Lecture 4

Basic Nuclear Physics — 2

Nuclear Stability,
The Shell Model



Nuclear Stability

A sufficient condition for nuclear stability is that,
for a collection of “A” nucleons, there exists no more
tightly bound aggregate.

® E. g., a single ®Be nucleus. though it has finite binding energy,
has less binding energy than two “He nuclei, hence ®Be quickly
splits into two heliums.

® An equivalent statement is that the nucleus 4Z is stable if there is
no collection of A nucleons that weighs less.

® However, one must take care in applying this criterion, because
while unstable, some nuclei live a very long time. An operational
definition of “unstable” is that the isotope has a measurable abundance
and no decay has ever been observed (ultimately all nucle1 heavier
than the iron group are unstable, but it takes almost forever for
them to decay). One must also include any lepton masses emitted
or absorbed in a weak decay.



Most collections of nucleons have finite positive
binding energy, but a nucleus is still considered
“unbound” if it can gain binding by ejecting a
neutron or proton. If energetically feasible, this
ejection occurs on a very short time scale

The neutron and proton “drip lines” are defined by

BE(A*t1Z) < BE(* Z) S, <0
BE(A*1Z) < BE(* Z-1) S, < 0

Note that by definition
BE(n) = BE(p) = 0

Even a nucleus that is bound is commonly unstable
to weak decay or alpha-decay.
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Protons

A

Classification of Decays

EC

O -decay: (preserves isospin)
e emission of Helium nucleus
o/ > 72
e N > N-2
e A > A4

€ -decay (or f-decay)
e emission of e and 7
o/ > 7+1

e N > N-1

e A = const

e*-decay
e emission of et and v
o/ > 7-1
e N > N+1
> ¢ A = const

Neutrons

Electron Capture (EC)

e absorbtion of e and emiss v
o/ > 71

e N > N+1
e A = const



Examples:

’He
*He
—> ‘He
*He
°He
"He

*Be

etc

- diproton - BE <0 unbound |
BE=7.718 MeV bound and stable
28.296 bound and stable
27.56 unbound 7.6 x10%* s
29.27  bound but decays to °Li in 807 ms
28.86  unbound 3 x 10" s

BE(n) = BE(p) =0

26.33 unbound —»*He +pin3 x10* s

31.99 Dbound and stable

39.24 Dbound and stable

41.27 bound (but decays to °Be in 840 ms)

56.50 (barely) unbound - decays to 2 “He
in6.7 x10™" sec

The difference in binding energies for reactions other
than weak interactions is also the "Q-value for the reaction"
e.g. “He(n,y)'He Q=20.56 MeV



Energy can be released by adding nucleons or
other nuclei to produce a more tightly bound product:

BE(SFe) = 492.247 MeV
BE(°"Fe) = 499.893 MeV
Quy(°°Fe) = 7.646 MeV

The reaction °Fe(n,y)°"Fe provides 7.646
MeV of kinetic energy and radiation. To go
the other way, 57Fc(’y,n)56Fc; would require
7.646 MeV. The locus of nuclei with Qn~y
= ( is known as the “neutron-drip line”.
Similarly Qp~y = 0 defines the “proton=drip
line”.

The criterion for weak decay is a little more
complicated because of the mass difference
between the neutron and proton and be-
cause electrons or positrons may be created
or destroyed.

The mass of the neutral atom, defined as
the “atomic mass’ can be written

Both *°Fe and *'Fe

are stable

For Fe the
neutron drip line
1s found at A = 73;
the proton drip is
at A=45.

Nuclei from 46Fe
to 7?Fe are stable
against strong decay.



