
Lecture 5 
 

Basic Nuclear Physics – 3  
 

Nuclear Cross Sections 
and Reaction Rates   

Flux per cm2

= n j v

  

Total area of target nuclei

per cm3 = nI σ I

  

    Reaction rate per cm3  
assuming no blocking = n jv nI  σ I

j 

I 

= 1 cm2 

The reaction rate for the two reactants, I and j  
as in e.g., I (j,k) L  is then: 

nInjσ I j v
which has units �reactions cm-3 s-1� 
 
It is more convenient to write things 
in terms of the mole fractions,  

YI =
XI

AI

nI = ρNAYI

so that the rate becomes
(ρNA )2YI Yj σ I j v

and a term in a rate equation decribing the destruction of I might be

dYI
dt

=− ρYIYjNA σ I jv +....

Here    denotes a suitable average over energies and angles
and the reactants are usually assumed to be in thermal equilibrium.
The thermalization time is short compared with the nuclear timescale.
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Equivalent to

dnI

dt
= − nInj σ Ijv + ...

  

For example, a term in the rate equation
for 12C during the CNO cycle might look like

        dY(12C)
dt

=− ρY(12C)Yp NA σ pγ (12C)v +...

 for the reaction 12C(p,γ )13N



The cross section for reaction is defined in the usual way: 

  

σ = number reactions/nucleus /second
number incident particles/cm2 / second

σ  clearly has units of area (cm2 )
For a Maxwell-Boltzmann distribution of reactant energies 

The average of the cross section times velocity is
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where µ  is the "reduced mass"

             µ=
MIm j

MI+ m j

 for the reaction I (j, k) L   
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Center of mass system – that coordinate system in which the  
   total initial momenta of the reactants is zero. 
 
The energy implied by the motion of the center of mass 
   is not available to cause reactions. 
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Replace mass by the "reduced mass"

M M
                  =

M M
µ

+

Read Clayton –  Chapter 4.1 

For T in 109 K = 1 GK,  in barns (1 barn = 10-24 cm2), E6 in MeV, and 
k = 1/11.6045 MeV/GK, the thermally averaged rate factor in cm3 s-1 is 
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                   Â =
A

I
A

j

A
I
+  A

j

for the reaction I(j,k)L

If you know jk  from the lab, or a calculation, in the center of mass 
frame, just put it in and integrate. The end  
 
The actual form of  may be very complicated and depends upon the  
presence or absence of resonances and the reaction mechanism. 
In general, however, it is of the form … 

   
        σ (E) = π2 ρP

l
(E) Χ(E, A)

geometry      penetration                nuclear 
  term            factor                        structure 

   

 =


p
 = 

1

k

How much the nucleus I+j looks  
like the target nucleus I with j  
sitting at its surface. Liklihood 
of staying inside R once you get  
there. 

Area subtended by a  
de Broglie wavelength  
in the c/m system.  
Characteristic quantum  
mechanical dimension 
of the system 

probability a flux of 
particles with energy E 
at infinity will reach the  
nuclear surface. Must account 
for charges and QM reflection. 

The Cross Section 

see Clayton Chapter 4 

(Cla 4-180) 



   

where  is the de Broglie wavelenth in the c/m system

π2 = π2

µ2v2 =
π2

2µE
= 0.656barns

Â E(MeV)

where 1 barn = 10-24 cm2  is large for a nuclear cross section.
Note that generally E(MeV) < 1 and  > Rnucleus  but

  is much smaller than the interparticle spacing.

µ=
M1M 2

M1 +M 2

Â=
A1A2

A1 + A2

~ 1 for neutrons and protons

~ 4 for α-particles if A
I
 is large

   

Clayton p. 319ff shows that  Schroedinger's
equation for two interacting particles in a radial 
potential  is given by (Cla 4-122) [see also our Lec 4]

                        Ψ(r, θ ,φ) = 
χ l (r)

r
Yl

m (θ ,φ)

where  χ(r) satisfies
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V (r)=V

nuc
r < R

for interacting particles with both charge and angular  
momentum. The angular momentum term represents the 
known eigenvalues of the operator L2 in a spherical potential 

potential 

(Clayton 4-103) 

Consider just the barrier penetration part (R < r  < infinity) 

 

*The 1/r cancels the r2  when integrating Ψ*Ψ over
solid angles (e.g. Clayton 4-114). It is not part  of
the potential dependent barrier penetration calculation.

