Lecture 4

Basic Nuclear Physics — 2

Nuclear Stability,
The Shell Model

Most collections of nucleons have finite positive
binding energy, but a nucleus is still considered
“unbound” if it can gain binding by ejecting a
neutron or proton. If energetically feasible, this
ejection occurs on a very short time scale

The neutron and proton “drip lines” are defined by

BE(At1Z) < BEAZ) S, <0
BE(A*1Z) < BE(* Z-1) S, <0

Note that by definition
BE(n) = BE(p) = 0

Even a nucleus that is bound is commonly unstable
to weak decay or alpha-decay.

Nuclear Stability

A sufficient condition for nuclear stability is that,
for a collection of “A” nucleons, there exists no more
tightly bound aggregate.

® E. g., a single ®Be nucleus. though it has finite binding energy,
has less binding energy than two “He nuclei, hence 8Be quickly
splits into two heliums.

® An equivalent statement is that the nucleus AZ is stable if there is
no collection of A nucleons that weighs less.

® However, one must take care in applying this criterion, because
while unstable, some nuclei live a very long time. An operational
definition of “unstable” is that the isotope has a measurable abundance
and no decay has ever been observed (ultimately all nuclei heavier
than the iron group are unstable, but it takes almost forever for
them to decay). One must also include any lepton masses emitted
or absorbed in a weak decay.
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Examples:
’He - diproton-BE <0 unbound |

Protons

. . - : i i He BE=7.718 MeV bound and stable
Class1ﬁcat10n Of Decays ?e?sicsas?c;n(%rfeflzmeni Irsﬁzfe;:)s ‘He 28.296 bound and stable BE(n) =BE(p) =0
N : ﬁ 3 IZ\I-22 *He 27.56  unbound 7.6 x10% s
e A D A4 °*He 29.27  bound but decays to °Li in 807 ms
'6— N FC e~-decay (or f-decay) "He 28.86 unbound 3 x 10%'s
e » emission of e and 7
«7Z > 7+1 °Li 26.33 unbound —»*He+pin3 x10% s
*N->N-1 oL 31.99 bound and stable
* A = const "Li 39.24 bound and stable
e+-d-ec:ay . 8L 41.27 bound (but decays to *Be in 840 ms)
(04 : ;m;sszl?ln of e*and v «— Be 56.50 (barely) unbound - decays to 2 “He
eN > N+1 in6.7 x10™" sec
> ¢ A = const etc

7
Neutrons Electron Capture (EC)

* absorbtion of e and emiss 7 The difference in binding energies for reactions other

: ﬁ ;) %\l-il than weak interactions is also the "Q-value for the reaction"
e A = const ° e.g. *He(n,y)'He Q=20.56 MeV

The mass of the neutral atom, aka the “atomic mass” is
Energy can be released by adding nucleons or
other nuclei to produce a more tightly bound product:
nuclear part (but my; contains ¢)

BE(*0Fe) = 492.247 MeV M(AZ) =7 ng + Nmp — BE(*Z) 0

56 57
BE(’TFe) = 499.893 McV Both F‘;‘“d Fe + (1573253 oV — Z(136 V)] je2
N NS are stable
Qm,(%Fc) = 7.646 MeV electronic binding energy
ion 56 57 ~ 46
The reaction Fe(n,y)" Fe provides 7.646 where my; is the mass of the neutral hydro-
MeV of kinetic energy and radiation. To go . . . N
For Fe the gen atom (including me), my, is the mass

the other way, 57F0('y,11)56}'*‘07 would require
7.646 MeV. The locus of nuclei with Qn~y
= 0 is known as the “neutron-drip line”.
Similarly Qpy = 0 defines the “proton=drip

neutron drip line

! of the neutron, and the term in the brack-
is found at A = 73;

the proton drip is ets is an approximation to the dlffgr%ncc in
at A =45. electronic binding energy. The Z 5/3 term

line”. is a Thomas-Fermi approximation to the to-
tor o T Nuclei from “°Fe .1
The criterion for weak decay is a little more tal binding energy of Z electrons and the

. . to 7?Fe are stable - -
complicated because of the mass difference against strong decay. Z(13.6) eV term is clearly the electronic bind-

between the neutron and proton and be-
cause electrons or positrons may be created
or destroyed.