The mass of the neutral atom, aka the “atomic mass” is

nuclear part (but my; contains e")
MAZ) =7 ng + Nmy — BE(AZ) )2 .
+[15.73 23 eV — Z(13.6 ¢V)] /e

electronic binding energy

where m gy is the mass of the neutral hydro-
gen atom (including me), my, is the mass
of the neutron, and the term in the brack-
ets is an approximation to the difference in
electronic binding energy. The Z 5/3 term
is a Thomas-Fermi approximation to the to-
tal binding energy of Z electrons and the
Z(13.6) eV term is clearly the electronic bind-
inl% energy of Z hydrogen atoms. Usually
£he Eetin in the brackets is negligible and ne-



More commonly used is the Afomic Mass Excess

1l amu = 1/12 the mass of the neutral 12¢ atom
931.494 MeV /c?

myp = 1.00727647 amu
mp = 1.008665012 amu
my = 1.007825037 amu Le., m, +m,

00 = 15:94945mmm  15.994915 amu
1266 — 1200000 amu

neutral atoms

The atomic mass excess is then defined:

M(4Z)

> the amomic mass

A = atomic mass excess

= 931.494 MeV [M(AZ) — A]

or M(*Z)=A+A amu's

A is an integer

The mass excess of 2C is obviously zero.
The mass excess of 100 is -4.737 MeV. That
is the neutral 10 atom weighs less than 16
times 1/12 of the neutral 12C atom.

This automatically includes
the electron masses

Wilhelm Ostwald suggested O in 1912 (before isotopes were known)
In 1961 the carbon-12 standard was adopted. O was not really pure '°O
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Nuclear Wallet Cards

Jx
1/2+

1/2+
1+

1/2+
9_

(2-)

1/2+
0+
3/2-
0+
(3/2)-

{1/2-)
0+

9_
3/2-
1+
3/2-

3/2-
(1-,2-)
3/2-

(3/2-)

3/2-
3+

3/2-
1+

3/2-
9

A
(MeV)

3.071

7.289
13,126
14,950
25.9
32.9
41.9
49

14,931
2.425
11.39
17.595
26.10
31.588
40,94
48.81

28s
25.3
11.68
14,087
14,908
20.947
24.954
33.08
40,80

23.66
28.97

T%, T, or
Abundance

10.24 m 2

99.985% I
0.015% I
12.892y 2
4.6 MeV 9
5.7 MeV 21
1.6 MeV 4

29x10-23y 7

0.000137% 2
99.999863% 2
0.60 MeV 2
8068.7T ms 15
150 keV 20
118.0 ms 15
65 keV 37
0.17T MeV 1]

unstable
6.03 MeV
=1.5 MeV
7.59% 4
92,41% 4
2838 ms &
178.3 ms £
1.2 MeV 3
8.50 ms 14

=10 ns
?
92 keV 6
53.22d 6
6.8 eV I7
100%
1.51x10%y ¢
13.815 8
21.49 ms 2
2.7x10°21 5 18
4,84 ms 10

=200 ns
=200 ns

unstable
1.4 MeV 2
770 ms 3
0.54 keV 21
19.8% 2
80.2% 2
20,20 ms 2
17833 ms I7
12.5 ms §
9.83 ms 7

Decay Mode
B-

=l =]

@, n
B-

n

B-, B-n 18%
n

2n?

p?
p
o, p

B"’ H B"'G:

B-, B-n50.8%

n

B-, B-nc 0. 027%,
B-n

n?

p, e
£
o

B-
B-, B-c£3. 1%
B-, B-n< 1%
n

B-, B-n 9495,
B-2n &%

n?

2n?

2p?

P,

£, &0

P,

B—, B-9c 1.58%
B_

B—, B-n6.04%
B-, B-n 93. 6%
B-2n 0. 4%

115 pages
http://www.nndc.bnl.gov/wallet/

see also

http://t2 lanl.gov/data/astro/molnix96/massd.html



The binding energy (MeV)is given in terms of the mass
excess by the previous definition of mass excess

(neglecting electronic binding energy)

BE
pak Zm,+ Nm_-M("Z)
A A 2
M("Z)=A+ ——— amu's (1 amu) ¢c*=931.49... MeV
931.49...
A(*Z
BE(MeV) =7 (1.007825 amu) + N (1.008649 amu) - Z - N - _A0Z)
031.49.. 931.49...
A(*Z)
=7 (0.007825 amu) + N(0.008649 amu) - ————
’ 9031.49...