* 

 

Classically, centrifugal force goes like 

             Fc  = mv2

R
= m2v2R2

mR3 = L2

mR3

One can associate a centrifugal potential with this,

                       Fc dR∫      = −L2

2mR2

Expressing things in the center of mass system and 
taking the usual QM eigenvaluens for the operator L2

one has 
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To solve
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Change of radius variable. Substitute for r 

           ρ =
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2 dr d 2ρ → 2µE
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 and for Coulomb interaction
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ρ  and η are dimensionless 
numbers



where  F and G, the regular and irregular Coulomb functions  
are the solutions of the differential equation and the constants  
come from applying the boundary conditions 

  

d 2χ
dρ2 + (1− 2η

ρ
− l(l +1)

ρ2 )χ = 0

has solutions (Abromowitz and Stegun 14.1.1)

χ = C1 Fl (η,ρ) + C2 Gl (η,ρ) C1 = 1 C2 = i

The barrier penetration function Pl  is then given by

                     Pl =
χ l (∞)

2

χ l (R)
2 =

Fl
2 (ρ = ∞)+Gl

2 (ρ = ∞)
Fl
2 (η,ρ)+Gl

2 (η,ρ)
= 1
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2 (η,ρ)

  

This is the solution for

          R < r   < ∞ 

For the one electron atom with 

a potential 
Ze

2

r
,  one obtains the 

same solution but the radial component

is Laguerre polynomials.

Cla 4-115 

The “1” in the numerator corresponds to a  
purely outgoing wave at infinity from a  
decaying state. 

http://people.math.sfu.ca/~cbm/aands/ 

multiply by -1 

   

ρP
l
 gives the probability of barrier penetration to the nuclear 

radius R with angular momentum l.  In general,

                           ρP
l
=

ρ

F
l

2 (η,ρ) +G
l

2 (η,ρ)
where F

l
 is the regular Coulomb function

                                                                                    and G
l
 is the irregular Coulomb function

See Abramowitcz and Stegun, Handbook of  Mathematical Functions, p. 537

These are functions of the dimensionless variables
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R=0.2187 ÂE R
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e.g., Illiadis 2.162 

contains all the charge dependence 
 
contains all the radius dependence 
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The classical turning radius, r
0
, is given by 
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The de Broglie wavelength on the other hand is

                        =


p
=


µv

Hence               η=
r

0

2

The probability of finding the particle inside of its classical turning

radius decreases exponentially with this ratio.

., both and are dimensionless.nb η ρ
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On the other hand, 

ρ=
2µE


2

R =
R



is just the size of the nucleus measured in de Broglie

wavelengths. 

This enters in, even when the angular momentum and 

charges are zero, because an abrupt change in potential 

at the nuclear surface leads to reflection of the wave 

function.
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For low interaction energy, (2η>>ρ,  i.e., E << 
ZI Z je

2

R
) 

and Zj ≠0, ρPl has the interesting limit

   ρPl ≈ 2ηρ exp −2πη+4 2ηρ − 2l(l +1)

2ηρ
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where

2ηρ = 0.2625 ZI Z j ÂRfm( )1/2

which is independent of energy but depends on nuclear size.

Note:
              rapid decrease with smaller energy and increasing charge(η ↑ )
              rapid decrease with increasing angular momentum

The leading order term for l  = 0 proportional to

                     ρPl ∝ exp −2πη( )

Abramowitz and Stegun, 
14.6.7 

              η=
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independent of E and l 

  

There exist other interesting limits for ρP
l
,  

for example when η is small - as for neutrons where it is 0

                      ρ∝E1/2 ρ P
0
=ρ

ρ P
1
=

ρ3

1+ρ2

ρP
2
=

ρ5

9 + 3ρ2
+ρ4

This implies that for l = 0 neutrons 
the cross section will go as 1/v. 

   
i.e., π2 ρ P

0
∝

E
1/ 2

E
∝ E

−1/ 2

ρ <<1  for cases of interest
          for neutron capture

For low energy neutron induced reactions, the 

cross section times velocity, i.e., the reaction rate

term, is approximately a constant
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For particles with charge, providing  X(A,E) does not vary rapidly.
with energy (exception to come), i.e., the nucleus is "structureless"

                      σ (E) = π2ρPl X ( A, E) ∝ e−2πη

E

This motivates the definition of an "S-factor"

S(E)=σ (E) E exp(2πη)

η=0.1575ZI Z j Â / E

Â =
AI Aj

AI + Aj

This S-factor should vary slowly with energy. The first order 
effects of the Coulomb barrier and Compton wavelength have been
factored out.



