Lecture 2

IMF and Solar Abundances A) Initial Mass Function and Typical Supernova Masses The initial mass function (IMF) is defined as that number of stars that have ever formed per unit area of the Galactic disk (pc⁻²) per unit logarithmic (base 10) interval (earlier was per volume pc⁻³) IMF = $\xi(\log M)$

The product $\xi(\log M_1) \times (\Delta \log M)$ is thus the number of stars in the mass interval $\Delta \log M$ around $\log M_1$ ever formed per unit area (pc⁻²) in our Galaxy between.

An interval of ± 0.3 around log M₁ thus corresponds to a range in masses M₁ / 2 to 2 M₁.

For low mass stars, $\tau_{MS} > \tau_{Gal}$ (i.e. M <0.8 M_{\odot}), the IMF equals the present day mass function (PDMF). For higher mass stars an uncetain correction must be applied. There are many IMFs in the literature. Here to get some simple results that only depend on the slope of the IMF above 10 solar masses, we will use the one from Salpeter (1955), which remains appropriate for massive stars, as well as one taken from Shapiro and Teukolsky's textbook (Chap 1.3, page 9) for a more extended mass interval. This latter IMF is an amalgamation of Bahcall and Soneira (ApJS, 44, 73, (1980)) and Miller and Scalo (ApJS, 41, 513, (1979))

$$\log \xi(\log M) = 1.41 - 0.9 \log M - 0.28 (\log M^2)$$

A related quantity is the slope of the IMF

$$\Gamma = \frac{d\log\xi}{d\log M} = -0.9 - 0.56\log M$$

Salpeter, in his classic treatment took Γ =const. =-1.35

Salpeter (1955) (7 pages large type)

$$dN = \xi(\log M) d(\log_{10} M) \frac{dt}{T_0}$$

where T_0 is the age of the galaxy and dN is the number of stars in the mass range $d \log M$ created per cubic pc in time dt [4668 citations as of 3/29/15]

For
$$\log\left(\frac{M}{M_{\odot}}\right)$$
 between -0.4 and +1.0 M between 0.4 and 10
 $\xi(\log M) \approx 0.03 \left(\frac{M}{M_{\odot}}\right)^{-1.35}$

Kroupa (<u>2002, *Science*</u>)

general	$dN=\xi(m)dm=\xi_{ m L}(m)dlm$				
	$\xi_{ m L}(m)=(m\ln 10)\xi(m)$		gen		
Scalo's IMF index (8)	$\Gamma(m) \equiv \frac{d}{dlm} \left(\log_{10} \xi_{\rm L}(lm) \right)$				
	$\Gamma = -x = 1 + \gamma = 1 - \alpha$				
	e.g. for power-law form: $\xi_{\rm L} = A m^{\Gamma} = A m^{-x}$				
		$\xi = A' m^lpha = A' m^{-\gamma}$			
		$A' = A/\ln 10$			
Salpeter(1955) (3)	$\xi_{ m L}(lm) = Am^{\Gamma}$	$\Gamma = -1.35 \left(\alpha = 2.35 \right)$	S		
	$A = 0.03 \mathrm{pc}^{-3} \log_{10}^{-1} M_{\odot}; 0.4$	$\leq m/M_{\odot} \leq 10$			
Miller-Scalo(1979) (7)	$\left egin{array}{l} \xi_{ m L}(lm) = A \exp \left[-rac{(lm - lm_o)^2}{2 \sigma_{lm}^2} ight] ight.$	$\Gamma(lm) = -rac{(lm-lm_o)}{\sigma_{lm}^2}\log_{10}e$	MS		
thick long-dash-dotted line	$A = 106 \mathrm{pc}^{-2} \mathrm{log}_{10}^{-1} M_{\odot}; l\bar{m_o};$	$=-1.02; \sigma_{lm}=0.68$			
Larson(1998) (69)	$\xi_{\rm L}(lm) = A m^{-1.35} { m exp} \left[-\frac{m_o}{m} \right]$	$\Gamma(lm) = -1.35 + \frac{m_o}{m}$	La		
thin short-dashed line	$A=-;\qquad m_o=0.3M_\odot$				
Larson(1998) (69)	$\xi_{ m L}(lm) = A \left[1+rac{m}{m_o} ight]^{-1.35}$	$\Gamma(lm) = -1.35 \left(1 + \frac{m_o}{m}\right)^{-1}$	Lb		
thin long-dashed line	$A = -; \qquad m_o = 1 M_{\odot}$				
Chabrier(2001) (93, 13)	$\left \xi(m) = A m^{-\delta} \exp\left[-\left(\frac{m_o}{m}\right)^{\beta} \right] \right $	$\Gamma(lm) = 1 - \delta + \beta \left(\frac{m_o}{m}\right)^{\beta}$	Ch		
thick short-dash-dotted line	$A = 3.0 \mathrm{pc}^{-3} M_{\odot}^{-1}; m_o = 710$	$\delta.4 M_\odot; \delta = 3.3; \beta = 0.25$			

fig:apl

The multi-part power-law IMF:

$$\xi(m) = k \begin{cases} \left(\frac{m}{m_1}\right)^{-\alpha_0} & , \quad m_0 < m \le m_1 & , \quad n = 0\\ \left(\frac{m}{m_1}\right)^{-\alpha_1} & , \quad m_1 < m \le m_2 & , \quad n = 1\\ \left[\prod_{i=2}^{n \ge 2} \left(\frac{m_i}{m_{i-1}}\right)^{-\alpha_{i-1}}\right] \left(\frac{m}{m_n}\right)^{-\alpha_n} & , \quad m_n < m \le m_{n+1} & , \quad n \ge 2 \end{cases}$$
(4)

