processes (i.e., pair annihilation). 



He – depletion 
O – depletion 
PreSN 

25 M

solar metallicity



He – depletion 
O – depletion 
PreSN 

25 M

zero initial metalicity



  The distribution of neutron excess, , 
within two stars of 25 solar masses 
(8 solar mass helium cores) is  
remarkably different. In the Pop I 
star,  is approximately 1.5 x 10-3 

everywhere except in the inner  
core (destined to become a collapsed 
remnant) 

  In the Pop III (Z = 0) star the neutron  
excess is essentially zero at the end of helium 
burning (some primordial nitrogen was created) 
Outside of the core  is a few x 10-4, chiefly  
from weak interactions during carbon burning. 
Note some primary nitrogen production at the  
outer edge where convection has mixed 12C 
and protons. 
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                                 Si-depletion            Si-shell burn         Core contraction           PreSN 
                   
  T(109 K)                      3.78                         4.13                        3.55                          7.16 
 (g cm-3)                   5.9 x 107                  3.2 x 108                5.4 x 108                    9.1 x 109 
 
     Ye                            0.467                       0.449                      0.445                        0.432 
 
e-capture                     54,55Fe                      57Fe, 61Ni              57Fe, 55Mn                  65Ni, 59Fe 
 
-decay                     54Mn, 53Cr                 56Mn,52V               62Co,58Mn                  64Co, 58Mn 

                     O-depletion                  O-shell                Si-ignition              Si-shell 
 
  T(109K)                 2.26                            1.90                       2.86                       3.39 
  (g cm-3)              1.2 x 107                   2.8 x 107                       1.1 x 108                          4.5 x 107 
 

        Ye                     0.498                        0.495                     0.489                     0.480 
 
e-capture                35Cl, 37Ar                 35Cl, 33S                  33S,35Cl                  54,55Fe 
 
-decay                    32P, 36Cl                  32P,36Cl                  32P, 28Al                 54,55Mn                 

15 solar mass star  (Heger et al 2001) 
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240,000 L





(note scale breaks) 





     As silicon shells, typically one or at most two, burn out, the iron core 
grows in discontinuous spurts.  It approaches instability. 
 
     Pressure is predominantly due to relativistic electrons. As they  
become increasingly relativistic, the structural adiabatic index 
of the iron core hovers precariously near 4/3. The presence of non- 
degenerate ions has a stabilizing influence, but the core is rapidly  
losing entropy to neutrinos making the concept of a Chandrasekhar  
Mass relevant.  
 
   In addition to neutrino losses there are also two other important  
instabilities: 
  •   Electron capture – since pressure is dominantly from electrons, 

      removing them reduces the pressure. 
 
•  Photodisintegration – which takes energy that might have provided 
     pressure and uses it instead to pay a debt of negative nuclear 
     energy generation. 



See also Clayton Fig 7-9 and discussion 

Illiadis 

Typical presupernova 
central conditions 

The transition from the  
iron group to He and 
especially from He to 
2n + 2p absorbs an 
enormous amount of  
energy. 
 
Figure needs correcting 
for high temperature 
nuclear partition 
functions.  

Dominant constituent in  
NSE ( approximately 0) 



Photodisintegration: 

  

Yα = Cα (T9 ,ρ) Yn
2Yp

2

C
α
=

1

2
(5.94 × 1033 )−3 ρ 3T

9

9/2 exp(328.36 / T
9
)

where 328.36  = BE(α )/kT ⇒ Cα  increases rapidly as T ↓

from page 12 of this lecture 

Setting Y = 1/8 (i.e., X = ½ divided by 4) and Yp=Yn=1/4 
gives the line for the helium-nucleon transition on the  
previous page. 
 