 

For those reactions in which S(E) is a slowly varying function of energy 
in the range of interest and can be approximated by its value at the energy 
where the integrand is a maximum, E0,

          σ (E)  S(E0 )
E

exp(−2πη)

NA σ v ≈ NA
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where  η(E) =0.1575 Â / E(MeV ) ZIZ j

The quantity in the integral looks like

Illiadis – Fig. 3.12 
 
Maxwell Boltzmann factor and 
barrier penetration factor vs  
energy for the reaction  
12C(,)16O at T8 =2. The product 
e-E/kT times e-2 is shown on 
a logarithmic and a linear 
scale. The Gamow peak is  
at 0.32 MeV which is much  
greater than kT = 17.2 keV. 
The left axis shows probability 
in arbitrary units. 

For accurate calculations we would just enter the 
energy variation of S(E) and do the integral numerically. 
However, Clayton shows (p. 301 - 306) that 
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 where Eo is the Gamow  Energy

     E0 = πηE1/2kT( )2/3
; ηE1/2  =0.1575 Â ZIZ j; kT = T9

11.6045

Eo  = 0.122 ZI
2Z j

2ÂT9
2( )1/3

 MeV

and Δ is its full width at 1/e times the maximum

             Δ = 4
3
EokT( )1/2  = 0.237 ZI

2Z j
2ÂT9

5( )1/6
 MeV

Δ is approximately the harmonic mean of kT and E0

and it is always less than E0



  

e.g.  3He(α,γ )7Be   at 1.5 x 107  K

Eo  = 0.122 ZI
2Zj

2ÂT9
2( )1/3

 MeV

Â =
3( ) 4( )
3 + 4

= 1.714; T9 =0.015; ZI =Zj = 2

Eo =0.122 2( )2
2( )2

1.71( ) 0.015( )2( )1/3

 MeV

     =  0.02238 MeV = 22.4 keV
Similarly

Δ = 0.237 ZI
2Zj

2ÂT9
5( )1/6

=0.0124 MeV = 12.4 keV

See the plot of the S-factor a few slides back

In that case, the integral of a Gaussian is analytic

NA σ v = 4.34×108

Â ZIZ j

S(E0 ) τ 2e−τ cm3 / (Mole s)

where S(E0 ) is measured in MeV barns.   If we define

λ jk = NA σ jkv

then a term in the rate equation for species I such as Yjρλ jk  has units
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Note that τ   here is 

                      τ = 3E0

kT
= 4.248

ZI
2Z j

2 Â
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Different people use different 
conventions for  which sometimes  
do or do not include  or NA. This  
defines mine. Clayton does not innclude 
NA.'

Clayton 4-54ff 
uses S in keV b, 
otherwise the same 
answer. 

differs from Clayton which 
measures T in 106 K 
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 Let x = 
E −E0
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2dE
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 Can replace lower bound to intergral E = 
−2E0
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by E = - ∞ with  little  loss of accuracy (footnote
    Clayton p 305) so that 
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τ 2e−τS(E0)  MeV1/2 amu−1/2  barn

  = 
7.2 ×10−16
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τ 2 e−τ S(E0) cm3 s−1 (Clay 4 − 56)

λ =NA σv = 4.34×108
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nb. The unit conversion factor is 10−24 * (6.02×1023 i 1.602×10−6)1/2

µ = Â  amu



Adelberger et al, RMP, (1998(  
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For example, 12C + 12C  at 8 x 108 K 
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p + p  at 1.5 x 107 K 
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Thus �non-resonant� reaction rates will have a  
temperature dependence of the form 

  
λ 

Constant

T2/3
exp(−

constant

T1/3
)

This is all predicated upon S(Eo ) being constant, or at  
least slowly varying. This will be the case provided: 
 
         i) E <<  ECoul  ;   l = 0 
        ii) All narrow resonances, if any, lie well outside the  
             Gamow �window� 
 

