Lecture 5

Basic Nuclear Physics — 3

Nuclear Cross Sections
and Reaction Rates



total area A=1 cm?
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The reaction rate for the two reactants, 7 and j
asine.g., [ (J,k) L is then:
nn,o, v

which has units “reactions cm> s1”

It 1s more convenient to write things
in terms of the mole fractions,

X
Y, = A_I n,=pN,Y,
. (gm )(atomsj[Molej
so that the rate becomes cm® )\ Mole )\ gm

(PN,)Y, Y, 0,V

and a term in a rate equation decribing the destruction of I might be

Equivalent to
dY q
—L==pYY,N, (G,V) +... dn,
E = — I/lll’lj <GUV> + ...

Here ( ) denotes a suitable average over energies and angles
and the reactants are usually assumed to be in thermal equilibrium.

The thermalization time is short compared with the nuclear timescale.



For example, a term in the rate equation
for “C during the CNO cycle might look like

dY(2C)
ot

= pY(C)Y,N, (o, (2C)v) +...

for the reaction “C(p,y)"°N



The cross section for reaction is defined in the usual way:

number reactions/nucleus /second

O =
number incident particles/cm” / second

o clearly has units of area (cm”)

For a Maxwell-Boltzmann distribution of reactant energies

1= () e
SV \ 27T o

The average of the cross section times velocity is

<o jv> (ﬂi] (kT) ja (EYEe *™ dE

2E 1\ 2 )"

M " " V= - dV= - - dE

where [ 1s the "reduced mass m 2 \ mE
3/2 1/2

j= M, m; ovidy = o[§) %LLE] dE
- m m
M + m, )
= —ocEdE

for the reaction I (J, k) L m



Center of mass system — that coordinate system in which the
total initial momenta of the reactants is zero.

The energy implied by the motion of the center of mass
1s not available to cause reactions.

Replace mass by the "reduced mass"

U= MM,
M, +M,

Read Clayton — Chapter 4.1



For Tin 10° K = 1 GK, o in barns (1 barn = 10-** cm?), E, in MeV, and
k=1/11.6045 MeV/GK, the thermally averaged rate factor in cm? s is

6.197 x 10" % _11.6045E, /T,
<ijV> - Al2T32 J’ij(E6)E6 € dE6
9

0
A A
1 7 forthe reaction 1(j,k)L
A+ A

I ]

A:

If you know g, from the lab, or a calculation, in the center of mass
frame, just put it in and integrate. The end

The actual form of 0 may be very complicated and depends upon the
presence or absence of resonances and the reaction mechanism.
In general, however, it is of the form ...



The Cross Section

Area subtended by a
de Broglie wavelength
in the ¢/m system.
Characteristic quantum
mechanical dimension

How much the nucleus I+j looks
like the target nucleus I with j
sitting at its surface. Liklihood

of the system of staying inside R once you get

H_\ theref. R .
o(E)=rnk’> pP(E) X(E,A)

geometry  penetration nuclear
term factor structure
(Cla 4-180) | ' J
probability a flux of

particles with energy E

at infinity will reach the
nuclear surface. Must account
for charges and QM reflection.

see Clayton Chapter 4



where A is the de Broglie wavelenth in the ¢/m system
, wh> mwh® 0.656bams
B uv’ B 2UE A E(MeV)
where 1 barn = 10™ cm” is large for a nuclear cross section.
Note that generally EMMeV) <1 and A > R but

nucleus

TR

A 1s much smaller than the interparticle spacing.

M1M2
‘LL:
M, +M,
~  AA
A=—""=— ~ 1 for neutrons and protons

~ 4 for o-particles if A, is large



Consider just the barrier penetration part (R <r < infinity)

Clayton p. 319ff shows that Schroedinger's
equation for two interacting particles in a radial

potential is given by (Cla 4-122) [see also our Lec 4]

v, 0.0)- 20y 0.6)  x |
r potential
where (1) satisfies
ZZ¢e
Wod I+ DR == r>K
{2 L) +V(r)—E} X,(r)=0 g
podre 2 V(r)=V r<R

nuc

(Clayton 4-103)

for interacting particles with both charge and angular
momentum. The angular momentum term represents the
known eigenvalues of the operator L? in a spherical potential

*The 1/r cancels the r* when integrating ¥"¥ over
solid angles (e.g. Clayton 4-114). It is not part of
the potential dependent barrier penetration calculation.



Classically, centrifugal force goes like
mv> m’v'R’ L’
F = — — = 3
R mR mR
One can associate a centrifugal potential with this,
—172
2mR”’
Expressing things in the center of mass system and

[Far =

taking the usual QM eigenvaluens for the operator L’
one has
~l(I+1) R’
2UR?