The average, or Galactic-field, single-star IMF has $k = 0.877 \pm 0.045$ stars/(pc³ M_{\odot}) for scaling to the solar neighborhood with

Examples of how to use the IMF

Suppose you want to know the fraction by number of all stars ever born having mass $\geq M$ (Here M_U equals the most massive star is taken to be 100 M_{\odot} ; M_L , the least massive star, is taken to be 0.1)

$$F_n(M) = \frac{\frac{M}{\int}}{\int}_{M_L} \xi(\log M) \, d\log M = 1/2$$

We use the Shapiro-Teukolsky IMF here because the Salpeter IMF is not good below about 0.5 solar mass. The answer is 0.3 solar masses. Half of the stars ever born were above 0.3 solar masses and half were below

Examples of how to use the IMF

How about the total fraction of mass ever incorporated into stars with masses greater than M?

$$X_m(M) = \frac{\int\limits_{M}^{M_U} M \xi(\log M) d\log M}{\int\limits_{M_L}^{M^U} M \xi(\log M) d\log M}$$

This quantity is 0.5 for a larger value of M, 1.3 M_{\odot} . Half the mass went into stars lighter than 1.3, half into heavier stars. For simplicity in what follows use a Salpeter IMF, take Γ =-1.35, then ς (log M)=C₀M^{Γ} and

$$\zeta(\log M) \operatorname{d} \log M = C'M^{\Gamma} \frac{dM}{M} = C'\frac{dM}{M^{1-\Gamma}} = C'\frac{dM}{M^{2.35}}$$

What is the number fraction greater than M?

$$F_n(M) = \frac{\frac{M_U}{\int} \frac{dM}{M^{1-\Gamma}}}{\frac{M_U}{\int} \frac{dM}{M^{1-\Gamma}}}$$
$$= \frac{M_U^{\Gamma} - M^{\Gamma}}{M_U^{\Gamma} - M_L^{\Gamma}}$$

For $\Gamma = -1.35$ for example and $M_U = 100$, and $M_L = 0.1$, the number fraction greater than 10 M_{\odot} is 0.2% and the number fraction greater than 25 M_{\odot} is 0.06%. Simi-

The mass weighted average tells us the fraction of the mass incorporated into stars above some value

$$X_m(M) = \frac{\frac{M_U}{\int} \frac{(M)dM}{M^{1-\Gamma}}}{\frac{M_U}{\int} \frac{(M)dM}{M^{1-\Gamma}}}{M_L}$$
$$= \frac{M_U^{\Gamma+1} - M^{\Gamma+1}}{M_U^{\Gamma+1} - M_L^{\Gamma+1}}$$

This gives 12% for 10 ${\rm M}_{\odot},$ and 6.1% for 25 ${\rm M}_{\odot}.$

	APJ Sup, 41, 513	
M/Mo	Fraction by # Stars Ever Born	Fraction by Mass Into Stars Ever Formed
0.1	100%	100 %
0.16	78%	95 %
0.25	56%	89 %
0.40	38	79
0.63	24	69
1.0	14	58
1.6	7.8	45
2.5	4.0	32
4	1.9	22
6.3	0.81 %	14
10	0.32 %	8.5
16	0.12%	4.5 I
25	0.035%	2.0
40	0.009%	0.71%

According to Miller + Scalo (1979)

2 solar masses/Gyr/pc² 45 solar masses/pc² current values - Berteli and Nasi (2001) The average supernova by number is then

$$\int_{M_{\rm L}}^{\langle M_{\rm SN} \rangle} \frac{dM}{M^{1-\Gamma}} = \int_{\langle M_{\rm SN} \rangle}^{M_U} \frac{dM}{M^{1-\Gamma}}$$

$$M_L^{\Gamma} - \langle M_{\rm SN} \rangle^{\Gamma} = \langle M_{\rm SN} \rangle^{\Gamma} - M_U^{\Gamma}$$

$$\langle M_{\rm SN} \rangle = (\frac{1}{2})^{1/\Gamma} M_L$$

$$= 13.4 M_{\odot}$$

$$\int \frac{dM}{M^{1-\Gamma}} = \int M^{\Gamma-1} \, dM = \frac{M^{\Gamma}}{\Gamma}$$

where M_U^{Γ} is negligibly small and $M_L = 8 \,\mathrm{M}_{\odot}$. If $M_L = 9 \,\mathrm{M}_{\odot}$, then the average is 15 M_{\odot} . Suppose above 35 M_{\odot} don't get a Type II supernova, but instead a black hole or a SN Ib, then

$$8^{\Gamma} - \langle M_{\rm SN} \rangle^{\Gamma} = \langle M_{\rm SN} \rangle - 35^{\Gamma}$$

 $2 \langle M_{\rm SN} \rangle^{\Gamma} = 8^{\Gamma} + 35^{\Gamma}$
 $\langle M_{\rm SN} \rangle = 12.2 M_{\odot}$

So, probably 15 ${\rm M}_{\odot}$ is typical. SN 1987A was $20-22~{\rm M}_{\odot}.$ ${\sim}18$