 
E

o
± Δ / 2

That is there are no resonances or there are  
very many overlapping resonances 
 
iii) No competing reactions (e.g.,  (p,n), (p,) vs (p,)) 
    open up in the Gamow window 

  τ
2
e
−τ



In general, there are four categories of strong and electromagnetic 
reactions determined by the properties of resonances through which  
each proceeds 

•   Truly non-resonant reactions (direct capture and 
     the like) 
 
•  Reactions that proceed through the tails of broad  
   distant resonances 
 
•  Reactions that proceed through one or a few  
   �narrow��resonances within the “Gamow window” 
 
•  Reactions that have a very large number of  
   resonances in the �Gamow window� 

S(E) ~ const 
 
 
 
S(E) ~ const 
 
 
S(E) highly 
 variable 
 
 
S(E)~ const 

Resonant Reactions Reaction Mechanisms 
1)  Direct Capture  - an analogue of atomic radiative capture 
     

     The target nucleus and incident nucleon (or nucleus) react  
   without a sharing of energy among all the nucleons. An example  
   be the direct radiative capture of a neutron or proton and 
   the immediate ejection of one or more photons. The ejected photons  
   are strongly peaked along the trajectory of the incident projectile. 
   The reaction time is very short, ~ R/c ~10-21 s. 
 
         This sort of mechanism dominates at high energy (greater than 
   about 20 MeV, or when there are no strong resonances in or near the  
   Gamow window. It is especially important at low energies in light  
   nuclei where the density of resonances is very low. 
 
        The S-factor for direct capture is smooth and featureless. 
 
 Examples: 

 

3 He(α ,γ )7Be, 2H(p,γ )3He, 3He(3He, 2p)4He

12C(n,γ )13C,  48Ca(n,γ )49Ca

Treating the incoming 
particle as a plane wave 
distorted by the nuclear 
potential results in the  
�Distorted Wave Born  
Approximation� often used 
to calculate direct reactions. 
 
Here the incoming particle  
is represented as a plane wave 
which goes directly to a standing 
wave with orbital angular  
momentum l in the final nucleus. 

The process involves a a single matrix element and is thus 
a single step process. Direct capture  is analogous to  
bremsstrahlung in atoms. 
 
Direct capture provides a mechanism for reaction in  
the absence of resonances. Usually DC cross sections are 
much smaller than resonant cross sections on similar  
nuclei - if a resonance is present. 



2) Resonant Reaction: 
 
     A two step reaction in which a relatively long-lived excited 
 state of the �compound nucleus� is formed – the �resonance�. 
 This state decays statistically without any memory (other than energy 
 and quantum numbers) of how it was produced. The outgoing  
 particles are not peaked along the trajectory of the incident particle. 
 (This is called the �Bohr hypothesis� or the �hypothesis of  
 nuclear amnesia�). The presence of a resonance says that the  
internal structure of the nucleus is important and that a �long-lived� 
state is being formed. 
 
    Resonances may be broad or narrow. The width is given by the  
 (inverse of the ) lifetime of the state and the uncertainty principle.  
 
 
 Generally states that can  decay by emitting a neutron or proton will  
 be broad (if the proton has energy greater than the Coulomb barrier.  
 Resonances will be narrow if they can only decay by emitting a  
 photon or if the charged particle has energy << the Coulomb barrier.. 

  
ΔEΔt  

I. Direct reactions (for example, direct radiative capture) 

A+n 

B 

En 
Sn 

'
direct transition into bound states 

II. Resonant reactions (for example, resonant capture) 

A+n 

B 

En 
Sn 

Step 1: Compound nucleus formation 
            (in an unbound state) 

'

B 

Step 2: Compound nucleus decay 
 

'
'

Not all reactions emit radiation and stay within the original compound nucleus. 
One may temporarily form a highly excited state that decays by ejecting 
e.g.,  n, p, or alpha-particle. E.g.,  I(n,)K: 

Nucleus I + n 

En 

Step 1: Compound nucleus formation 
            (in an unbound state) 

'

Nucleus I + n 

Step 2: Compound nucleus decay 
             non-radiative channel 
 

'

K 

I+n 
Sn 

S
α
(K)

Other (non-radiative) channels 

   One or more resonances may be present in the Gamow energy 
window, in which case their contributions are added, or there  
may be a broad resonance just outside the Gamow energy 
window, either above or below. 
 