The mass of the neutral atom, defined as
the “atomic mass’ can be written

inl% gnergy of Z hydrogen atoms. Usually
&l %te, L ) . ..
i€ term in the brackets is negligible and ne-



Nuclear Wallet Cards
More commonly used is the Afomic Mass Excess Nushids s Tror

A Jx (MeV) Abundance Decay Mode
0 n 1 12+ 8.071 10.24 m 2 B-
lamu = 1/12 the mass of the neutral 2C atom B T A 61
. ; 2 A e
= 981494 Mev /e O I
mp = 1.00727647 amu 2 H l 3 ﬁﬁgal :goxnlnol-;:z/;
_ o A i 01 3435 99.999863% 2
T = om0 e o e DR 115 pages
my = 1. 5037 amu €, My m the amomic mass v Wels b Bnisn
o o0so1s Do b i Dees hitp://www.nndc bul. gov/wallet/
= 9455 ami B ! 17 Mo n?
neutral atoms : u 3L s 30 unstable  p?
2C° = 12.00000 amu S oan dres  ciaev e
. A . Do dmoEi
The atomic mass excess is then defined: o @a- 4954 178.0med o pnso.o
. 0GR N s B Bonoc0. 0278,
A = atomic mass excess or M(AZ) =A+A amu's 12 50.1s om0
a4 A A 4Be 5 (24 388 ? P
= 931.494 MeV [M("Z) — A] A fis e figg i 322 i;iiﬁ gfgé}v‘%% 5"’
The mass excess of 12C is obviously zero o o e ety o
T I Yy Zero. 00 don aviomes b pedin see also
The mass excess of O is -4.737 MeV. That B s anarten x .
is the neutral %0 atom weighs less than 16 This automatically includes 15 08 aom  w hitp:/2.1anl.gov/data/astro/molnix96/massd.html
times 1/12 of the neutral 12C atom. the electron masses O G :;:
7 (3/2-) 27.87 1.4 MeV 2 p,a
. . . 8 24 22.921  770msd e, ec
Wilhelm Ostwald suggested O in 1912 (before isotopes were known) o U Li4le osikevar oy
In 1961 the carbon-12 standard was adopted. O was not really pure '°0 %Y diies s0domes g paetim
L T
15 28.97 9.93 ms 7 B-, B-n93. &%,
B-2n0.4%
1
The binding energy (MeV)is given in terms of the mass
excess by the previous definition of mass excess 22 NUCLEAR STABILITY o
(neglecting electronic binding energy) B-decay: n—p+e +V,  unstable if
A A .
(Z-1) - “Z +e + v
BE A Add Z-1 electron AZ 1) > Z) +
> = Zmy+ Nm,_ - M("Z) Mnue( ) mﬂ‘z Me Nuclear masses
€ masses MH#Z-1) > M(#2) Atomic masses
A A A
M(*Z) = A + 3o dmus (1 amu) c>=931.49... MeV APZ-1) > A(%Z) M“SASQC;S_SZS
U sitron-decay: p—>n+e*+v
BE(MeV ACZ posi )
#49) =7 (1007825 amu) +N (1 008649 amu) -Z-N- 931(—49)
K . K Z+1) AZ+(’++I/
ACZ) e Z +1) > mue(12) + m
=7(0.007825 amu) + N(0.008649 amu) - ——— ‘muc nue B
931.49... Add Z+1 electron masses AZ +1) > M AZ) +2me
A(AZ +1) > AZ) + 2me
BE = ZA, +NA, -A("Z) This is a little tricky since one electron mass
has to be paid to create the positron, but an-
other also must be paid for the electron that
where A,; =7.288969 MeV = mass excess of H in amu x 931.49... MeV disappears when a neutral atom (Z+1) turns
=8.071323 MeV = mass excess of n in amu x 931.49... MeV into Z. That is, muuc(1Z + 1) = M(1Z +
" 1) = (Z 4+ 1)me but myue(*Z2) = M(*Z) —
eg. ‘He A =+2.425 Audi and Wapstra, Nuc. Phys A., 595, 409 (1995) Zme