BE = ZA, +NA -A(%Z)

where A, =7.288969 MeV = mass excess of H in amu X 931.49... MeV
A, =8.071323 MeV = mass excess of n in amu X 931.49... MeV

eg. 'He A =+2.425 Audi and Wapstra, Nuc. Phys A., 595, 409 (1995)
BE = 2(8.07132)+2(7.2889) - 2.425
= 29.296 MeV
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B-decay: n—p+e +V,  unstable if

AZ-1) - Z +e + v
Add Z-1 electron mnuc(AZ 1) > mnuc(AZ) + me Nuclear masses
masses (AZ 1) > M(AZ) Atomic masses
(AZ 1) > A(AZ) Mass excesses

A=M-A4
positron-decay: p—n+e’+v,

AZ+1) - 4Z + et + v

mnuc(AZ+1) > mnuc(AZ) + Mme

Add Z+1 electron masses (AZ+1) > M(AZ) + 2 me
AAZ+1) > AAZ) + 2me

This is a little tricky since one electron mass
has to be paid to create the positron, but an-
other also must be paid for the electron that
disappears when a neutral atom (Z+1) turns
into Z. That is, mnuc(AZ +1) = M(AZ +
1) — (Z 4+ 1)me but mpue(42) = M(A2Z) -
Zme



Add Z electrons
Also possible at high T
e’ +n—>p+v,
positron capture

68 CHAPTER 2. NUCLEAR PHYSICS

electron capture: p+e —n+v,

A(Z+1) + e = A7 jxex+ v
Mme + mnuc(AZ+1) > mHUC(AZ)
MAZ+1) > M(A2)
AAZ+1) > AAZ)

These decays may proceed to excited states
of the daughter nucleus in which case one or
more ['-rays will be emitted. This is the ba-
sis for y-ray line astronomy.

An example of weak instability

Z N A(MeV) ©B 16 5A62 5Z
13C 6 7 3 BC 3..125 6
BN 7 _6"5.345 oN 5345 7
BB75 8 16.562 80 23114 8

The “Q-value”, or energy carried away by
the products, is just the difference in the
mass excesses, adjusted in the case of positron-

o N N 0 Z
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emission by 2mec?.
= A(*2) — A(*Z-1) e — decay
Qaecay = A(AZ+1) — A(‘AZ) — 2m, e —decay
= A*Z+1) - A(*2) e — capture

For example:

BN(etr)8C Qg+ = 1.20 MeV

2m.c?
where 1.20 = 5.345 - 3.125. Note in the same
example, that for electron capture the Q- 2,2 =1.02 Mev
value would be Qee = 2.22 MeV, i.e., 2mec?
larger. Also, 16.562 - 3.125 = 13.437, and

BBev)’C Qp=13437 MeV

Frequently nuclei are unstable to both electron-capture
and positron emission.



Example: p(p,e*v)?H

Mass excess 2 'H =2x7.289 MeV
= 14.578 MeV
Mass excess “H = 13.136 MeV. This is a
smaller number so the diproton is unstable to
weak decay. The Q value is given by
14.578 -13.136 = 1.442 MeV
- 2m _c* = 0.420 MeV
but the electron and positron annihilate and
so we get the 2mec2 back and the reaction
yields 1.442 MeV

But the neutrino carries away a variable amount
of energy that averages to 0.262 MeV so really
only deposit 1.18 MeV of energy locally
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In terms of binding energy
Qs=BE("Z+1)-BE("Z)+0.782MeV
Q. =BE("Z-1)-BE("Z)-1.804 MeV
Q, =BE("Z-1)-BE("Z)-0.782 MeV

Another example, pick out the stable iso-

topes:
Nucleus A
¢l -27.54
40 A, :
, Ar -35.04 The ones with the bigger
40K -33.54 (less negative) mass excesses
40Ca _34.85 are unstable.
03¢ -20.53

01 and %S¢ are obviously unstable. 40K
can decay either to “’Ar (10.7%) or to 4’Ca
(89.3%), but both 4’Ar and 4°Ca are stable,
at least for a very long time.
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How many stable isotopes are there for
each A? Recall the mass formula

Z2
BE(AZ) = ajA —ap A/ — e
. 2
— a4% + (5(A)