   The S-factor will be smooth in this latter case. In the case 
of one or a few narrow resonances it will definitely not be 
smooth. In the case of many broad overlapping resonances, 
it will be smooth again.  
 
  Resonances may be broad if they can decay by emitting a neutron, 
proton or alpha-particle. For example, the 2.366 MeV (1/2+) 
excited state of 13N is broad because it can emit an energetic 
proton. That same state can serve as a resonance for the  
reaction 12C(p,)13N which has a Q-value, Qp = 1.944 MeV 



  2.366              Excitation energy 
- 1.944              Q value for (p) 
   0.422 MeV    Threshold c/m  

13

12
(422) = 457

S(
E)

 

The energy scale is given in the center of mass 
fram (422 keV) needs to be converted to the lab 
frame to compare with lab data. Multiply by  
(A1+A2)/(A1A2) 

13C(p,)14N is similar 

J π (13Cground ) =
1
2

−

what l-waves contribute? 

  

E
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=0.0163 MeV = 16.3 keV

For both cases the S factor is slowly varying in the Gamow “window”. 
 
Say hydrogen burning at 2 x 107 K, or T9 = 0.020 

Note on the previous pages, there is no data at energies this low. 
As is generally the case, one must extrapolate the experimental 
date to lower energies than are experimentally accessible.  The  
S-factor is useful for this. 

12
C(p,γ )13N

  

E
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This reaction might be of interest either in hot hydrogen burning 
at 30 million K or in carbon burning at 800 million K. Consider the  
latter. 

Now three resonances and direct capture contribute. 

24Mg(p,γ )25AlConsider, however,  the reaction 



Another Example: 

Resonance contributions are on top of direct capture cross sections 

RESONANT PLUS 
… and the corresponding S-factor 

~ constant S-factor 
for direct capture 

Not constant S-factor 
for resonances 
(log scale !!!!) 

Note varying widths and 
effects for E >>  ! 

Decaying states in general have an an energy 
distribution given by the Breit-Wigner or Cauchy 
distribution (Clayton 3-103)*. The normalized probability 
that the state has energy E is 

P(E)dE =
Γ / 2π dE

E − ε
r( )

2
+ Γ / 2( )

2

where

                       Γ =


τ

and τ  is the lifetime

* Solve wave function for a quasistationary state 

subject to the constraint that ψ k∫
2
= exp(-t/τ ). Take

Fourier transform of ψ (t) to get ϕ(E) and normalize.

nb. units of energy 
but rather like a rate 

How to calculate? 
If a reaction is dominated by narrow resonances, its  
cross section will be given by the Breit-Wigner equation 
(see page 347 Clayton, also probs. 3-7 and eq, 3-103). 

   

σ
jk

(E) = π
2
ω

Γ
j
Γ

k

E − ε
r( )

2

+ Γ
tot

2 / 4
ω =

2J
r
+1

(2J
I
+1)(2J

j
+1)

The �s are the partial widths (like a probability but with 
dimensions of energy) for the resonance to break up into  
various channels. These now contain the penetration factors. 
The lifetime of a resonance is 

τ =


Γ
tot

Γ
tot
= Γ

k∑  = 6.582×10
−22
MeVsec

This cross section will be sharply peaked around r, with a width tot 



Γ
tot

= Γ
i∑

The cross section contribution due to a single resonance is given by the  
Breit-Wigner formula: 

 

σ (E) = π
2

⋅ ω ⋅
Γ
1
Γ
2

(E − E
r
)
2
+ (Γ / 2)

2

ω =
2J

r
+1

(2J
1
+1)(2J

2
+1)

Usual geometric factor 

=
0.656

Â

1

E
barn

Spin factor: 

1
Γ∝ Partial width for decay of resonance 

by emission of particle 1 
= Rate for formation of  Compund 
    nucleus state 

2
Γ∝ Partial width for decay of resonance  

by emission of particle 2 
= Rate for decay of Compund nucleus 
   into the right exit channel 

 = Total width is in the denominator as  
a large total width reduces the maximum  
probabilities (on resonance) for 
decay into specific channels. 

Rate of reaction through a narrow resonance 

Narrow means:  Γ << ΔE

In this case, the resonance energy must be �near� the relevant energy range  
E to contribute to the stellar reaction rate. 