BE = 2(8.07132)+2(7.2889) - 2.425
=29.296 MeV



8 CHAPTER 2. NUCLEAR PHYSICS

22. NUCLEAR STABILITY 69
electron capture: p+e€ —n+v, L 9
emission by 2mec”.
— A — Ay _ s — decay
AZ+1) + e = A7 xwxx+ v N A(AZ) Az N 1) ¢ — decay
A A Quecay = A*Z +1) = A(%Z) — 2m,. e —decay
me + Mue(* 2 +1) > mue("Z) = A*Z+1) - A(*2) e — capture
Add Z electrons M(AZ +1) > M(AZ)
Also possible at high T A(AZ +1) > A(AZ) For example:
e +n—op+v, By (ety)l3o Qp+=1.20 MeV
positron capture These decays may proceed to excited states
of the daughter nucleus in which case one or . . “2mc? .
more T-rays will be emitted. This is the ba- where 1.20 = 5.345 - 3.125. Note in the same
sis for y-ray line astronomy. example, that for electron capture the Q- 2mc*=1.02 Mev
) N value would be Qec = 2.22 MeV, ie., 2mec?
An example of weak instability larger. Also, 16.562 - 3.125 = 13.437, and
156 % I;I A:EMCV) “B 16562 5 8 " "
2 “C 3125 6 7 B(ev)*C Qp =13.437 MeV
BN 7_6-75.345 oN  saas 7 7 B
BB5 8 16.562 B0 28114 8 5
The “Q-value”, or energy carried away by Frequently nuclei are unstable to both electron-capture
the products, is just the difference in the d posit ..
mass excesses, adjusted in the case of positron- and positron emission.
. +1,)2
Example: p(p,e*v)*H
Mass excess 2 'H =2 x 7.289 MeV
=14.578 MeV
Mass excess *H =13.136 MeV. Thisis a 2
smaller number so the diproton is unstable to
weak decay. The Q value is given by st
14.578 -13.136 = 1.442 MeV
-2mc? = 0.420 MeV T
but the electron and positron annihilate and
W
so we get the 2m_c? back and the reaction
yields 1.442 MeV

*Fe
fmrr(lnep\t :

Decays may proceed though excited states 2t tey
of energy that averages to 0.262 MeV so really R 5 1238 Kev

only deposit 1.18 MeV of energy locally

But the neutrino carries away a variable amount



In terms of binding energy

Qy =BE(*Z+1)-BE(*Z)+0.782MeV
Q.. =BE("Z-1)-BE("Z)-1.804 MeV
Q,.=BE(*Z-1)-BE(*Z)-0.782 MeV

Another example, pick out the stable iso-

topes:
Nucleus A
40¢y 2754
40Ar -35.04
40K -33.54
40¢q -34.85 are unstable.
40gc -20.53

40¢1 and 4Sc are obviously unstable. 40
can decay either to 0Ar (10.7%) or to 40Ca
(89.3%), but both “°Ar and 4°Ca are stable,
at least for a very long time.

ABE = - %}(zz—z;ab)—[f]([A 2z] -[A-22,,T )

—(84](A2—4AZ+422—A2+4AZ -422,)

Z stab stab
a 4a
== (AT% (Z Zsztab) [ A4 ](Z Zsztab AZ + AZstab)
- —[a—SJ(z2 277, + 22, +222,,, ~227,)
1/3 stab stab stab

stab stab stab stab

4
—[aj(z -222,,,+22,-222 - AZ+AZ,,+27Z,,)

= K(Z - Zstab )2 [AVS J(2zzstab zzsztab)

4a
— [74](_222 _AZ+AZ +ZZZ ) K(Z Zstab) +F

The ones with the bigger
(less negative) mass excesses

22 NUCLEAR STABILITY m

How many stable isotopes are there for
each A? Recall the mass formula

. 72
BE(AZ) = a1A — ap A2 - a7
—27)?
—a8 1 L 5(A)