The typical *nucleosynthesis* supernova is not the numerical average, but the average For homework evaluate using Smartt's limit of 20 weighted by the mass ejected in heavy elements. That is

$$\int_{10}^{M} \frac{dM}{M^{-\Gamma}} Z_{\rm ej} = \int_{M}^{M_{U}} \frac{dM}{M^{-\Gamma}} Z_{\rm ej}$$

where $Z_{\rm ej}$ is the fraction of a star's mass ejected in the form of heavy elements. A 40 M_{\odot} supernova ejects about 11 M_{\odot} of heavy elements (neglecting mass loss); an 11 M_{\odot} supernova ejects almost none. Woosley and Weaver (Ann NY Acad., 336, 347, (1986)) find $Z_{\rm ej} \approx 0.4 - 4.2(M_{\odot}/M)$ for $M \ge 11$ M_{\odot} . The result depends upon M_U and the choice of Γ , but is typically ~ 25 M_{\odot} . This motivates our particular interest in stars of this main sequence mass.

The mass of heavy elements divided by the mass of the the star is approximately the "metallicity" of the supernova. This ranges from 0 0at 10.5 M_{\odot} to 0.3 for 40 M_{\odot} (neglecting mass loss which may become im-

42

portant over about 30 M_{\odot} .) Let u define a "production factor", P_i which is the ratio of the mass fraction of a given species, i, in the ejecta divided by the corresponding mass fraction in the sun. Typically $P_i \sim 10$. This suggests that the Population I abundances in the Galaxy could be created if $\sim 10\%$ of the matter in the ISM from which Population I formed had been processed through stars heavier than 10 M_{\odot} . This is approximately the case. Note the distinction however, that the mass of Population I material in the Galaxy may be considerably less than its total gravitational, or even baryonic mass.

Figure 6 Mass fraction of new helium and new heavy elemen's ejected as a function of the initial stellar mass. Contributions from stellar winds of CB stars, supergiants, and WR stars are totaled and distinguished from the contribution from supernova explosions. The distribution of heavy elements in the supernova ejecta is based on the classic value for the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate (see text). The contribution to ${}^{12}C$ by intermediate-mass stars is derived from Renzini & Voli (214) and is limited to their case A.

Modern Limits on the Mass Range of Supernovae

The solid line is for a Salpeter IMF with a maximum mass of 16.5 solar masses. The dashed line is a Salpeter IMF with a maximum of 35 solar masses

Minimum mass supernova

Smartt 2009 ARAA Fig. 6b

Based on the previous figure. Solid lines use observed preSN only. Dashed lines include upper limits.

Relative Abundances of S-Only Isotopes

Upper mass limit: theoretical predictions (for solar metallicty)

Ledoux (1941)	radial pulsation, e- opacity, H	$100~{ m M}_{\odot}$
Schwarzchild & Härm (1959)	radial pulsation, e- opacity, H and He, evolution	65-95 ${ m M}_{\odot}$
Stothers & Simon (1970)	radial pulsation, e- and atomic	$80\text{-}120~\mathrm{M}_\odot$
Larson & Starrfield (1971)	pressure in HII region	50-60 ${ m M}_{\odot}$
Cox & Tabor (1976)	e- and atomic opacity Los Alamos	$80\text{-}100~\mathrm{M}_\odot$
Klapp et al. (1987)	e- and atomic opacity Los Alamos	$440~{ m M}_{\odot}$
Stothers (1992)	e- and atomic opacity Rogers-Iglesias	120-150 M _☉

Upper mass limit: observation

R136	Feitzinger et al. (1980)	250-1000 ${\rm M}_\odot$
Eta Car	various	120-150 M _☉
R136a1	Massey & Hunter (1998)	136-155 M _⊙
Pistol Star	Figer et al. (1998)	140-180 M _☉
Eta Car	Damineli et al. (2000)	~70+? ${\rm M}_{\odot}$
LBV 1806-20	Eikenberry et al. (2004)	150-1000 M _☉
LBV 1806-20	Figer et al. (2004)	130 (binary?) M_{\odot}
HDE 269810	Walborn et al. (2004)	150 M _☉
WR20a (binary	Bonanos et al. (2004) Rauw et al. (2004)	82+83 M _o

each +- 5 Msu

What is the most massive star (nowadays)?

The Arches Supercluster

Massive enough and young enough to contain stars of 500 solar masses if extrapolate Salpeter IMF

No star above 130 Msun found. Limit is stated to be 150 Msun.

Figer, Nature, 434, 192 (2005) Kim, Figer, Kudritzki and Najarro ApJ, 653L, 113 (2006)

Initial mass function

A star of up to 320 solar masses was reported during summer 2010 in the Tarantula Nebula in the LMC

http://news.discovery.com/space/massive-star-cluster.html

(Crowther et al, MNRAS, 408, 73(2010))

R136A1 (controversial, maybe a binary??) Paper not as strong a conclusion as press release B. Solar and Stellar Abundances Any study of nucleosynthesis must have one of its key objectives an comprehensive, physically motivated explanation for the pattern of abundances that we find in nature -- in the solar system (i.e., the sun) and in other locations in the cosmos (other stars, the ISM, cosmic rays, IGM, and other galaxies)

Key to that is accurate information on that pattern in the sun.

For solar abundances there are three main sources:

- The Earth good for isotopic composition only
- The solar spectrum
- Meteorites, especially primitive ones

In contrast to

Where did these elements come from?