The Ni- transition is given by Clayton problem 7-11 and  
eqn 7-22. It comes from solving the Saha equation for NSE 
(page 30 of these notes) for the case  

X(
56
Ni)= Xα =0.5⇒Y (

56
Ni)=1/112; Yα =1/ 8

Y (
56
Ni)=C56(T9 )ρ

12
Yα
13



The photodisintegration of one gram of 56Ni to one gram of 
-particles absorbs: 

  

q
nuc

= 1.602×10−6
N

A
(δY

i
)(BE

i
) − qν erg/gm∑

= 9.64×1017 −
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= −1.51×1018  erg g−1

Similarly, the photodisintegration of one gram of ’s to one gram of 
nucleons absorbs: 

q
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=9.64×1017 −
1

4

⎛
⎝⎜

⎞
⎠⎟

28.296( ) + 0
⎡

⎣⎢
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=−6.82×1018  erg g−1

essentially undoing all the energy released by nuclear reactions 
since the zero age main sequence. 
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What about degeneracy? Can the core be supported by 
electron degeneracy pressure and form a stable (Fe) dwarf? 
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Because of increasing degeneracy the concept of a Chandrasekhar 
Mass for the iron core is relevant – but it must be generalized. 

0 implies degeneracyη >



The Chandrasekhar Mass 
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Traditionally, for a fully relativistic, completely degenerate gas:
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1.457 M at 0.5
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  This is often referred to loosely as 1.4 or even  
1.44 solar masses 

see lecture 1 



BUT 
1)  Ye here is not 0.50  (Ye is actually a function 

of radius or interior mass) 
 

2)   The electrons are not fully relativistic in the  
 outer layers ( is not 4/3 everywhere) 
 

3)   General relativity implies that gravity is stronger  
 than classical and an infinite central density is not  
 allowed (there exists a critical  for stability) 
 

4)   The gas is not ideal. Coulomb interactions reduce 
 the pressure at high density 
 

5)   Finite temperature (entropy) corrections 
 

6)   Surface boundry pressure (if WD is inside a  
 massive star) 
 

7)   Rotation 

Effect on MCh 



Relativistic corrections, both special and general, are treated by  
Shapiro and Teukolsky in Black Holes, White Dwarfs, and Neutron Stars 
pages 156ff.  They find a critical density (entropy = 0). 
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Above this density the white dwarf is (general relativistically) 
unstable to collapse. For Ye = 0.50 this corresponds to a mass 

2/3
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1.415 M

in general, the relativistic correction to the Newtonian value is
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Coulomb Corrections 

Three effects must be summed – electron-electron repulsion, ion-ion 
repulsion and electron ion attraction. Clayton p. 139 – 153 gives a  
simplified treatment and finds, over all, a decrement to the pressure 
(eq. 2-275) 

  

ΔP
Coul

= −
3

10

4π
3

⎛
⎝⎜

⎞
⎠⎟

Z
2/3

e
2

n
e

4/3

Fortunately, the dependence of this correction on ne is the same 
as relativistic degeneracy pressure. One can then just proceed to  
use a corrected 

1/32 5/3

0 2/3

4 /3 4 /3

0 3 2/3

4 /3

2 3
1

5

1 4.56 10

e
K K Z

c

K Z

π
−

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤= − ×⎣ ⎦





( )
1/3

0 2 4/3

4 /3

3/ 2

Ch

0 0

Ch

2/3

0

Ch 

where     3
4

M
and

M

hence

M 1 0.0226
6

A

Ch

c
K N

K

K

Z
M

π=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦



2

e

12

Ch e

56

Putting the relativistic and Coulomb corrections together

with the dependence on Y one has

                         M 1.38 M   for C (Y 0.50)

                                 = 1.15  M for Fe    (Y

= =


 e

e

26
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56

                                = 1.08  M   for Fe-core with <Y 0.45

= =

>≈


  

So why are iron cores so big at collapse (1.3 - 2.0 M


) and

why do neutron stars have masses ≈1.4 M


?
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Finite Entropy Corrections 

Chandrasekhar (1938) 
Fowler & Hoyle (1960)  p 573, eq. (17) 
Baron & Cooperstein, ApJ, 353, 597, (1990) 



In particular, Baron & Cooperstein (1990) show that  

2

1/3
3

1/3

7

3/ 2

4 /3

2

0

2
1 ...

3

3
 

8

1.11( ) MeV

and since  a first order expansion gives
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And since, in the appendix to these notes we show 
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The entropy of the radiation and ions also affects MCh, but much less. 
 
This finite entropy correction is not important for  
isolated white dwarfs. They’re too cold. But it is very important 
for understanding the final evolution of massive stars. 



Because of its finite entropy (i.e., because it is hot) 
the iron core develops a mass that, if it were cold, 
could not be supported by degeneracy pressure. 
 