To solve
“ht d? I(Z+1)h2
21 dr’ 2Ur’

+V(r)— E}l;(”) 0

divide by E and substitute for V(r) forr >R
{ N (a2

1 -0
2UE dr' | 2wE | 1E }%(V)

Change of radius variable. Substitute for r

2UE 2UFE 2
21/ ‘u2 s dp >1/ ‘u2 dr ,uE d’r
h h
and for Coulomb interaction chain rule
ZZ¢e 2F
n=—r— V=,
hv u

to obtain p and n are dimensionless

—d* I(I+1) 2n
+ +— -1 =0
|:dp2 pz p :|%l(p)

numbers




multiply by -1
2
'y N (1_217_1(1+1)

2 2

dp P

)x =0

This is the solution for

has solutions (Abromowitz and Stegun 14.1.1) Rer=e

X= C]E(nap)+ Cz Gl(nap) Cl =1 szi

where F and G, the regular and irregular Coulomb functions
are the solutions of the differential equation and the constants
come from applying the boundary conditions

The barrier penetration function P, is then given by

2
b N _F(p==)+Gi(p=c) _ !
@[ ELe)+Gimp)  F(0.p)+G(1.p)

Cla4-115

For the one electron atom with
2

The “1” in the numerator corresponds t0 @  , potential 2=, one obtains the
. . . r
purely outgoing wave at infinity from a

same solution but the radial component

decaying state. is Laguerre polynomials.



pE gives the probability of barrier penetration to the nuclear

radius R with angular momentum /. In general,

P
F*(n,p) +G;(1n,p)

phb = where £ is the regular Coulomb function

e.g., Illiadis 2.162 and G, 1s the irregular Coulomb function

See Abramowitcz and Stegun, Handbook of Mathematical Functions, p. 537

These are functions of the dimensionless variables

ZZ.¢

n= h\J/ =0.15752,ZN A/ E  contains all the charge dependence

p= 24 ZE R=02187+ AE R, contains all the radius dependence
h fm



2
/ IZje

hv

Physical meaning of n=

The classical turning radius, 7, , is given by

2
/ IZje

"

Lo
=
2.“

The de Broglie wavelength on the other hand 1s

h_n Y
p My a H
Hence n :r_;L nb., both 1 and p are dimensionless.
2

The probability of finding the particle inside of its classical turning

radius decreases exponentially with this ratio.



On the other hand,

B h
_|2uE _£ _p_,uv_\/
p—,/ 3 R—7L 2(#)(

is just the size of the nucleus measured in de Broglie

wavelengths.

This enters in, even when the angular momentum and
charges are zero, because an abrupt change in potential
at the nuclear surface leads to reflection of the wave

function.



2
ZIZje

For low interaction energy, (2n>>p, 1.e., E << 2 )
and Z. #0, pP has the interesting limit
J
20(1+1
PP =2np exp| —2xn+44/2np — (U+D) Abramowitz and Stegun,
\21p 14.6.7

where

A 1/2 :
J2np =02625(2,Z 4R, independent of E and ¢

which is independent of energy but depends on nuclear size.

Note:
rapid decrease with smaller energy and increasing charge(n T)

rapid decrease with increasing angular momentum
77 e’ 2
n=—""J_" =0.1575Z,Z N A/ E
hv /

2UE ~
pz‘/ Y R=0.2187VAER

The leading order term for / = 0 proportional to

PP o< exp(—Zﬂn)




There exist other interesting limits for pP,

for example when 1) is small - as for neutrons where it is 0

12 —
pe<E pR=p
P P3 p <<1 for cases of interest
' 1+p’ for neutron capture
5
o,
P =
PRy 3p>+p*
This implies that for / = 0 neutrons ,
the cross section will go as 1/v. .- 22,¢ 0
hv
/2,uE ~
1/2 = R=02187VAE R
i.e. an pP oc E_ oc E—1/2 p hz fin
2 0 E

For low energy neutron induced reactions, the
cross section times velocity, i.e., the reaction rate

term, is approximately a constant



For particles with charge, providing X(A,E) does not vary rapidly.

with energy (exception to come), 1.e., the nucleus is "structureless"

-2
em]

O(E)=rmk’pP, X(A4,E) <

This motivates the definition of an "S-factor"

S(E)=0(E) Eexp(2rn)

n=0.1575Z,Z N A/ E
4,4,
A, +4
J

A=

This S-factor should vary slowly with energy. The first order
effects of the Coulomb barrier and Compton wavelength have been

factored out.
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For those reactions in which S(E) is a slowly varying function of energy
in the range of interest and can be approximated by its value at the energy
where the integrand is a maximum, E,,

E
o(E) =¥ exp(—27n)

8 1/2 1 3/2 oo
NA<Gv>zNA(E) (k—T) S(E,) !exp(—E/kT—znn(E))dE

where 7(E)=0.1575yA/ E(MeV) Z,Z,

The quantity in the integral looks like

MAXWELL ~ BOLTZMANN
DISTRIBUTION
« exp (~E/KT) &

GAMOW PEAK

TUNNELING
THROUGH
COULOMB BARRIER

RELATIVE PROBABILITY
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llliadis — Fig. 3.12

Maxwell Boltzmann factor and
barrier penetration factor vs
energy for the reaction
12C(a,y)1e0 at T4 =2. The product
e EXT times e2™ is shown on

a logarithmic and a linear
scale. The Gamow peak is

at 0.32 MeV which is much
greater than kT = 17.2 keV.
The left axis shows probability
In arbitrary units.