History:

1889, Frank W. Clarke read a paper before the Philosophical Society of Washington "The Relative Abundance of the Chemical Elements"

Current "abundance" distribution of elements in the earths crust:

1895 Rowland: relative intensities of 39 elemental signatures in solar spectrum
1929 Russell: calibrated solar spectral data to obtain table of abundances
1937 Goldschmidt: First analysis of "primordial" abundances: meteorites, sun
1956 Suess and Urey "Abundances of the Elements", Rev. Mod. Phys. 28 (1956) 53

Suess and Urey tabulated results from many prior works plus their own. Noted systematics correlated with nuclear properties. E.g. smoothness of the odd-A isotopic abundance plot.

1957 Burbidge, Burbidge, Fowler, Hoyle

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

October, 1957

Dan

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

TABLE OF CONTENTS

	1	ugo
I.	Introduction	548
	A. Element Abundances and Nuclear Structure	548
	B. Four Theories of the Origin of the Elements	550
	C. General Features of Stellar Synthesis	550
п.	Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales	
	Associated with Them	551
	A. Modes of Element Synthesis	551
	B. Method of Assignment of Isotopes among Processes (i) to (viii)	553
	C. Abundances and Synthesis Assignments Given in the Appendix	555
	D. Time-Scales for Different Modes of Synthesis	556
III.	Hydrogen Burning, Helium Burning, the a Process, and Neutron Production	559
	A. Cross-Section Factor and Reaction Rates	559
	B. Pure Hydrogen Burning	562
	C. Pure Helium Burning	565
	D. a Process.	567
	E. Succession of Nuclear Fuels in an Evolving Star.	568
	F. Burning of Hydrogen and Henum with Mixtures of Other Elements; Stellar Neutron Sources	509
IV.	e Process	577
V.	s and r Processes: General Considerations	580
	A. "Shielded" and "Shielding" Isobars and the s, r, p Processes	580
	B. Neutron-Capture Cross Sections	581
	C. General Dynamics of the s and r Processes	583
VI.	Details of the s Process.	583

* Supported in part by the joint program of the Office of Naval Research and the U. S. Atomic Energy Commission.

Copyright @ 1957 by the American Physical Society

Since that time many surveys by e.g.,

Cameron (1970,1973)

Anders and Ebihara (1982); Grevesse (1984)

Anders and Grevesse (1989) - largely still in use

Grevesse and Sauval (1998)

Lodders (2003, 2009) – assigned reading

Asplund, Grevesse and Sauval (2009; ARAA)

see class website

H. Schatz

Absorption Spectra:

provide majority of data for elemental abundances because:

- by far the largest number of elements can be observed
- least fractionation as right at end of convection zone still well mixed
- well understood good models available

solar spectrum (Nigel Sharp, NOAO)

Complications

Oscillator strengths:

Need to be measured in the laboratory - still not done with sufficient accuracy for a number of elements.

Line width

Depends on atomic properties but also thermal and turbulent broadening. Need an atmospheric model.

Line blending

Ionization State

Model for the solar atmosphere

Turbulent convection. Possible non-LTE effects. 3D models differ from 1 D models. See Asplund, Grevesse, and Sauval (2007) on class website.

Emission Spectra

Disadvantages:

- less understood, more complicated solar regions (it is still not clear how exactly these layers are heated)
 some fractionation/migration effects for example FIP: species with low first ionization potential are enhanced in respect to photosphere
 - possibly because of fractionation between ions and neutral atoms

Therefore abundances less accurate

But there are elements that cannot be observed in the photosphere (for example helium is only seen in emission lines)

Solar Chromosphere red from $H\alpha$ emission lines

this is how Helium was discovered by Sir Joseph Lockyer of England in 20 October 1868.

Meteorites

Meteorites can provide accurate information on elemental abundances in the presolar nebula. More precise than solar spectra if data in some cases. Principal source for isotopic information.

But some gases escape and cannot be determined this way (for example hydrogen and noble gases)

Not all meteorites are suitable - most of them are fractionated and do not provide representative solar abundance information. Chondrites are meteorites that show little evidence for melting and differentiation.

Group	Subgroup	Frequency	
Stones	Chondrites	86%	
	Achondrites	7%	
Stony Irons		1.5%	
Irons		5.5%	

Classification of meteorites:

Carbonaceous chondrites are 4.6% of meteor falls.

H Schatz

Use carbonaceous chondrites (~5% of falls)

Chondrites: Have Chondrules - small ~1mm size shperical inclusions in matrix believed to have formed very early in the presolar nebula accreted together and remained largely unchanged since then

Carbonaceous Chondrites have lots of organic compounds that indicate very little heating (some were never heated above 50 degrees)

http://www.psrd.hawaii.edu/May06/meteoriteOrganics.html

"Some carbonaceous chondrites smell. They contain volatile compounds that slowly give off chemicals with a distinctive organic aroma. Most types of carbonaceous chondrites (and there are lots of types) contain only about 2% organic compounds, but these are very important for understanding how organic compounds might have formed in the solar system. They even contain complex compounds such as amino acids, the building blocks of proteins."

There are various subclasses of carbonaceous chondrites. The C-I's and C-M's are general thought to be the most primitive because they contain water and organic material.

The CM meteorite Murchison, has over 70 extraterrestrial amino acids and other compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphoric acids, aliphatic, aromatic, and polar hydrocarbons, fullerenes, heterocycles, carbonyl compounds, alcohols, amines, and amides.