We previously solved for Zg,). such that
the partial of BE with respect to Z at con-
stant A was zero

2a4A
11,3A2/ 3 4+ day
A little algebra (omitted here) shows that if
A= constant and § =0 (i.e., A is odd), then
the differences in binding energy for two nu-
clei, one having arbitrary Z and the other
having Zgpje will be parabolic in Z

Zgtable =

ABE(odd A) = const (Z — Zstabie)”
4(14 as

const = —7 — m

See the figure on the next page. This means

F=- [AVSJ(ZZZstab 2Zszlab)

4a
A3
Zstab (% + _J Z Zstab)

- (4a,)(Z

-2

stab stab

-27,,-AZ+AZ,,+27Z,,)

_z)

stab

( Stab]( 3A2’3+4a) z,,-2)-(4a,)(Z,,-2)

[Z

|

a,A”* +4a

2a,A }
(2,47 +4a,)(Z

stab

; -2)- (422

stab

—Z)



At constant A

0dd-n

” CHAPTER 2. NUCLEAR PHYSICS
that for all A = odd, there is one and only
one stable isotope, e.g., 13C, 15N, 170, 19,
2N, 23Na7 27Al7 etc. There are some near
calls - 113Cd decays to 131y with a half life
of 9 x 101 Y; 151y decays to 1581 with a
half life of 4 x 10 y; and 1%Te decays to
1238} with a half life of 1 x 10'3 y. These
special cases are because of shell closures.
e.g., at Z = 50 for In and Sn.

Things are more complicated for even A
because of the pairing correction and the two
different ways of making even A (even Z,N;
odd Z,N).

ABE(even A) = const(Z — Zsmh)2
+ 0 oddZ
— 0§ evenZ

As a result one gets two curves, one for
the odd-Z, even-A isotopes, and one for the
even-Z, even-A isotopes. Depending on the
placement of points on these curves one can
have 1, 2, or even 3 stable isotopes at each

Odd A. A=135

Single parabola

even-odd and odd-even

\

\"

\

52 54 56
Te I Xe GCs Ba La

Even A:
two parabolas
one for 0-0 & one for e-¢

lowest 0-0 nucleus often has
two decay modes

most e-e nuclei have two
stable isotopes

there are nearly no stable 0-o
nuclei in nature because these
can nearly all -decay to an e-
e nucleus

Only **Ba
is stable.
58
Ce Pr
Even A. A=102

Two parabolas separated by 295,
odd-odd and even-even

' odd-odd
\ /

7

even-even

42 44 46 48
Mo Tc Ru Rh Pd Ag Cd




« ”

an “even-even nucleus must decay to
“ » .

an “odd-odd” nucleus and vice versa.

mass 64

wen R
2 stable

To summarize:

odd A

odd Z —odd N

even Z —even N

LacJuMlu) %2e wmay Jea-’
to PenNb with 2 very
long hat- LWk, Mass

- Xe, 03, Ce wught
be 3 better exavsple)

There exists one and only one stable isotope

Very rarely stable. Exceptions 2H, °Li, '°B, “N.
Large surface to volume ratio. Our liquid drop
model is not really applicable.

Frequently only one stable isotope (below
sulfur). At higher A, frequently 2, and
occasionally, 3.

22 NUCLEAR STABILITY 3

A. For example 12C, 1N, and 100; but also
AAr, D¢, 4Cr, HFe, 9Ni 97n; and even
136Xc7 136Ba, 136Ce. Because the pairing
energy gets smaller as one goes to large A,
the two parabolas lie closer and it is easier
to have multiplets. For light elements below
sulfur, 1 isotope is typical for even A. Above
about calcium, two isotopes are typical, but
there are exceptions, especially in the vicin-
ity of closed shells. Nuclei with both odd Z
and odd N are very rarely bound, but there
are notable exceptions, 2H, SLi, 108, 14N,
but these are so light that our liquid drop
model is quite inadequate.