For accurate calculations we would just enter the
energy variation of S(E) and do the integral numerically.
However, Clayton shows (p. 301 - 306) that

exp(;—f — 27r77) can be replaced to good accuracy by

2
—\E-E . . .
Cexp ( g) , 1.e. a Gaussian with the same maximum and
(A / 2)
second derivative at maximum
k GAMOW PEAK |
10 b= p+p =

T6 =15 S

0S5 p- EXACT i
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SHAPE
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A

£
St & . . .. o
5

10 . 15
INTERACTION ENERG( E (keV)

FIGURE 4.7. Curves for the Gamow peak for tHe p - p reaction at T, = 15, as obtained from the
exact expression and from the approximation using the Gaussian function.



where E  1s the Gamow Energy

2/3 ~
E,=(mnE"kT) " : nEY? =0.1575NA Z,Z : kT =
0 1]

A 1/3
3, =012 7 A0 |

MeV

and A 1s its full width at 1/e times the maximum

779
11.6045

= i(EOkT

J3

)1/2

A 1/6
=0237 (Z{Z;AT; ) MeV

A 1s approximately the harmonic mean of kT and E,,

and 1t 1s always less than E



e.g. *He(a,y)Be at1.5x10" K

E =0.122 (zzzfi\rz)m MeV

=1.714; 1,=0.015; £ =2 =2
3+4 ° S

E_=0.122 ((2)2(2)2(1.71)(0.015)2)1/3 MeV

= 0.02238 MeV = 22.4 keV
Similarly

a 1/6
A =0.237 (ZIZZJ.ZAT;) =0.0124 MeV = 12.4 keV

See the plot of the S-factor a few slides back



In that case, the integral of a Gaussian 1s analytic Clayton 4-54ff

uses S in keV b,

4.34x10° i
— S( Eo) ,L.ze—r - m3 /(Mole S) Z;[Efyr:se the same
AZ,Z, ,

NA<GV>=

where S(E, ) 1s measured in MeV barns. If we define

A= N, <ijv>

then a term in the rate equation for species I such as Y;pA , has units

Mol 3 Different people use different
oLe ( gm ) cm — S—l conventions for A which sometimes
3 do or do not include p or N,. This
&M cn Mole s defines mine. Clayton does not innclude
Note that 7 here is Na
2272 A\
T = 3E0 = 4248 A differs from Clayton which

kT T9 measures Tin 10° K




12 3/2 - 2
1 e"JS(E) exp| — E-E, dE
kT . Al2
1/2 3/2 2
1 r E-E
— S(E — 0 E
(kT) e "S( o)); exp[ ( NG, } }d

E-E
Letx=( OJ dx=% sodE:ATdX

—2F,

Can replace lower bound to intergral E =

by E = - « with little loss of accuracy (footnote
Clayton p 305) so that

8 1/2 1 3/2 A oo
— -7 2
= NA(E] (ﬁ} e ES(EO):[ exp[—x ]dx

8 1/2 1 3/2 A
= N, —j (ﬁ] e " =S(E N

y 71 2
1/2 3/2
= N, Z] (ij e ‘A S(E,)
u KT

A 3 4 72
(KTY? ) 9J3xnE™




1/2
i:(gj 4 —1%e"S(E,) MeV"?amu™"? barn
N, \1) 93r(0.1575 2Z JA)

A

7.2x107"°
= = e " S(E)) cm®s' (Clay 4-56
Azz (E,) (Clay )

4.34x10°
AZZ

A=N, <GV> = S(E,) z°e”* cm’ / (Mole s)

nb. The unit conversion factor is 10™* *(6.02x10% +1.602x107°)"

n

u=A amu



Adelberger et al, RMP, (1998(

TABLE 1. Best-estimate low-energy nuclear reaction cross-
section factors and their estimated 1o errors.

$(0) 5'(0)
Reaction (keV b) (b)
H(p,e*v,)*H  4.00(1+0.0077552)x10722  4.48x10™*
'H(pe™,v,)*H Eq. (19)
‘He(°He,2p )*He (54+0.4)*x10°
*He(«,v) Be 0.53+0.05 —3.0x10*
‘He(p,e " v,)*He 23%x10° %
Be(e™,v,)Li Eq. (26)
Be(p,y)*B 0.0197 3005 See Sec. VIIL.A

UN(p,y)0 3.51 0% See Sec. IX.A.5
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For example, °C + ?C at 8 x 108 K

1/3
2,2 1212

T=4.248 | — 1212
0.8

= 90.66

_90.66—2

n =29.5

ptp at1.5x10"K

1 1 1/3
1.1 ——

r=4248 —1£1
0.015

=13.67

13.67 -2
_ 1367 =3.89




Thus “non-resonant’ reaction rates will have a
temperature dependence of the form

Constant constant
A~—f— exp(—T
T

T2/3 ) 207"

Te

This 1s all predicated upon S(E, ) being constant, or at
least slowly varying. This will be the case provided:

i) E<< E¢gy , (=0
i1) All narrow resonances, if any, lie well outside the
Gamow “window”