Because the core has no choice but to decrease its 
electronic entropy (by neutrino radiation, electron 
capture, and photodisintegration), and because its 
(hot) mass exceeds the Chandrasekhar mass,  
it must eventually collapse. 



 

E.g., on the following pages are excerpts from the final day in the 

life of a 15 M


 star. During silicon shell burning, the electronic entropy

ranges from 0.5 to 0.9 in the Fe core and is about 1.3 in the convective

shell.

               MCh ≈1.08 M
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The Fe core plus Si shell is also stable because

                MCh≈   1.08 M
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But when Si burning in this shell is complete: 

Neutrino losses farther reduce se. So too do  
photodisintegration and electron capture 
as we shall see. And the boundry pressure of the  
overlying silicon shell is not entirely negligible. 
 
The core collapses 

e

e

Ch

3) The Fe core is now ~1.3 M .

s central = 0.4

               s at edge of Fe core  = 1.1

               average 0.7

M  now about 1.34 M (uncertain to at least a 

                                        

≈





              few times 0.01 M



Electron 



   The collapse begins on a Kelvin-Helmholz (neutrino) time scale and  
accelerates to a dynamic implosion as other instabilities are encountered. 
 
Photodisintegration: 
 
      As the temperate and density rise, the star seeks a new fuel to  
burn, but instead encounters a phase transition in which the NSE 
distribution favors  particles over bound nuclei. In fact, this transition 
never goes to completion owing to the large statistical weight afforded  
the excited states of the nuclei. But considerable energy is lost in 
a partial transformation. Recall for ’s. 
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not really free neutrons. 
They stay locked inside 
bound nuclei that are 
progressively more  
neutron rich. 

i.e., BE/A for a typical iron 
       group nucleus 



What happens? 
 
       As the density rises, so does the pressure (it never decreases at the  
middle), but so does gravity. The rise in pressure is not enough to  
maintain hydrostatic equilibrium, i.e.,  remains slightly less 
than  4/3. The collapse accelerates. 
  
       Photodisintegration decreases se because at constant total  
entropy (the collapse is almost adiabatic), si increases since 14 -particles 
have more statistical weight than one nucleus. The increase in si comes 
at the expense of se. 



Electron capture 
   The pressure and entropy come mainly from electrons, but as the  
density increases, so does the Fermi energy, F. The rise in F 
means more electrons have enough energy to capture on nuclei  
turning protons to neutrons inside them. This reduces Ye which in 
turn makes the pressure and entropy at a given density smaller. 

( )
1/3

7
1.11 MeV

F e
Yε ρ=

   By 2 x 1010 g cm-3, F= 10 MeV which is above the capture  
threshold for all but the most neutron-rich nuclei. There is also briefly  
a small abundance of free protons (up to 10-3 by mass) which  
captures electrons.  



     But the star does not a) photodisintegrate to neutrons and protons; 
then b) capture electrons on free protons; and c) collapse to nuclear  
density as a free neutron gas as some texts naively describe. 
   
     Bound nuclei persist, then finally touch and melt into 
one gigantic nucleus with 1057 nucleons – the neutron star. 
 
      Ye declines to about 0.37 before the core becomes opaque to 
neutrinos. (Ye for an old cold neutron star is about 0.05; Ye for 
the neutron star that bounces when a supernova occurs is about  
0.29). 
 
     The effects of a) exceeding the Chandrasekhar mass,  
b) photodisintegration and c) electron capture operate  
together, not independently. 



Appendix on Entropy 



T 

S = k log W 

Zentralfriedhof 
Vienna, Austria 
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for ideal gas plus radiation 

dividing by k makes  
s dimensionless 

As discussed previously 
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Cox and Guili 
  (24.76b) 

expression 
Cox and Guili 
Principles of Stellar Structure 
Second edition 
A. Weiss et al 
Cambridge Scientific Publishers 

Reif 
Fundamentals of Statistical 
and Thermal Physics 
McGraw Hill 



   

η=
µ

kT

 where µ,  the chemical potential is defined by
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For a non-relativistic, non-degenerate electron gas,

Clayton 2-63 and 2-57 imply (for η<< 0)
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which gives the ideal gas limit for electron entropy

(similar to ions but has Y
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For η>>1 (great degeneracy)
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and negligible radiation 
pressure (entropy) 