The Shell Model



Shortcomings of the Liquid Drop Model

® Simple model does not apply for A <20

9 (101
10-10) —
(N,Z) (()RE ) 8.8k « Semi-Empirical mass formula <
a G & indi
B of Rdedd Measured binding energy
22 o =,
8.6 P ., 4
? U ( o ) g’ <1 ‘\999
S84l s 7.075+7.7x10°A |
= o )
a6 2
2 S H
= 282 . |
E g ° Linfit of stability "
. agdinst a-deca:
g (4, 4) &80} . Y a‘ﬁaa i
> g o o
24 2 -
2781 . Mo, |
= 2 ; i
= 3 = °  N=20IN=28 N=50 —  N=82 Z-82| *
g 761 Z-20 78 Z=50 N=126 |
] .
20 4 B8 1216202 7.4 L L L 1 | | | L : ‘ i i
2005 40" =60 =80 00" " 1207 140 160 1807 12000 2200 240 260

Atomic mass number A

Ba Neutron separation energy in MeV

* Neutron separation i
energies i
— saw tooth from 9.0-
pairing term il
— step down when N
goes across magic 7.0}
number at 82
6.0
500
4.0

564N
55Ba

L L L ! | ! 1 L L

70

72 74 76 78 80 82 84 86 88
Neutron number, N

Q)
Q-0
5 Q(p)-s>0
B Q(p-)>0 + QEC)>0
Stable to Beta Decay
| QEC0
2 Q(EC)-$,>0
M or)0
M Naturally Abundant

Numbers

Decay Q-value Range

Table of Nuclides (1998)

X ® Doesn’t Predict Magic

o
(w

At
MR

Neutron Magic
Numbers

Proton
Magic
Numbers

50

* Magic Proton Numbers
(stable isotopes)

¢ Magic Neutron Numbers
(stable isotones)

Abundance patterns reflect magic numbers

T T T T T

10"
10!0

T
2223232 2% %
.

=)
T
e

Abundance by number relative to Si as 10°
T

T T T T

He burning
=

C burning
pulivcay

O burning

Si burning

T

T T T T T T T T T T

s-process i

r-process

8=2

L . . =2
1 iron mountain T BTh,

2| = =, U1 D
10 Z=N=28 |
M0k 1
10*r noA=5or8 oBU 1
107 feosivc b=y %zt 4. g qov o Moy ofin eqe euw g oI ol Th . Hly e syl g iy

10 30 50 70 920 110 130 150 170 190 210 230 250

Atomic mass number



Tliadis T
S\ 25, He
§ Ne
v 20 Atomic Lomzation
o
_8 B . pstemtials
- . g 15 ", J ] II( Kr
= : & o ’ Xe :
1 a . g ] NI Rn
X s 10F (\/ /
L g f ! J /J V| //‘N
2 T * 1 - S FLi ,il “/ ld .
28 50 82 126 ¢ - g b .
-20 | IR ST ST S R N S S S RS ST S N S S S SRS - Cs
20 40 60 80 100 120 140 ~ 1 ‘f ‘f 3f 5‘4 815
Neutron number N 3 % 2 30 40 s 6 7 8 %0 ‘o
“+2p:+3p - 453d - bp - 5s,4d - 5p - =2
Fig. 1.11 Difference between experimental ground-state atomic mass ey . s 6s.54d.4¢ bp - 7s,6d,5¢

excess (Audi et al. 2003) and the mass excess predicted by the spher-
ical macroscopic part of the finite-range droplet (FRDM) mass formula
(Moller et al. 1995) versus neutron number.

[e o]
A highly idealized nuclear potential :
Shell Model — Mayer and Jensen 1963 Nobel Prize looks something like this “infinite !
square well”.
R [--- r
Our earlier discussions treated the nucleus as sets of As is common in such problems
identical nucleons and protons comprising two degenerate Onlel aplf(’il}es boundry conditions to
Fermi gases. That is OK so far as it goes, but now we shall Schroedinger s equation.
consider the fact that the nucleons have spin and angular S -z
. ; __ p
momentum and that, in analogy to electrons in an atom, are -
. . . = oo rz2
in ordered discrete energy levels characterized by conserved
quantized variables — energy, angular momentum and spin. W(R)= 0 V. = 50- 60 MeV
_Vnuc
Clayton 311 - 319 (In the case you have probably seen before of electronic energy levels in

an atom, one would follow the same procedure, but the potential would
be the usual [attractive] 1/r potential.)