E +A/2

That 1s there are no resonances or there are
very many overlapping resonances

ii1) No competing reactions (e.g., (p,n), (p,@) vs (p,y))
open up in the Gamow window



Resonant Reactions
In general, there are four categories of strong and electromagnetic
reactions determined by the properties of resonances through which
each proceeds

S(E) ~ const ® Truly non-resonant reactions (direct capture and
the like)

® Reactions that proceed through the tails of broad

S(E) ~ const ,
distant resonances

S(E) highly ® Reactions that proceed through one or a few
variable “narrow’ resonances within the “Gamow window”
S(E)~ const ® Reactions that have a very large number of

resonances in the “Gamow window



Reaction Mechanisms

1) Direct Capture - an analogue of atomic radiative capture

The target nucleus and incident nucleon (or nucleus) react
without a sharing of energy among all the nucleons. An example
be the direct radiative capture of a neutron or proton and
the immediate ejection of one or more photons. The ejected photons
are strongly peaked along the trajectory of the incident projectile.
The reaction time is very short, ~ R/c ~10-?! s.

This sort of mechanism dominates at high energy (greater than
about 20 MeV, or when there are no strong resonances in or near the
Gamow window. It is especially important at low energies in light
nuclei where the density of resonances is very low.

The S-factor for direct capture 1s smooth and featureless.

Examples:

*He(w,y)'Be, “H(p,7y)’ He, *He("He, 2p)*‘He
“C(n,y)°C, *Ca(n,y)”Ca



: ~ Y STANDING
\~‘~‘ ‘qu
PROJECTLE X e S FINAL
o, My B / oReimaL)
WAVE . . .
% Treating the incoming
- 7, particle as a plane wave
distorted by the nuclear
FINAL NUCLEUS B potential results in the
( COMAOLND ) “Distorted Wave Born
Approximation” often used
to calculate direct reactions.
PROJECTLE X € i . : .
£ Here the incoming particle
is represented as a plane wave
(4 TARGET A ’ which goes dlr.ectly to a standing
Q. - VALLE wave with orbital angular
: momentum / in the final nucleus.
£2
O ——
B —
£
COMPOUND
NUCLEUS B

FiGuRe 4.9. Ilustrated is a caplure reaclion A(x,

7)B, where the entrance channe! 4 = » g0

directly to states in the final compound nucleus B with the emission of y-radiation. This prooess is
called a direct-capture reaction and can oceur for all energies E of the projectile x.



The process involves a a single matrix element and 1s thus
a single step process. Direct capture is analogous to
bremsstrahlung in atoms.

Direct capture provides a mechanism for reaction in

the absence of resonances. Usually DC cross sections are
much smaller than resonant cross sections on similar
nuclei - if a resonance is present.



2) Resonant Reaction:

A two step reaction in which a relatively long-lived excited
state of the “compound nucleus” is formed — the “resonance”.
This state decays statistically without any memory (other than energy
and quantum numbers) of how it was produced. The outgoing
particles are not peaked along the trajectory of the incident particle.
(This is called the “Bohr hypothesis” or the “hypothesis of
nuclear amnesia’ ). The presence of a resonance says that the
internal structure of the nucleus is important and that a “long-lived”

state 1s being formed.

Resonances may be broad or narrow. The width is given by the
(inverse of the ) lifetime of the state and the uncertainty principle.

AE At ~ 1

Generally states that can decay by emitting a neutron or proton will
be broad (if the proton has energy greater than the Coulomb barrier.
Resonances will be narrow if they can only decay by emitting a
photon or if the charged particle has energy << the Coulomb barrier..



|. Direct reactions (for example, direct radiative capture)

direct transition into bound states

Sn Atn

B

ll. Resonant reactions (for example, resonant capture)

Step 1: Compound nucleus formation Step 2: Compound nucleus decay
(in an unbound state)

E ir ir

Sn A+n




Other (non-radiative) channels

Step 1: Compound nucleus formation Step 2: Compound nucleus decay
(in an unbound state) non-radiative channel
E ir
"l+n
K} S,K
Nucleus | +n Nucleus | +n

Not all reactions emit radiation and stay within the original compound nucleus.
One may temporarily form a highly excited state that decays by ejecting
e.g., n, p, or alpha-particle. E.g., I(n,a)K:



One or more resonances may be present in the Gamow energy
window, in which case their contributions are added, or there
may be a broad resonance just outside the Gamow energy
window, either above or below.

The S-factor will be smooth in this latter case. In the case
of one or a few narrow resonances it will definitely not be
smooth. In the case of many broad overlapping resonances,
it will be smooth again.

Resonances may be broad if they can decay by emitting a neutron,
proton or alpha-particle. For example, the 2.366 MeV (1/27)
excited state of 13N is broad because it can emit an energetic
proton. That same state can serve as a resonance for the

reaction '*C(p,y)"*N which has a Q-value, Q,, = 1.944 MeV



1 A =7\ J— - & e |

0 100 200 3:)0 400
PROTON ENERGY E,, (keV)

1
D 422)=457
12

The energy scale is given in the center of mass
fram (422 keV) needs to be converted to the lab

frame to compare with lab data. Multiply by
(ATA)/(ALA)

Egrh5TheV .-
ﬂtsmm(tj
|

£

2.366

~1.944

0.422 MeV

Excitation energy

Q value for (py)
Threshold ¢/m



S(E) FACTOR (keV-b)
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BC(p,y)!“N is similar
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For both cases the S factor is slowly varying in the Gamow “window”.