We previously solved for Zg.pe such that
the partial of BE with respect to Z at con-
stant A was zero

2a4A
a3A2/ 3+ day
A little algebra (omitted here) shows that if
A= constant and § =0 (i.e., A is odd), then
the differences in binding energy for two nu-
clei, one having arbitrary Z and the other
having Zg.p)e Will be parabolic in Z

Zstablc =

ABE(odd A) = const (Z — Zstable)*
day as
A A3

const =

See the figure on the next page. This means



stab stab

S ——

_(%) A*—4AZ+A4Z° - A +4AZ,, -4Z2 )

a
T AT% (22 B 2ZZsz‘ab t thab + 2ZZsz‘ab - zszab)
28 \(22 077 4+7% 272 _AZ+AZ +277
- A ( - stab t stab stab T stab T stab)

K(Z Zstab) (;/3 ](ZZZstab B ZZsztab)

F

stab )

L“a }( 273 ~AZ+AZ,, +27Z ) =K(Z-Z



T [,;/3 )(ZZZSmb ~2Z.,)
484 ( 222
A
— 2Zstab ;/3 424 ](Z N Zstab)
Z.n—2)

- (4a,)( Zw -

27
( AStab j a3A2/3 + 484)( Zstab N Z)_ (484)( ZStab - Z)

-AZ+AZ_, + ZZZStab)

2{ 2a A }
a.A?® +4a
= : A : (33A2/3 +4a )( Z o~ Z)_ (484)( Zstab Z)




At constant A

044- A 2
\\ ABE: =eonst (2 ‘25&2\&:3
\ F
oe(*2)
)
t
Mm(*2) Vg

\ onl" one 3'\75..1_
value

Zakable

[ UNR



Odd A. A=135

Single parabola
even-odd and odd-even

52
Te

Pr

Only 3°Ba
1s stable.
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that for all A = odd, there is one and only
one stable isotope, e.g., 1?’C, 15N, 17'O, 19F,
21Nc, 23Na, 27Al, etc. There are some near
calls - 113Cd decays to 113In with a half life
of 9 x 10 y; 115Tn decays to 11°Sn with a
half life of 4 x 10™ y; and 123Te decays to
123G, with a half life of 1 x 1013 y. These
special cases are because of shell closures.
e.g., at Z = 50 for In and Sn.

Things are more complicated for even A
because of the pairing correction and the two
different ways of making even A (even Z,N;

odd Z,N).

ABEFE(even A) = const (Z — Zstab)2
+ 0 odd Z
— 0 evenZ

As a result one gets two curves, one for
the odd-Z, even-A isotopes, and one for the
even-Z, even-A isotopes. Depending on the
placement of points on these curves one can
have 1, 2, or even 3 stable isotopes at each



Even A:

E A. A=102
two parabolas v °
Two parabolas separated by 20,
one for 0-0 & one for e-¢ odd-odd and even-even
lowest 0-0 nucleus often has
two decay modes ;0dd-odd »
most e-e nucle1 have two / /R .
stable isotopes f i
there are nearly no stable 0-o0 \".\ A
nuclel in nature because these = \ B
can nearly all S-decay to an e- A\ [
e nucleus A\ /\! AN
= 7 N
v g _~~ even-even
42 44 46 48

Mo Tc Ru Rh Pd Ag Cd



13 ”

an even-even nucleus must decay to
13 ” .

an ~odd-odd™ nucleus and vice versa.

mass 64

Zr

%71 is stab

Lad:ualtn, ®2r may Ae,a.’
o PNk with 2 yery
lowg hatk- LWk ; Mass

36~ Xe,Ba, Ce wught
be 3 better exavsple)
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A. For example 12C, 14N, and 1°0; but also
WAy, 00a, 24Cr, MFe, 84Ni %47n: and even
136xe, 136Bs, 136Ce. Because the pairing
energy gets smaller as one goes to large A,
the two parabolas lie closer and it is easier
to have multiplets. For light elements below
sulfur, 1 isotope is typical for even A. Above
about calcium, two isotopes are typical, but
there are exceptions, especially in the vicin-
ity of closed shells. Nuclei with both odd Z
and odd N are very rarely bound, but there
are notable exceptions, 2I-I, 6Li, IOB, 14N,
but these are so light that our liquid drop
model is quite inadequate.