Schroedinger's Equation:

¥ +(V-E)¥ =0

Spherical symmetry:
‘.Pn,],m(rﬂe’q)):f;z‘l(r) Y]m (0’¢) E
Radial equation: Nuclear 'nerg}; ‘
(o9 20 I+’ potenn elgens -
+
-— — +V_ (r r E r
ZM(a}"Z }" jf;l() |: 21\/}2 nuc() f;‘ll() f;‘l,[()
Rotational
energy Clayton 4-102
Solve for E.

The solutions to the infinite square well potential
are then the zeros of spherical Bessel functions (Landau and
Lifshitz, Quantum Mechanics, Chapter 33, problem 2)

72 , A% more negative
E,=—|V.|+—=|7*|n+Z| - f(f+1) means more
2MR 2 bound

We follow the custom of labeling each state by a principal quantum
number, n, and an angular momentum quantum number, ¢, e.g.
3d (n=3,£(=2) ¢=0,1,2,3,etc=s,p,d,f, g, hetc

¢ States of higher n are less bound as are states of larger ¢
{ can be greater than n

® Each state is 2 (2¢ +1) degenerate. The 2 out front is for the
spin and the 2 ¢ + 1 are the various z projections of ¢

® E.g., a 3d state can contain 2 (2(2) +1) = 10 neutrons
or protons

Substitute:

2M(E - Vnuc) .
p T V;Tuc IS < O
To obtain:
,0°
P L 2p iy s =0

ap’ 8

T
f - \/; J1+1/2 (P)

Spherical Bessel Functions

Solution is:

Abramowitz and Stegun 10.1.1

This gives an energy ordering

ZZ
: —| —e(r+1
n(n+2) (+))

s> 1p°® 14" 25 1" etc.

2 2
-2 4 -6 4r —72,' -12

9.87 20.20 33.48 39.48 49.69

This simple progression would predict shell closures

atZ=N=2,8,18, 20,34 etc,i.e, ‘He, 0O, *Ar, “°Ca, etc

So far we have considered the angular momentum of the
nucleons but have ignored the fact that they are Fermions

and have spin



Energy —>

Energy —

Infinite square

well

cumulative

occupation

168
166

156

1; 138

— 132

106

198
168
166
156

138
112
106

92

70
68

40
34

Infinite Square Well Solutions

desired
magic
numbers
126
dotted line is to
distinguish 3s, 2d,
82 and 1h.
50
28
20
states of higher |
shifted more to
higher energy.

With Saxon-Woods
potential

&

bb db b o

Improving the Nuclear Potential Well

The real potential should be of finite depth and should
probably resemble the nuclear density - flat in the middle with

rounded edges that fall off sharply due to the short range

of the nuclear force.

R = Nuclear Radius
d = width of the edge
R>>d

,VO

But this still is not very accurate because:

for neutrons

. =

Saxon-Woods

Vir)=

® Spin is very important to the nuclear force

_VO

1+exp (%ﬁ)

® The Coulomb force becomes important for protons

but not for neutrons.

Introduce spin-orbit and spin-spin interactions

leS and SeS

Define a new quantum number

J=1+8

Get spliting of levels into pairs

Ip = 1pyn
2t > 15,

etc

Label states by nl;

1ps/,
215,



This interaction is quite different from the fine
structure splitting in atoms. It is much larger and lowers
the state of larger j (parallel 1 and s) compared to one
with smaller j. See Clayton p. 311ff). The interaction has
to do with the spin dependence of the nuclear force, not
electromagnetism.