Say hydrogen burning at 2 x 107 K, or Ty = 0.020

12 C(p,y)l?)N

1/3
E gy =0-122 [62 1P = 0.022] = 0.0289 MeV=28.9 keV

12 +1

1/6
A=0237 (62 P2t 0.025] ~0.0163 MeV = 16.3 keV
12 +1

Note on the previous pages, there is no data at energies this low.
As 1s generally the case, one must extrapolate the experimental

date to lower energies than are experimentally accessible. The
S-factor 1s useful for this.



Consider, however, the reaction *Mg(p,y)” Al
This reaction might be of interest either in hot hydrogen burning

at 30 million K or in carbon burning at 800 million K. Consider the
latter.

24 -1

Gam
24 + 1

1/3
E. . =0.122 (12212 0.82] = 0.543 MeV

24 -1

1/6
A =0.237 (122 1° 0.85) =0.447 MeV

25+1

Now three resonances and direct capture contribute.



Another Example:

RESONANT PLUS
DIRECT CAPTURE
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Resonance contributions are on top of direct capture cross sections



... and the corresponding S-factor Note varying widths and
effects for E >>T'|
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How to calculate?

Decaying states in general have an an energy
distribution given by the Breit-Wigner or Cauchy
distribution (Clayton 3-103)*. The normalized probability

that the state has energy E is

I'/2nm dE
P(E)dE = / id d .
(E—¢,) +(T'/2)
where
I = ﬁ nb. units of energy
T but rather like a rate

and 7 1s the lifetime

* Solve wave function for a quasistationary state

2
subject to the constraint that J.|w k| = exp(-t/7). Take

Fourier transform of y(t) to get ¢(E) and normalize.



If a reaction is dominated by narrow resonances, its
cross section will be given by the Breit-Wigner equation
(see page 347 Clayton, also probs. 3-7 and eq, 3-103).

T, 2J +1

o, (E)=rko L W =
(E _ Sr) n 1"?0/ 4 (2J,+ 1)(2]}. +1)

The I'' s are the partial widths (like a probability but with
dimensions of energy) for the resonance to break up into
various channels. These now contain the penetration factors.
The lifetime of a resonance is

tot

r:ri r,=>T, h=6582x10"MeVsec

This cross section will be sharply peaked around ¢,, with a width I

ot



—,L— -

CLy open channel
. ‘,—' Ceyn)




The cross section contribution due to a single resonance is given by the

Breit-Wigner formula:

o(E)=nk’
e

)

rlrz
(E—E) +(/2)

\
\

v .
JBLEl GRemEis EE e o< Fl Partial width for decay of resonance
O 656 1 by emission of particle 1
A E = Rate for formation of Compund
nucleus state
Spin factor: oc 1'*2 Partial width for decay of resonance
by emission of particle 2
= Rate for decay of Compund nucleus
2J +1 : . .
= r into the right exit channel
2J, +1D(2J, +1)

I' = Total width is in the denominator as
a large total width reduces the maximum
probabilities (on resonance) for

decay into specific channels.




Rate of reaction through a narrow resonance

Narrow means: [ << AFE

In this case, the resonance energy must be “near” the relevant energy range
AE to contribute to the stellar reaction rate.
l_ pull out front
E

Recall: 8
<Oy >= e jG(E)Ee KTdE
T (kT )

|

L'\ (B)I,(E)

and o(E)=7k> o . 2
(E-E ) +([(E)/2)

For a narrow resonance assume:
E

M.B. distribution ®(E)« Ee ¥ constant over resonance ®(E)=D(E))
All widths T'(E) constant overresonance 1 .(E)=1.(E,)

2 constant over resonance



1_111_‘2
(E-E) + (T/2)

o = ntkh’w

¢ ¢ dE
o(EVdE = nti’w T (ENTH(E
! ( ) r 1( r> 2( r)g(E_Er)2+(l—wr/2)2
\_ ~ /
27

I

r



Then one can carry out the integration analytically (Clayton 4-193) and finds:

For the contribution of a single narrow resonance to the stellar reaction rate:

—11.605 E  [MeV]

T, cm

3

N, <ov>=1.54-10"(AT,)”"” wy[MeV]e

s mole

The rate is entirely determined by the “resonance strength” WY

. 2J.+41 T[T,
2J,+D)2J,+1) T

wy

Which in turn depends mainly on the total and partial widths of the resonance at
resonance energies.

Ir
Often I'=1",+1, Thenfor T,<<I,——>T =T, > 1F2 ~T,
I
I<<I'—>T'=T,—> 1F2z1“2
And reaction rate is determined by the smaller one of the widths !