To summarize:

odd A There exists one and only one stable 1sotope

oddZ —-odd N  Very rarely stable. Exceptions ?H, °Li, 1°B, “N.
Large surface to volume ratio. Our liquid drop
model is not really applicable.

even Z —even N Frequently only one stable isotope (below
sulfur). At higher A, frequently 2, and
occasionally, 3.



The Shell Model



Shortcomings of the Liquid Drop Model

® Simple model does not apply for A <20

: (101
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Atomic mass number A




Neutron Magic
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Neutron separation
energies
— saw tooth from
pairing term
— step down when N
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number at 82
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Abundance by number relative to Si as 10°

Abundance patterns reflect magic numbers
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Fig. 1.11 Difference between experimental ground-state atomic mass
excess (Audi et al. 2003) and the mass excess predicted by the spher-
ical macroscopic part of the finite-range droplet (FRDM) mass formula
(Moller et al. 1995) versus neutron number.
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Shell Model —

Our earlier discussions treated the nucleus as sets of
identical nucleons and protons comprising two degenerate
Fermi gases. That 1s OK so far as it goes, but now we shall
consider the fact that the nucleons have spin and angular
momentum and that, in analogy to electrons in an atom, are
in ordered discrete energy levels characterized by conserved
quantized variables — energy, angular momentum and spin.

Clayton 311 -319



A highly idealized nuclear potential
looks something like this “infinite
square well”.

As 1s common in such problems
one applies boundry conditions to
Schroedinger’ s equation.

V==-FV . r <R
= oo r=> R
Y(R)=0 Vv _—=50-60MeV

(In the case you have probably seen before of electronic energy levels in
an atom, one would follow the same procedure, but the potential would

be the usual [attractive] 1/r potential.)



Schroedinger's Equation:

2
gy +(V-E)¥ =0
2M
Spherical symmetry:
\Pn,l,m (7", 69 @) — fn,l (7") }/Zm (9, ¢)
Radial equation: Nuclear E.nerg}tf t
(9 20 aenre o
B +— r)+ + V r 7)Y =FE 7
2M[al"2 rar)](n,l( ) |: 21\/;’/2 nuc( ) ](n,[( ) ](n,l( )
Rotational
Cnergy Clayton 4-102

Solve for E.



Substitute:

2M(E-V_ )
p= . Vo 1s<0
To obtain:
2
0L oYyt =0
dp’ ap
Solution 1s:
T
J = 5 i (P)

Spherical Bessel Functions

Abramowitz and Stegun 10.1.1



The solutions to the infinite square well potential
are then the zeros of spherical Bessel functions (Landau and
Lifshitz, Quantum Mechanics, Chapter 33, problem 2)

K’ , / 2 more negative
+ S| T (n+—j — f(f-l-l) means more
2MR - bound

E =—-\V

n,l nuc

We follow the custom of labeling each state by a principal quantum
number, n, and an angular momentum quantum number, ¢, e.q.
3d (n=3,(=2) ¢=0,1,2,3,etc=s,p,d,f,g, hetc

¢ States of higher n are less bound as are states of larger ¢

{ can be greater than n

® Each state is 2 (2¢ +1) degenerate. The 2 out front is for the
spin and the 2 { + 1 are the various z projections of ¢

® E.g., a 3d state can contain 2 (2(2) +1) = 10 neutrons
or protons



This gives an energy ordering

ﬂz(n+§) —0(£+1))

1s’ 1p° 14" 2s” 1% etc.