Recall: 
< σv >=

8

πµ

1

(kT )
3/2

σ (E)E e
−
E

kT

0

∞

∫ dE

and 

 

σ (E) = π
2
ω

Γ
1
(E)Γ

2
(E)

(E − E
r
)
2
+ (Γ(E) / 2)

2

For a narrow resonance assume: 

M.B. distribution  Φ(E)∝ E e
−
E

kT constant over resonance  
All widths (�) !

Φ(E) ≈ Φ(E
r
)

constant over resonance  Γ
i
(E) ≈ Γ

i
(E

r
)

 
2 constant over resonance  

pull out front 

 

σ = π2ω
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2
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Then one can carry out the integration analytically (Clayton 4-193) and finds: 

N
A
< σv >= 1.54 ⋅10

11
(AT9 )

−3/2ωγ [MeV]e

−11.605 E
r
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T
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3
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ωγ =
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(2J
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I
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Γ
1
Γ
2

Γ

For the contribution of a single narrow resonance to the stellar reaction rate: 

The rate is entirely determined by the �resonance strength��!ωγ

Which in turn depends mainly on the total and partial widths of the resonance at  
resonance energies.  

Often  Γ = Γ
1
+ Γ

2
Then for 

1

21

221
Γ≈

Γ

ΓΓ
⎯→⎯Γ≈Γ⎯→⎯Γ<<Γ

Γ
2
<< Γ

1
⎯→⎯ Γ ≈ Γ

1
⎯→⎯

Γ
1
Γ
2

Γ
≈ Γ

2

And reaction rate is determined by the smaller one of the widths ! 

Illiadis Table 4.12 

As one goes up in  
excitation energy many  
more states and many  
more reactions become  
accessible. 

here  is the  
density and  is 
the partition function 

   As one goes to heavier nuclei and/or to higher excitation 
energy in the nucleus, the number of excited states, and hence 
the number of potential resonances increases exponentially. 
 
  Why? The thermal energy of a non-relativistic, nearly degenerate 
gas (i.e., the nucleus) has a leading term that goes as T2  where 
T is the �nuclear temperature. The energy, E, of a degenerate gas 
from an expansion of Fermi integrals  is: 

E = f(ρ) + a(kT)2
+  b (kT)4  + ....

One definition of temperature is 

            
1

kT
 = 

∂ lnΩ

∂E

 where Ω  is the number of states (i.e., the partition function)

∂ lnΩ

∂T
=
∂ lnΩ

∂E

∂E

∂T

1

T
=
∂S

∂E
S = k lnΩ  defines T



The number of excited states 
(resonances) per unit excitation 
energy increases exponentialy 
with excitation energy. 

d lnΩ ~
1

kT

∂E
∂T

⎛
⎝⎜

⎞
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dT  ~  
1

kT
2ak2T( )  dT

ln Ω ~  2ak dT∫ = 2akT + const

          Ω ~ C exp 2akT( )

 and if we identify the excitation energy, Ex  ≈  a(kT)2,

i.e., the first order thermal correction to the internal energy, then

                 kT( )
2

 ~ 
Ex

a

        Ω = C exp 2 aEx( )
Empirically a ≈  A/9. There are corrections to a for shell

and pairing effects.  In one model (back-shifted Fermi gas)

             C = 
0.482

A5/6Ex

3/2

  

Generate an energy averaged cross section

             σ =
σ (E)dE

E

E+ΔE

∫
ΔE

∝ 1
ΔE 1

N

∑
ω Γ j Γ k dE

(E − ε r )2 + Γ r
2 / 4E

E+ΔE

∫

≈
ω Γ jΓ k

ΔE
N dE

(E − ε r )2 +Γ r
2 / 40

∞

∫

D 

Take N (>>1) equally spaced identical resonances in an energy interval E. 
For example, assume they all have the same partial widths. 

dE
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2
ω
T
j
T
k

T
tot

where T
j
=2π

Γ
j

D

D << E 

E 

What is the cross section when the density of resonances is large? 

This gives the Hauser-Feshbach formula for estimating  
cross sections where the density of resonances is high. 

 

σ jk (E) =
π

2

2JI +1( ) 2J j +1( )
2Jr +1( )

all

Jr
π

∑
Tj

l
(J

π
,E)Tk

l
(J

π
,E)

Ttot (J
π
,E)

Expressions for the transmission functions for n, p, , and   '
are given in Woosley et al, ADNDT, 22, 378, (1978). See also 
the appendix here. A transmission function is like an average 
strength function for the reaction over the energy range of interest. 
It includes the penetration function. It is dimensionless and 
less than 1. 
 