I1l1adis Table 4.12

2=action Elab (keV) JT WYem (V) Error (%)  Reference
“N(p,7)"*0 278  1/2T  1.37(7) x 1072 5.1 h
*O(p,7)'°F 151 1/2% 9.7(5) x 1074 5.2 g
‘Na(p,x)®*Ne 338 1~ 7.16(29) x 1072 4.0 a
Na(p,v)*Mg 512 (1,2%)  9.13(125) x 1072 13.7 b
Ma(p,y)?2Al 223 1/2+ 1.27(9) x 1072 7.1 c
419 32T 4.16(26) x 1072 6.2 d
Ma(p,y)2Al 435 4~ 9.42(65) x 1072 6.9 d
591 1+ 2.28(17) x 1071 7.4 e
=Mg(p,y)7Al 338 32  2.73(16) x 1071 5.9 d
454  1/2T  7.15(41) x 1071 5.7 d
1966 521  5.15(45) 8.7 b
“Al(p,7)®Si 406 4 8.63(52) x 1073 6.0 d
632 3 2.64(16) x 1071 6.1 b
992 3t 1.91(11) 5.7 b
“Si(p,7)*'P 620 12—  1.95(10) 5.1 b
“P(p,7)¥S 642 1- 5.75(50) x 1072 8.7 b
811 ot 2.50(20) x 101 8.0 b
*S(p,7)*Cl 1211 7/2=  4.50(50) 11.1 b
=Cl(p,7)%*Ar 860 3~ 7.00(100) x 107! 14.3 b
=Ar(p,7)¥K 918 52T  2.38(19) x 1071 8.0 f
“Cl(p,y)%Ar 846 1~ 1.25(16) x 1071 12.8 b
*K(p,7y)*Ca 2042 1+ 1.79(19) 10.6 b
“Ca(p,7)"'Sc 1842  7/2t 1.40(15) x 1071 10.7 b




Sample Eneryy Diagram

“M‘

(Fig. 24.3; table 24.9)
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As one goes up in
excitation energy many
more states and many
more reactions become
accessible.



As one goes to heavier nucler and/or to higher excitation
energy in the nucleus, the number of excited states, and hence
the number of potential resonances increases exponentially.

Why? The thermal energy of a non-relativistic, nearly degenerate
gas (i.e., the nucleus) has a leading term that goes as T? where
T is the “nuclear temperature. The energy, E, of a degenerate gas
from an expansion of Fermi integrals 1s:

E =1(p) + akkT)* + b (kT)* + .... herep s the
density and Q is
the partition function

One definition of temperature is

1 =81n§2 | as

kT oFE T 3E S=kInQ defines T

where (2 is the number of states (i.e., the partition function)

dlnQ  JInQ JF

oT oE dT




1 (0E 1
dan~—(a—) dT ~ —(2akT ) dT
kT \ T kT

In Q ~ 2ak JdT = 2akT + const
Q ~ C exp(2akT)
and if we identify the excitation energy| E_ = a(kT)".

X

1.e., the first order thermal correction to the internal energy, then

(kT)z B EX The number of exciFed st'fltesz
q (resonances) per unit excitation
energy increases exponentialy
Q=C exp (2 aEX ) with excitation energy.

Empirically a = A/9. There are corrections to a for shell
and pairing effects. In one model (back-shifted Fermi gas)

0.482
= AR 2




What is the cross section when the density of resonances is large?
Take N (>>1) equally spaced identical resonances in an energy interval AE.
For example, assume they all have the same partial widths.

/\ A /\ /\ Generate an energy averaged cross section

l—D —l o
J . o(E)dE .
D AE g <O'>= -1!: o 1 EJAEi a)FJ.Fk dE
AE AE + 4 (E-e)+T?/4

D << AE ALY N]Q ak
AE ~ ((E-g)+T?/4
T dE 2z N _1
" (E-g) +TI2/4 T, AE D

rr TT

<G> =2k w 1“] Dk =kl L~

|
where T =27r<’>
/ D



This gives the Hauser-Feshbach formula for estimating
cross sections where the density of resonances 1s high.

2 T!(J",E)T'(J" ,E
77:7_\« Z(ZJF-FI) ](‘] 9 )nk( )
(27, +1)(24,+1) G T . (J",E)

Ir

Ejk (E) =

Expressions for the transmission functions for n, p, ,and y

are given 1n Woosley et al, ADNDT, 22, 378, (1978). See also

the appendix here. A transmission function 1s like an average
strength function for the reaction over the energy range of interest.
It includes the penetration function. It 1s dimensionless and

less than 1.

This formula has been used to generate thousands of cross sections
for nuclei with A greater than about 24. The general requirement
1s many ( > 10) resonances in the Gamow window.
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0

Q4 i

L(Q,)>T,(Q,)

and as a result

T, T,
0, < —"T1-=T
T +T, 4

n

1s larger if Q 1s larger

More levels to make
transitions to at higher
Q and also, more
phase space for the
outgoing photon.

3 . .
E_ for electric dipole



The Q-value for capture on nuclei that are tightly
bound (e.g., even-even nuclei, closed shell nuclei)
1s smaller than for nuclei that are less tightly bound
(e.g., odd A nuclei, odd-odd nuclei).