2

Or 25
71'2 — =2 47r2—6 47r2 —7r2—12
4 4
9.87 20.20 3348 3948 49.69

This simple progression would predict shell closures

at Z=N=2,8,18, 20,34 etc,i.e, ‘He, °0, *Ar, “Ca, etc

So far we have considered the angular momentum of the
nucleons but have 1gnored the fact that they are Fermions

and have spin



Energy —>

cumulative Infinite Square Well Solutions

occupation
4s
168 desired
24 166 -
magic
numbers
_3'0 1;, 138
— 132
2 106 126
dotted line is to
3s PP 92 distinguish 3s, 2d,
R - b 90 82
2d 53 and 1h.
2P 40 50
A 34 28
2s
- 1d 122 20
1P 8
1s



Improving the Nuclear Potential Well

The real potential should be of finite depth and should
probably resemble the nuclear density - flat in the middle with
rounded edges that fall off sharply due to the short range

of the nuclear force.

R = Nuclear Radius
d = width of the edge
R>>d

for neutrons

> [

Saxon—-Woods

Vir)=



Energy —»

3p
2
S TR T
2d_
19
2p
1
2
19
1p
1s

Infinite square
well

198

168
166

156

138
112
106

92

70
68

58

40
34

2s 20

With Saxon-Woods

potential

states of higher |
shifted more to
higher energy.

5

S O

Magic
numbers



But this still 1s not very accurate because:

® Spin is very important to the nuclear force

® The Coulomb force becomes important for protons
but not for neutrons.

Introduce spin-orbit and spin-spin interactions
IS and §-§
Define a new quantum number
j=1+%
Get spliting of levels into pairs
Ip=>1pyn  1p3p
2f = 1f5,, 2f;),
etc

Label states by nl;



This interaction 1s quite different from the fine

structure splitting in atoms. It 1s much larger and lowers
the state of larger j (parallel 1 and s) compared to one
with smaller j. See Clayton p. 311{f). The interaction has
to do with the spin dependence of the nuclear force, not
clectromagnetism.

Empirically V=-o 1-s
o =13 A?® MeV

AE:_KZ ]:(14_1) These can be large
2 2 compared even to the
spacing between the
+ ﬂ (l + 1) ]I(Z . l) principal levels.
2 2

The state with higher j is more tightly bound; the splitting is
bigger as [ gets larger.



infinite .
square = T2

fine structure splitting
(16)~[184] — 184

wall—. "%,

2844y = (8]~

w— 3 —

Y= (12)-

29413 = {10}~

3 3 _.——3’”1
P Tt ~—3pan

,
,

.
-]h—-"
~ .~

RN

-

'- 3‘ — - — 3’,,’

.
- —
~ .~

»

— 2' U =
=232

-
-

- 'f—(

-
-2

~

>
-—1d —~‘~- 2‘|r

e 1P

—, —\‘_~
’ ~ W
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closed shells

= (14)=[126] =126

1Ay g e (12} (82 e 82

(10)—[50] == 50

(8)-(28] =28

(4)=(20] w— R0

(2)- (8 =——8

(2)= (2] e 2

Protons:

For neutrons

see Clayton p. 315
The closed shells are the
same but the ordering of
states differs from 1g,, on
up. For neutrons 2dy), 1s
more tightly bound. The
3s,,, and 2d,, are also
reversed.



For neutrons the level scheme is the same as for protons

up to N = 50. Above that the Coulomb repulsion of the

protons has an effect and favors orbits (for protons) with

higher angular momentum. Thus for example the 515 neutron

is in the d level of j = 5/2 while for protons it is in the g level of
j="/2. The effect is never enough to change the overall

shell closures and magic numbers.

Maria Goeppert Mayer — Nobel talk - 1963



The correck eneryy \ewved orda'm, then

becomes !

eubrons 3 4 2 . 2 “
Nedon®:  1sy, 1Ps Ly, 1dsu 2%% 1du

] 4 B LI 0
Lha, 2py, i 20y 195, cle

M same th m,k 19/, but
dilbers 2t vnext lewel 245, for m
193, for p

Each state can hold (2j+1) nucleons.