This formula has been used to generate thousands of cross sections 
for nuclei with A greater than about 24. The general requirement  
is many ( > 10) resonances in the Gamow window. 



Q2 
Q1 

Tγ (Q2 ) > Tγ (Q1)

and as a result

                   σ nγ ∝
Tn  Tγ

Tn  + Tγ

≈ Tγ

is larger if Q is larger

More levels to make 
transitions to at higher 
Q and also, more 
phase space for the  
outgoing photon. 

Eγ

3   for electric dipole

The Q-value for capture on nuclei that are tightly 
bound (e.g., even-even nuclei, closed shell nuclei) 
is smaller than for nuclei that are less tightly bound  
(e.g., odd A nuclei, odd-odd nuclei). 
 
As a result, nuclear stability translates into smaller 
cross sections for destruction - most obviously for 
nuclei made by neutron capture, but also to some 
extent for charged particle capture as well. 
 
This is perhaps the chief reason that tightly bound  
nuclei above the iron group are more abundant in nature  
than their less abundant neighbors.  

Summary of reaction mechanisms 
                  I(j,k)L 



Summary of reaction mechanisms 
                  I(j,k)L 

•  Add to Q-value and look inside nucleus I+j 
 
•   Any resonances nearby or in window 

          No                                 Yes 
 
                                    Right spin and parity? 
 
                                         No              Yes 
 
                                        Tail of        A few          Many  
                                         Broad       Narrow        Overlapping 
 
        Direct                   Extrapolate      Breit-            Hauser- 
       Capture                  S-factor           Wigner         Feshbach 

Special Complications in Astrophysics 
•  Low energy = small cross section – experiments are hard. 
 
•  Very many nuclei to deal with (our networks often include 
    1600 nuclei; more if one includes the r-process) 
 
•   The targets are often radioactive and short lived so that  
    the cross sections cannot be measured in the laboratory 
    (56Ni, 44Ti, 26Al, etc) 
 
•  Sometimes even the basic nuclear properties are not know 
   - binding energy, lifetime. E.g., the r-process and the rp- 
  process which transpire near the neutron and proton- 
  drip lines respectively. 
 
•  Unknown resonances in many situations 

•  Target in excited state effects – in the laboratory the  
   target is always in its ground state. In a star, it may not be 



•  Electron screening 
Nuclei are always completely ionized – or almost 
completely ionized at temperature in stars where  
nuclear fusion occurs. But the density may be  
sufficiently high that two fusing nuclei do not 
experience each others full Coulomb repulsion. 
 
This is particularly significant in Type Ia supernova 
ignition. 

Electron screening is generally treated in two limiting  
cases.  
 
Weak screening: (Salpeter 1954) 
 
        The electrical potential of the ion is adjusted to  
reflect the presence of induced polarization in the background 
electrons. The characteristic length scale for this screening 
is the Debye length  

           R
D
=

kT

4πe2ρN
A
ς

⎛
⎝⎜

⎞
⎠⎟

1/2

ζ = (Z
i

2∑ +Z
i
)Y

i

Clayton  2-238 and discussion before

This is the typical length scale for the clustering of charge 
in the plasma. Weak screening holds if RD  >> nZ

-1/3 

 

PE =

4
3
πRD

3⎛
⎝⎜

⎞
⎠⎟ ZnZe( )(Ze)
RD

 kT

RD ~ kT
4
3
πe2Z 2nZ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/2

   Compare with Clayton 2-235

                                           Differs by 3
ρNAYZ = nZ

  

Roughly the ion sphere is the volume over
which a given ion can "polarize" the surrounding
electron cloud when that cloud has a thermal 
energy ~kT.  Its size is given by equating thermal
kinetic energy to electrical potential energy.
The charge within such a cloud is (Volume)(ne e)  

and the charge on each ion is Ze. The volume is 4/3 πRD
3  

and ne  = ZnZ . So

In general must include 
more than one kind of  

ions and the interaction  
among electrons and  
among ions, not only 

between ions and electrons, 
 

These “Coulomb correction” 
affect the pressure and energy 
of a gas, not just reaction rates 