Five CI chondrites have been observed to fall: Ivuna, Orgueil, Alais, Tonk, and Revelstoke. Several others have been found by Japanese expeditions in Antarctica. They are very fragile and subject to weathering. They do not survive long on the earth's surface after they fall. CI carbonaceous chondrites lack the "condrules" that most other chondites have. To understand the uncertainties involved in the determination of the various abundances read Lodders et al (2009) paper and if you have time skim Asplund et al (2009)

The tables on the following pages summarize mostly Asplund et al's (2009) view of the current elemental abundances and their uncertainties in the sun and in meteorites.

The Orgueil meteorite is especially popular for abundance analyses. It is a very primitive (and rare) carbonaceous chondrite that fell in France in 1864. Over 13 kg of material was recovered.

In Asplund's list of *solar photospheric* abundances (neglecting Li and noble gases):

Very uncertain elements (uncertainty > 0.2 dex)

boron, fluorine, chlorine, indium, thallium

Unseen in the sun (must take from meteorites)

Arsenic, selenium, bromine, technetium (Z = 43, unstable), cadmium, antimony, tellurium, iodine, cesium, tantalum, rhenium, platinum, mercury, bismuth, promethium (Z = 61, unstable), and all elements heavier than lead (Z = 82), except for thorium.

In meteorites

Where not affected by evaporation, most good to 0.04 dex except mercury (0.08 dex)

Table 1: Element abundances in the present-day solar photosphere. Also given are the corresponding values for CI carbonaceous chondrites (Lodders, Palme & Gail 2009). Indirect photospheric estimates have been used for the noble gases (Sect. 3.9).

	Elem.	Photosphere	Meteorites		Elem.	Photosphere	Meteorites
1	Η	12.00	8.22 ± 0.04	44	Ru	1.75 ± 0.08	1.76 ± 0.03
2	He	$[10.93\pm0.01]$	1.29	45	Rh	0.91 ± 0.10	1.06 ± 0.04
3	Li	1.05 ± 0.10	3.26 ± 0.05	46	Pd	1.57 ± 0.10	1.65 ± 0.02
4	Be	1.38 ± 0.09	1.30 ± 0.03	47	Ag	0.94 ± 0.10	1.20 ± 0.02
5	В	2.70 ± 0.20	2.79 ± 0.04	48	Cd		1.71 ± 0.03
6	\mathbf{C}	8.43 ± 0.05	7.39 ± 0.04	49	In	0.80 ± 0.20	0.76 ± 0.03
7	Ν	7.83 ± 0.05	6.26 ± 0.06	50	\mathbf{Sn}	2.04 ± 0.10	2.07 ± 0.06
8	0	8.69 ± 0.05	8.40 ± 0.04	51	\mathbf{Sb}		1.01 ± 0.06
9	\mathbf{F}	4.56 ± 0.30	4.42 ± 0.06	52	Te		2.18 ± 0.03
10	Ne	$[7.93\pm0.10]$	-1.12	53	Ι		1.55 ± 0.08
11	\mathbf{Na}	6.24 ± 0.04	6.27 ± 0.02	54	Xe	$[2.24\pm0.06]$	-1.95
12	Mg	7.60 ± 0.04	7.53 ± 0.01	55	\mathbf{Cs}		1.08 ± 0.02
13	Al	6.45 ± 0.03	6.43 ± 0.01	56	Ba	2.18 ± 0.09	2.18 ± 0.03
14	Si	7.51 ± 0.03	7.51 ± 0.01	57	La	1.10 ± 0.04	1.17 ± 0.02
15	Р	5.41 ± 0.03	5.43 ± 0.04	58	Ce	1.58 ± 0.04	1.58 ± 0.02
16	\mathbf{S}	7.12 ± 0.03	7.15 ± 0.02	59	\Pr	0.72 ± 0.04	0.76 ± 0.03
17	\mathbf{Cl}	5.50 ± 0.30	5.23 ± 0.06	60	Nd	1.42 ± 0.04	1.45 ± 0.02
18	Ar	$[6.40\pm0.13]$	-0.50	62	Sm	0.96 ± 0.04	0.94 ± 0.02
19	Κ	5.03 ± 0.09	5.08 ± 0.02	63	Eu	0.52 ± 0.04	0.51 ± 0.02
20	\mathbf{Ca}	6.34 ± 0.04	6.29 ± 0.02	64	Gd	1.07 ± 0.04	1.05 ± 0.02