As a result, nuclear stability translates into smaller
cross sections for destruction - most obviously for
nucle1 made by neutron capture, but also to some
extent for charged particle capture as well.

This is perhaps the chief reason that tightly bound
nuclei above the iron group are more abundant in nature
than their less abundant neighbors.



Summary of reaction mechanisms

1(G,k)L
E;
R . ok Afa " . v
1 1 q} A &m enu’\, w\nlou)
Q
v L 1
-

1) Compute E, = 0.2 (3r i;' 3 T,z ) s Met
6025 (3 2/ AT,%)% Moy



Summary of reaction mechanisms
1(,k)L

® Add to Q-value and look 1nside nucleus I+

® Any resonances nearby or in window

N

No Yes
Right spin and parity?
< No Yes

Tail of A few Many
Broad  Narrow Overlapping

| |

Direct Extrapolate  Breit- Hauser-
Capture S-factor Wigner Feshbach




Special Complications 1n Astrophysics

® Low energy = small cross section — experiments are hard.

® Very many nuclei to deal with (our networks often include
1600 nucler; more 1f one includes the r-process)

® The targets are often radioactive and short lived so that
the cross sections cannot be measured in the laboratory
(°Ni1, 44Ti, 20Al, etc)

® Sometimes even the basic nuclear properties are not know
- binding energy, lifetime. E.g., the r-process and the rp-
process which transpire near the neutron and proton-
drip lines respectively.

® Unknown resonances in many situations



® Target in excited state effects — in the laboratory the
target 1s always 1n its ground state. In a star, 1t may not be

Iz Ez_
In iwl‘\w\m Cviot

* €
3‘ ‘ 2 lways ’mu,\) use Saha
, N eq_uﬁ\on.

n (tot) = W +9%% 4+4m, ...

-l
N, = (231-&—\) e /T a (et)

9 4t

et = 2, (213 #1) o ~Ei/wr



e

008 na T




® Electron screening

Nucler1 are always completely 1onized — or almost
completely 1onized at temperature 1n stars where
nuclear fusion occurs. But the density may be
sufficiently high that two fusing nucle1 do not
experience each others full Coulomb repulsion.

This 1s particularly significant in Type Ia supernova
1gnition.



Electron screening is generally treated in two limiting
cases.

Weak screening: (Salpeter 1954)

The electrical potential of the 10n 1s adjusted to
reflect the presence of induced polarization in the background
electrons. The characteristic length scale for this screening
1s the Debye length

1/2
kT ,
R = = /- +7)Y

D (4ﬂeszAgj C 2( [ l) l

Clayton 2-238 and discussion before

This 1s the typical length scale for the clustering of charge
in the plasma. Weak screening holds if R, >>n, 173



Roughly the ion sphere is the volume over

which a given ion can "polarize" the surrounding
electron cloud when that cloud has a thermal
energy ~kT. Its size is given by equating thermal
kinetic energy to electrical potential energy.

The charge within such a cloud is (Volume)(n_e)

and the charge on each ion is Ze. The volume is 4/3 nRg
andn_ =Zn,. So

(4 nR’ )(ane )(Ze) In general must include
PE = ~ kT more than one kind of

R, ions and the interaction
1/2 among electrons and
among ions, not only

R, ~ Compare with Clayton 2-235 between ions and electrons,

These “Coulomb correction”
affect the pressure and energy

Differs b 3
1ffers by \/_ of a gas, not just reaction rates



The modified Coulomb potential 1s then

2
Z

Vze— exp(—-r/R,)
r

Clayton eq. 4-215 and discussion leading up to it
shows that, in the limit that Ry >> the inter-ion
separation, then the effect of screening 1s an overall
reduction of the Coulomb potential by an energy

U:L;é
o RD

This potential does not vary greatly over the region where
the rate integrand 1s large (Gamow energy)



. The leading order term 1n the screening correction
e.g., the screening : ) .
forprpatthe (after considering Mawell Boltzmann average) 1s

solar centeris  then (Clayton 4-221; see also Illiadis 3.143)
about 5% - Illiadis

P 210 U
0

U, <<kT le_kT

=1+0.188Z2,Z, p"*¢" T, "

Strong screening: Salpeter (1954); Salpeter and
van Horn (1969)

If Ry becomes less than the inter-ion spacing,
then the screening 1s no longer weak. Each 1on of
charge Z 1s individually screened by Z electrons.
The radius of the “ion sphere” 1s

VAR ATR?
R, = ie. tn =27

Arn, 3 ¢



Clayton 2-262, following Salpeter (1954)

shows that the total potential energy of the 1on sphere,
including both the repulsive interaction of the electrons
among themselves and the attractive interaction with
the 10ns, 1s

Z 2
U=— 190 [( Re) ]:—17.6 ZSB(/OYe)U3 eV << Gamow energy E,
Z

and the|correction factor to the rate 1s exp(-U_ / kT )>> 1| with

_U,=176 ( pye)l“[(z,Jrzj)S” _ 7 Zﬂ eV (Cla4-225)

More accurate treatments are available, but this can
clearly become very large at high density. See Itoh et al.
ApJ, 586, 1436, 2003



Appendix:
Barrier Penetration
and Transmission Functions



Reflection at a Potential Change

For simplicity consider the case where the incident particle has no
charge, 1.e., a neutron, and take angular momentum, 1 = 0.