Empirically V=-a1-s

o =13 A MeV

AE:_g[ ]:(Z +l) These can be large
2 2 compared even to the
spacing between the
+ ﬂ(l + 1) j=(l _ l) principal levels.
2 2

The state with higher j is more tightly bound, the splitting is
bigger as [ gets larger.

For neutrons the level scheme is the same as for protons

up to N =50. Above that the Coulomb repulsion of the

protons has an effect and favors orbits (for protons) with

higher angular momentum. Thus for example the 515 neutron

is in the d level of j = 5/2 while for protons it is in the g level of
j=7/2. The effect is never enough to change the overall

shell closures and magic numbers.

Maria Goeppert Mayer — Nobel talk - 1963

infinite fine structure splitting

square — g2 (16)=(184] —— 184
—3dyy 4)-
| ISP, 2~
—3d — 283y —— (81—
\ Yy s (12)=
B 6)-
/ 204 —— (101
- —
; \ 3 closed shells

N i = (14) = [126] =126
e 12~

[ 7 —

u,,”,.__«(gflszl—— 82

3 31, Protons:
ey p— T
-l 2y (6)~(64]
——8n (8- For neutrons
- — see Clayton p. 315
— 't.u—((‘z‘)”-(‘!;‘l’l—'” The closed shells are the
2P | g e \& )= . c
‘—2p _—',__P 7 — mvlul same but the ordering of
g Ak ¥ states differs from 1g,, on
s Y = - — 28 .
e -2 up. For neutrons 2ds), is
? e 25 . e 1 33 e (4) = (20] 0 more tightly bound. The
= 1 et 2 e (2) - 16
% Sy —— f 3s,,, and 2d,, are also

i . reversed.
I P — R || P

- — o

p S — 1

S — P

The correck eneryy \ewek ordu'm, then

becomes

Nud:'rons: 2

o 2 13 2 o
1oy, 1fP3 l?v‘ Lt\c/l 28y, 13;/‘

® 4 3 % o
\ha, 2py, b 20y 195, ebe

M\_& Same th m’k i 3./,_ but
dibbers 3t nest lewel 245, for m
V93, for p

Each state can hold (2j+1) nucleons.



The nuwbers wheve each of these shells close
are

2,(6), 8, (4, %), 20, 28, (32 33, 40) 50
where the caleulated shell 93ps e rdai'we‘A)
small  for the numbers w1 parenthesis

Remewber |2, %, 20, 28,50, 32, 126

Y
Examples 1 *He, Y0, ¥ca, Ny g,
4%cq 2=40
L 20§ 209g:
) th-, 8. ('u\] of ‘“\L)
2350 292, N =120 N=\2 v S-process

Each shote s now @i+1) degonerate  (less tham before)
The total number of stakes of gquen nal
19 shll the same 2(21+1)
before  1p  (2X24) =6 vow  1py, (4)
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Some implications:

A. Ground states of nuclei

Each quantum mechanical state of a nucleus can be specified
by an energy, a total spin, and a parity.

The spin and parity of the ground state is given by the
spin and parity (-1)! of the “valence” nucleons, that is the
last unpaired nucleons in the least bound shell.
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eg, 12C first excited state
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Adding 3/2” and 1/2” gives 1" or2*
The first excited state of '2C at 4.439 MeV is 2"

but it is not always, or even often that simple.

Multiple excitations, two kinds of particles, adding
holes and valence particles, etc. The whole shell
model is just an approximation.

1
Suppose the 2.365 MeV state in "°N had J* = instead.

Could the resonant reaction still proceed? Yes but for a different
value of /.

j(target) + T(projectile) + l_(projectile)=
J(product) + J(outgoing particle) +l_(0utg0ing particle)

J(photon)=0

Jmorp)=1/2

and we want to couple 1/2" (target) to 1/2” (product). So £=1 works since
T -
-+ 1 = é’ 1
2 22

and the partity is + for the target state and - for /=1, so (=1

would make states in "*N with spin and parity, 1/2”, and 3/2".

One could make a 3/2" state with an ¢=2 interaction and so on.

But an £ =0 interaction is much more likely (if possible). Cross sections
decline rapidly with increasing £