20	\mathbf{Ca}	6.34 ± 0.04	6.29 ± 0.02	64	Gd	1.07 ± 0.04	1.05 ± 0.02
21	\mathbf{Sc}	3.15 ± 0.04	3.05 ± 0.02	65	Tb	0.30 ± 0.10	0.32 ± 0.03
22	Ti	4.95 ± 0.05	4.91 ± 0.03	66	$\mathbf{D}\mathbf{y}$	1.10 ± 0.04	1.13 ± 0.02
23	V	3.93 ± 0.08	3.96 ± 0.02	67	Ho	0.48 ± 0.11	0.47 ± 0.03
24	Cr	5.64 ± 0.04	5.64 ± 0.01	68	Er	0.92 ± 0.05	0.92 ± 0.02
25	Mn	5.43 ± 0.05	5.48 ± 0.01	69	Tm	0.10 ± 0.04	0.12 ± 0.03
26	Fe	7.50 ± 0.04	7.45 ± 0.01	70	Yb	0.84 ± 0.11	0.92 ± 0.02
27	Co	4.99 ± 0.07	4.87 ± 0.01	71	Lu	0.10 ± 0.09	0.09 ± 0.02
28	Ni	6.22 ± 0.04	6.20 ± 0.01	72	Hf	0.85 ± 0.04	0.71 ± 0.02
29	Cu	4.19 ± 0.04	4.25 ± 0.04	73	Ta		$\textbf{-0.12}\pm0.04$
30	Zn	4.56 ± 0.05	4.63 ± 0.04	74	W	0.85 ± 0.12	0.65 ± 0.04
31	Ga	3.04 ± 0.09	3.08 ± 0.02	75	Re		0.26 ± 0.04
32	Ge	3.65 ± 0.10	3.58 ± 0.04	76	Os	1.40 ± 0.08	1.35 ± 0.03
33	\mathbf{As}		2.30 ± 0.04	77	Ir	1.38 ± 0.07	1.32 ± 0.02
34	\mathbf{Se}		3.34 ± 0.03	78	Pt		1.62 ± 0.03
35	Br		2.54 ± 0.06	79	Au	0.92 ± 0.10	0.80 ± 0.04
36	Kr	$[3.25\pm0.06]$	-2.27	80	Hg		1.17 ± 0.08
37	Rb	2.52 ± 0.10	2.36 ± 0.03	81	Tl	0.90 ± 0.20	0.77 ± 0.03
38	Sr	2.87 ± 0.07	2.88 ± 0.03	82	Pb	1.75 ± 0.10	2.04 ± 0.03
39	Y	2.21 ± 0.05	2.17 ± 0.04	83	Bi		0.65 ± 0.04
40	Zr	2.58 ± 0.04	2.53 ± 0.04	90	Th	0.02 ± 0.10	0.06 ± 0.03
41	Nb	1.46 ± 0.04	1.41 ± 0.04	92	U		-0.54 ± 0.03
42	Mo	1.88 ± 0.08	1.94 ± 0.04				

Scanning the table one notes:

- a) H and H have escaped from the meteorites
- b) Li is depleted in the sun, presumably by nuclear reactions in the convection zone
- c) C, N, and to a lesser extent O, are also depleted in the meteorites
- d) The noble gases have been lost, Ne, Ar, etc
- e) Agreement is pretty good for the rest where the element has been measured in both the sun and meteorites

Asplund et al (2009; ARAA)

Figure 7: Difference between the logarithmic abundances determined from the solar photosphere and the CI carbonaceous chondrites as a function of atomic number. With a few exceptions the agreement is excellent. Note that due to depletion in the Sun and meteorites, the data points for Li, C, N and the noble gases fall outside the range of the figure.

Asplund et al (2009, ARAA)

Table 4: The mass fractions of hydrogen (X), helium (Y) and metals (Z) for a number of widely-used compilations of the solar chemical composition.

Source	X	Y	Z	Z/X
Present-day photosphere:				
Anders & Grevesse $(1989)^{a}$	0.7314	0.2485	0.0201	0.0274
<u>Grevesse & Noels (1993)</u> ^a	0.7336	0.2485	0.0179	0.0244
<u>Grevesse & Sauval (1998)</u>	0.7345	0.2485	0.0169	0.0231
$\underline{\text{Lodders}}(2003)$	0.7491	0.2377	0.0133	0.0177
Asplund, Grevesse & Sauval (2005)	0.7392	0.2485	0.0122	0.0165
Lodders, Palme & Gail (2009)	0.7390	0.2469	0.0141	0.0191
Present work	0.7381	0.2485	0.0134	0.0181
Proto-solar:				
Anders & Grevesse (1989)	0.7096	0.2691	0.0213	0.0301
<u>Grevesse & Noels (1993)</u>	0.7112	0.2697	0.0190	0.0268
Grevesse & Sauval (1998)	0.7120	0.2701	0.0180	0.0253
$\underline{\text{Lodders}}$ (2003)	0.7111	0.2741	0.0149	0.0210
Asplund, Grevesse & Sauval (2005)	0.7166	0.2704	0.0130	0.0181
Lodders, Palme & Gail (2009)	0.7112	0.2735	0.0153	0.0215
Present work	0.7154	0.2703	0.0142	0.0199

^a The He abundances given in Anders & Grevesse (1989) and Grevesse & Noels (1993) have here been replaced with the current best estimate from helioseismology (Sect. 3.9).

Table 3: Representative isotopic abundance fractions in the solar system. Most of the isotopic values are taken from Rosman & Taylor (1998) with updates for some elements, as discussed in Sect. 3.10.