In QM there exists reflection

T——t qurgy whether V increases or
_______________________________________________________ decreases
— E
reflected 0 Perfectly ,
-— x<()— absorbing — E = b
E+VO what gets in 2U
stays in
l 2WE _p _2m_1_,
h h A R
-V, V(x)
x>0 >

“2:E x<0
K:\/Zu(E+V0)z«/2,uVO
h

h

Wave number for incident particles k=

inside well




Y(x)=Ade™ +Be™  x<0 Incident wave plus reflected wave

= Ce™ x>0  Wave traveling to the right

Y(x), ¥’ (x)continuous implies at x=0, A+B=C

ikA—ikB =iKC
K
B
= —= k
A K
1+—
k
K K
2 I+ -(1--)
T=1— Bl _ ( k) ( k) _ 4K [k __ 4Kk The fraction that “penetrates”
A K K k+ K)? to the region with the new
1+5y 1+ 5 KHK)
( +k) ( +k) potential.
and if £ <<V
4k AmkR 4
T k: Tk _ ﬂp=47rSprO
K #mwKR 7nKR
recall pP,=p=#kR
where § =

is the "black nucleus strength function"
KR

f corrects empiricaly for the fact that the nucleus is
not purely absorptive at radius R



Though for simplicity we took the case

[ =0 and Z = 0 here, the result can be generalized

to reactants with charge and angular momentum

For Z= 0

ForZ >0

Zé A
=17 _=0.1575Z,Z, 4
hv "N E(Me)V)

2UE

p= 7R0:0.2187\/21E R, (fin)

pR=p
3
R=—t
1+p
0’
P =
Ph 9+3p*+p’
P

pP =
" OF'(M,p)+Gl(n,p)



It 1s customary to define the transmission function for particles
(not photons) as

T=47S f(pR)

where S, the strength function, could be thought of in terms

of resonance properies as

= L = 3 Oj (see 3 pages ahead)
D uR’D pas

which 1s a constant provided that sz o< D, the level spacing.

2

This 1s consistent with the definition

el

Here “f” is the “reflection factor”, empirically 2.7 for n and p
and 4.8 for alpha-particles, which accounts for the fact that the
reflection 1s less when the potential does not have infinitely
sharp edges at R. Hence the transmission is increased.



But actually the strength function is parameterized in
terms of the black nucleus approximation used in the
transmission function calculation. Unknown parameters
are fit to data.

For nucle1 A < 65

R=125A"+0.1 fm forn,p
1.09A3+23 fm for alpha particles

22UV
s=— k=] HF%
KR h’

V ~60MeV

This 1s what 1s used in the Hauser Feshbach formalism



Analogously the photon transmission function is defined as:

I
T, =2r <—y> = Strength function * phase space factor
D

Phase space ~ Ey3 for dipole radiation

E ys for quadrupole radiation

The strength function is usually taken to be a constant
or else given a *Giant Dipole” (Lorentzian) form.

The transmission functions to the ground state and each excited
state are calculated separately and added together to get a total photon
transmission function.



Semi-empirical I'’s

Typically I, ~ eV — larger for large AE in the transition; smaller if
a large AJ is required or AE is small.

For nucleons and alpha particles it can be shown (Clayton 330 — 333)
that

3h* 125.41 MeV
U= |8 Ph="—75———6,pF
UR AR ( fm)

where &7 is the “dimensionless reduced width” which must be
evaluated experimentally, but is between 0 and 1 (typically 0.1).

The resulting widths are obviously very energy sensitive (via pP))
but for neutrons and protons not too much less than the Coulomb
energy, they are typically keV to MeV.



The decay rate of the state is qualitatively given by (Clayton p 331)

aside:

A=probability/sec for particle from decaying system to cross large

spherical shell
A=—= velocity at infinity * penetration factor * probability per unit dr
T

that the particle is at the nuclear

radius £ dr
Ty p lpotedpp W
h R UR R UR
2
where 3 = AzR d]; 1s the probability per unit radius
R 4/3nR d (volume)

for finding the nucleon if the density is constant ~ "°%m¢

6° =dimensionless constant < 1

p=kR = ,uv 2UE

h th




Very approximate estimates for I'

Typically I, ~ eV — larger for large AE in the transition; smaller if
a large AJ is required or AE is small.

For nucleons and alpha particles it can be shown (Clayton 330 — 333
and appendix to this lecture) that

5 use this only in the
3% 125.41 MeV absence of any
FZ. = 5 92 pPZ == © 92 p ; experimental data
MR ) AR"(fm)

where &7 is the “dimensionless reduced width” which must be
evaluated experimentally, but is between 0 and 1 (typically 0.1).
See appendix to this lecture (last page)

The resulting widths are obviously very energy sensitive (via pP))
but for neutrons and protons not too much less than the Coulomb
energy, they are typically keV to MeV.