The numbers where each of these shells close

e
2,(6), %, (4,x), 20, 28, (32 33, 40) SO

where  the calealated shell gaps are rdahveh)
small for the numbers w1 parenthesis

kau' 2., %) 20, 2%, S0, %2, \26

\
Examples :  *He, ‘0, ©ca, N, g,
\20gn 20% 2090
) Pb ) 8. end o‘ ‘“\c.)
2=50 2=92 N =120 N=12{ > S-process

Each state & now (2341) degenerate  (less than before)

The. tohl nm‘u 0; s\'aa\'es of qiven n4l
15 shill the same 2(21+1)

before Lp  (2X241) =6 now  Lpy, (4)
Loy, €2)

“& \W with htg\\a- ) e wmwore 'h,‘\‘“l, bNHJ

(remember *H (=Y o Lol
tde t¢ =0t 15 wot )



Some implications:

A. Ground states of nuclei

Each quantum mechanical state of a nucleus can be specified
by an energy, a total spin, and a parity.

The spin and parity of the ground state is given by the
spin and parity (-1)' of the “valence” nucleons, that is the
last unpaired nucleons in the least bound shell.

Is’ 1ps 1p., 1d; 2s” 1d,

5/277127773/2

i) Al 3M s‘\'akes o{' even - even nudc}

i haye
Spn and Pariy OF - 4. nucleons 3re all
?ure.J . n.C 2 4
By 1pp, n
; : 6n,6p
lsVz 1?’13 P
\$

() 1?\!5 13:/2 n 10n,8p



W) odd- a9 vucle - spin  and pard-) tuuglb)
g\uun N extra (valmcz) nucleon

2. \1-0 ( Y 1 lsh - g protons
- (s/ ) + . neutrons
=\ (pariy o (=1)%)
%o ( ) I 8 protons
¥ (‘/g)- 7 neutrons
W) The odd-odd nucer pose special  problems
& z 4
N Ly, L, Wy, n
" L] 'L ?

The htal I 1w the veddor Sumn. of  +he
fwe extra wvueleons whidh culd be O or 1Y

T twens out o be 1 (but the First
excited shke (2313 Mew) » OF,

(the parity is the product of the parity of
the two states)



Obvieusly | nucler can ave exuted states just
35 akoms can. ey differences -

O 2 ¥nds of particdes to excite

W) multiple excidskions are vot wncommon
i) spin- orbit m’hrad:.gn re\a*'wei, l‘ar’er
W) L cam be greater than n

(I < n is true for 1/r potentials but not others)
These  excifed states (mmd i some cases SmunJ

s‘hkes) C3n serve 35 resonances for nuclear
reackions .
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56
I Fe
spin and excited states have either all integer or half-integer
parity spins according to the ground state.



Is’ 1py, 1p’, 1d;,2s’ 1d,

1/2 5/2771/27773/2 00

eg, 12C first excited state

2 . 4 2 4.3 1
Isiplps, = Lspplpiplpy,

Adding 3/27 and 1/2” gives 17 or 2"
The first excited state of '*C at 4.439 MeV is 2*

but it is not always, or even often that simple.

Multiple excitations, two kinds of particles, adding
holes and valence particles, etc. The whole shell
model is just an approximation.



Is;,1ps,1pi, 1ds, 25015, ... Nuclear Reactions

5/2

Must canserve e Ulsmygj Bg_sorc) and :u.

Vs e (pg)?N L LAY
| h/- 3.51\
¢ F* st
p I%« Bt 2.345
A
\2
C+
o X
So can do i s ‘
"’h\s Y'C‘aaf\on o MeN
with protens
that hawe no : o)
angular wiomentwm L=0 R 3

] In (ot wth L=0 Omu
g ret vakKe '3"‘9 o Hher s bte




1
Suppose the 2.365 MeV state in °N had J” =5 instead.

Could the resonant reaction still proceed? Yes but for a different

value of /.

J (target) + J(projectile) + [ (projectile)=

J(product) + J(outgoing particle) + (outgoing particle)

J(photon)=0
Jmorp)=1/2
and we want to couple 1/2" (target) to 1/2” (product). So /=1 works since
1 -
— 4+ 1 — é, l
2 2 2
and the partity is + for the target state and - for /=1, so /=1

would make states in ’N with spin and parity, 1/2”, and 3/2".

One could make a 3/2" state with an /=2 interaction and so on.

But an £ =0 interaction is much more likely (if possible). Cross sections
decline rapidly with increasing ¢