	A	%	Z	A	%	Z	A	%	Z	A	%	Z	A	%
H	1	99.998	S	32	94.93	Fe	57	2.119	Kr	82	11.655	Pd	105	522.33
	2	0.002		33	0.76		58	0.282		83	11.546		106	627.33
				3 4	4.29					84	56.903		108	326.46
He	3	0.0166		36	0.02	Co	5 9	100.0		86	17.208		11() 11.72
	4	99.9834												
			Cl	35	75.78	Ni	58	68.0769	Rb	85	70.844	Ag	107	751.839
Li	6	7.59		37	24.22		60	26.2231		87	29.156		109	948.161
	7	92.41					61	1.1399						
			Ar	36	84.5946		62	3.6345	\mathbf{Sr}	84	0.5580	Cd	106	51.25
Be	9	100.0		38	15.3808		64	0.9256		86	9.8678		108	30.89
				40	0.0246					87	6.8961		11() 12.49
B	10	19.9				Cu	63	69.17		88	82.6781		111	12.80
	11	80.1	Κ	3 9	93.132		65	30.83					112	224.13
				40	0.147				Y	89	100.0		113	312.22
	12	98.8938		41	6.721	Zn	64	48.63					114	128.73
	13	1.1062					66	27.90	\mathbf{Zr}	90	51.45		116	57.49
			Ca	40	96.941		67	4.10		91	11.22			
N	14	99.771		42	0.647		68	18.75		92	17.15	In	113	34.29
	15	0.229		43	0.135		70	0.62		94	17.38		115	595.71
				44	2.086					96	2.80			
0	16	99.7621		46	0.004	Ga	69	60.108				\mathbf{Sn}	112	20.97
	17	0.0379		48	0.187		71	39.892	Nb	93	100.0		114	10.66
	18	0.2000											115	50.34
			Sc	45	100.0	Ge	70	20.84	Mo	92	14.525		116	514.54
F	19	100.0					72	27.54		94	9.151		117	7.68
			Ti	46	8.25		73	7.73		95	15.838		118	324.22
Ne	20	92.9431		47	7.44		74	36.28		96	16.672		119	8.59
	21	0.2228		48	73.72		76	7.61		97	9. <mark>5</mark> 99		120	32.58
	22	6.8341		49	5.41					98	24.391		122	24.63
				50	5.18	As	75	100.0		100	9.824		124	15.79

1 part in 1000 would be a big isotopic anomaly for most elements. Lodders (2009) translated into mass fractions - see class website for more

h1	7.11E-01	si28 7.02E-04	ti47 2.34E-07	zn66	6.48E-07
h2	2.75E-05	si29 3.69E-05	ti48 2.37E-06	zn67	9.67E-08
he3	3.42E-05	si30 2.51E-05	ti49 1.78E-07	zn68	4.49E-07
he4	2.73E-01	p31 6.99E-06	ti50 1.74E-07	zn70	1.52E-08
li6	6.90E-10	s32 3.48E-04	v50 9.71E-10	ga69	4.12E-08
li7	9.80E-09	s33 2.83E-06	v51 3.95E-07	ga71	2.81E-08
be9	1.49E-10	s34 1.64E-05	cr50 7.72E-07	ge70	4.63E-08
b10	1.01E-09	s36 7.00E-08	cr52 1.54E-05	ge72	6.20E-08
b11	4.51E-09	cl35 3.72E-06	cr53 1.79E-06	ge73	1.75E-08
c12	2.32E-03	cl37 1.25E-06	cr54 4.54E-07	ge74	8.28E-08
c13	2.82E-05	ar36 7.67E-05	mn55 1.37E-05	ge76	1.76E-08
n14	8.05E-04	ar38 1.47E-05	fe54 7.27E-05	as75	1.24E-08
n15	3.17E-06	ar40 2.42E-08	fe56 1.18E-03	se74	1.20E-09
016	6.83E-03	k39 3.71E-06	fe57 2.78E-05	se76	1.30E-08
o17	2.70E-06	k40 5.99E-09	fe58 3.76E-06	se77	1.07E-08
018	1.54E-05	k41 2.81E-07	co59 3.76E-06	se78	3.40E-08
f19	4.15E-07	ca40 6.36E-05	ni58 5.26E-05	se80	7.27E-08
ne20	1.66E-03	ca42 4.45E-07	ni60 2.09E-05	se82	1.31E-08
ne21	4.18E-06	ca43 9.52E-08	ni61 9.26E-07	br79	1.16E-08
ne22	1.34E-04	ca44 1.50E-06	ni62 3.00E-06	br81	1.16E-08
na23	3.61E-05	ca46 3.01E-09	ni64 7.89E-07	Etc.	
mg24	4 5.28E-04	ca48 1.47E-07	cu63 6.40E-07		
mg2:	5 6.97E-05	sc45 4.21E-08	cu65 2.94E-07		
mg2	6 7.97E-05	ti46 2.55E-07	zn64 1.09E-06.		

Abundances outside the solar neighborhood ?

Abundances outside the solar system through:

- Stellar absorption spectra of other stars than the sun
- Interstellar absorption spectra
- Emission lines, H II regions
- Emission lines from Nebulae (Supernova remnants, Planetary nebulae, ...)
- γ -ray detection from the decay of radioactive nuclei
- Cosmic Rays
- Presolar grains in meteorites

Asplund et al (2009)

Table 5: Comparison of the proto-solar abundances from the present work and Grevesse & Sauval (1998) with those in nearby B stars and H II regions. The solar values given here include the effects of diffusion (Turcotte & Wimmer-Schweingruber 2002) as discussed in Sect. 3.11. The H II numbers include the estimated elemental fractions tied up in dust; the dust corrections for Mg, Si and Fe are very large and thus too uncertain to provide meaningful values here. Also given in the last column is the predicted Galactic chemical enrichment (GCE) over the past 4.56 Gyr.

Elem.	$\operatorname{Sun}^{\operatorname{a}}$	Sun^b	$B \text{ stars}^{c}$	$\mathrm{H{\scriptstyle II}^{d}}$	GCE^{e}
He	10.98 ± 0.01	10.98 ± 0.01	10.98 ± 0.02	10.96 ± 0.01	0.01
С	8.56 ± 0.06	8.47 ± 0.05	8.35 ± 0.03	8.66 ± 0.06	0.06
Ν	7.96 ± 0.06	7.87 ± 0.05	7.76 ± 0.05	7.85 ± 0.06	0.08
0	8.87 ± 0.06	8.73 ± 0.05	8.76 ± 0.03	8.80 ± 0.04	0.04
Ne	8.12 ± 0.06	7.97 ± 0.10	8.08 ± 0.03	8.00 ± 0.08	0.04
Mg	7.62 ± 0.05	7.64 ± 0.04	7.56 ± 0.05		0.04
\mathbf{Si}	7.59 ± 0.05	7.55 ± 0.04	7.50 ± 0.02		0.08
\mathbf{S}	7.37 ± 0.11	7.16 ± 0.03	7.21 ± 0.13	7.30 ± 0.04	0.09
Ar	6.44 ± 0.06	6.44 ± 0.13	6.66 ± 0.06	6.62 ± 0.06	
Fe	7.55 ± 0.05	7.54 ± 0.04	7.44 ± 0.04		0.14
	0 0 1	(1000) h D	. 1 /		· • • •

^a Grevesse & Sauval (1998) ^b Present work ^c Przybilla, Nieva & Butler (2008), Morel et al. (2006), Lanz et al. (2008) ^d Esteban et al. (2005, 2004), García-Rojas & Esteban (2007) ^e Chiappini, Romano & Matteucci (2003).

^bMetals increased by 0.04 dex to account for diffusio

<u>The solar abundance distribution</u> - should reflect the composition of the ISM when and where the sun was born

solar abundances:

Elemental (and isotopic) composition of Galaxy at location of solar system at the time of it's formation Observed metallicity gradient in Galactic disk:

Many other works on this subject See e.g. Luck et al, 132, 902, AJ (2006) radial Fe gradient = - 0.068 +_ 0.003 dex/kpc from 54 Cepheids

Hou et al. Chin. J. Astron. Astrophys. 2 (2002) 17 data from 89 open clusters radial iron gradient = -0.099 +_ 0.008 dex/kpc

but see also Najarro et al (ApJ, 691, 1816 (2009)) who find solar iron near the Galactic center.

From Pedicelli et al. (A&A, 504, 81, (2009)) studied abundances in Cepheid variables. Tabulated data from others for open clusters.

For entire region 5 - 17 kpc, Fe gradient is -0.051+-0.004 dex/kpc but it is ~ 3 times steeper in the inner galaxy. Spans a factor of 3 in Fe abundance.

Variation with metallicity Kobayashi et al, *ApJ*, **653**, 1145, (2006)

Kobayashi et al, ApJ, 653, 1145, (2006)

El (1)	[X/H] ^a (2)	σ_N^b (3)	$\delta_{\rm DC} (90\% \text{ c.l.})^{\rm c}$ (4)	[X/S] ^d (5)
				<u> </u>
В	-0.57	0.085	0.1 (0.05)	+0.3
N	>-2.24	0.058	0.0 (0.1)	>-1.47
O	-0.54	0.101	0.1 (0.05)	+0.33
Mg	-0.78	0.053	0.3 (0.1)	+0.29
Al	>-2.00	0.054	>0.5	>-0.73
Si	-0.91	0.053	0.3 (0.1)	+0.16
Р	<-1.06	0.000	< 0.3	<+0.01
S	-0.87	0.050	0.1 (0.05)	0.0
C1	-1.55	0.000	>0.0	>-0.78
Ti	-1.87	0.112	>0.7	>-0.4
Cr	-1.61	0.032	>0.7	>-0.14
Mn	<-1.85	0.000	0.7 (0.1)	<-0.38
Fe	-1.69	0.017	>0.7	>-0.22
Со	<-1.48	0.000	>0.7	>-0.01
Ni	-1.73	0.007	>0.7	>-0.26
Cu	<-1.11	0.000	>0.7	<+0.36
Zn	-0.91	0.022	0.2 (0.1)	+0.06
Ga	<-1.45	0.000	0.7 (0.1)	<+0.02
Ge	-0.92	0.035	0.3 (0.1)	+0.15
As	< 0.26	0.000	0.0	<+1.03
Kr	< -0.44	0.000	0.0 (0.1)	<+0.33
Sn	<-0.27	0.000	0.0 (0.1)	<+0.5
Рb	< -0.10	0.000	0.0 (0.1)	<+0.67

 TABLE 1

 Elemental Abundances in DLA-B/FJ0812+32

Abundances in a damped Ly-alpha system at redshift 2.626. 20 elements.

Metallicity $\sim 1/3$ solar

Fenner, Prochaska, and Gibson, ApJ, 606, 116, (2004)

NOTE.-Measurements taken by PHW03.

^a Gas-phase abundance on a logarithmic scale relative to solar, where $N(\text{H I}) = 10^{21.35} \text{ cm}^{-2}$.

^b Statistical error on gas-phase abundances.

^c Dust corrections and uncertainties estimated from depletions patterns observed in Galactic gas.

^d Dust-corrected abundances on a logarithmic scale relative to S.

Integrated yield of 126 masses 11 - 100 M_{\odot} (1200 SN models), with Z= 0, Heger and Woosley (2008, ApJ 2010) compared with low Z observations by Lai et al (*ApJ*, 681, 1524, (2008)). Odd-even effect due to sensitivity of neutron excess to metallicity and secondary nature of the s-process.

28 metal poor stars in the Milky Way Galaxy -4 < [Fe/H] < -2; 13 are < -.26

Frebel et al, *ApJ*, **638**, 17, (2006) Aoki et al, *ApJ*, **639**, 896, (2006)

Christlieb et al 2007