The modified Coulomb potential is then  

V =
e
2
Z

r
exp(−r / R

D
)

Clayton eq. 4-215 and discussion leading up to it 
shows that, in the limit that RD >> the inter-ion  
separation, then the effect of screening is an overall 
reduction of the Coulomb potential by an energy  

U
o
=
Z
I
Z
j
e
2

R
D

This potential does not vary greatly over the region where  
the rate integrand is large (Gamow energy) 



The leading order term in the screening correction 
(after considering  Mawell Boltzmann average) is 
then  (Clayton 4-221; see also Illiadis 3.143) 

f ≈ 1−
Uo

kT
= 1+0.188ZIZ j ρ

1/2ς 1/2 T
6

−3/2

Strong screening:  Salpeter (1954); Salpeter and  
van Horn (1969) 

If  RD  becomes less than the inter-ion spacing, 
then the screening is no longer weak. Each ion of 
charge Z is individually screened by Z electrons. 
The radius of the “ion sphere” is  

R
Z
=

3Z

4πn
e

⎛
⎝⎜

⎞
⎠⎟

1/3

i.e.
4πR

Z

3

3
n
e
= Z

e.g., the screening 
for p+p at the  
solar center is 
about 5% - Illiadis 
P 210 

U0 << kT 

Clayton 2-262, following Salpeter (1954) 
shows that the total potential energy of the ion sphere,  
including both the repulsive interaction of the electrons  
among themselves and the attractive interaction with  
the ions, is   

U = − 9
10

Ze( )2

RZ

⎛

⎝⎜
⎞

⎠⎟
=−17.6 Z 5/3 ρYe( )1/3 eV <<  Gamow energy E0

and the correction factor to the rate is exp(-Uo / kT )>>1 with

−U0 =17.6 ρYe( )1/3 ZI +Z j( )5/3
− ZI

5/3 − Z j
5/3⎡

⎣⎢
⎤
⎦⎥   eV    (Cla 4-225)

More accurate treatments are available, but this can 
clearly become very large at high density. See Itoh et al. 
ApJ, 586, 1436, 2003 

Appendix: 
 Barrier Penetration 

and Transmission Functions 

Reflection at a Potential Change 

For simplicity consider the case where the incident particle has no 
charge, i.e., a neutron, and take angular momentum, l = 0. 

Energy 

E 
reflected 

incident 

0 

-Vo V(x) 

E+Vo 
x < 0 

Perfectly  
absorbing – 
what gets in  
stays in 

In QM there exists reflection 
whether V increases or  
decreases 

   

E = 
p

2

2µ

2µE


=

p


=

2π

λ
=

1


≡ k

   

Wave number for incident particles       k =
2µE


x < 0

                         inside well                   K =
2µ(E +V

o
)


≈

2µV
o



x > 0 



Ψ(x)= Aeikx +Be−ikx x<0   Incident wave plus reflected wave

= Ce
iKx

x>0       Wave traveling to the right

Ψ(x), ′Ψ (x)continuous implies  at x=0, A+B=C

                                                               ikA− ikB = iKC

⇒
B

A
=

1−
K

k

1+
K

k

T =1−
B

A

2

=

(1+
K

k
)2

− (1−
K

k
)2

(1+
K

k
)2

=
4K / k

(1+
K

k
)2

=
4Kk

(k + K )2

and if E <<V
o

T =
4k

K
=

4πkR

πKR
=

4πρ

πKR
=4πS f ρP

0

where S =
1

πKR
 is the "black nucleus strength function"

The fraction that �penetrates� 
to the region with the new 
potential. 

0
recall P Rkρ ρ= =

f corrects empiricaly for the fact that the nucleus is 
not purely absorptive at radius R  

  

Though for simplicity we took the case

l  = 0 and Z = 0 here, the result can be generalized

to reactants with charge and angular momentum

    For Z= 0 ρ P
0
=ρ l = 0

ρ P
1
=

ρ3

1+ρ2
l = 1

ρP
2
=

ρ5

9 + 3ρ2
+ρ4

l = 2

  

    ρP
l
=

ρ

F
l

2 (η,ρ)+G
l

2 (η,ρ)

For Z > 0 

2

0 02

ˆ
0.1575

( )

2 ˆ0.2187 ( )

I j

I j

Z Z e A
Z Z

v E MeV

E
R AE R fm

η

µ
ρ

= =

= =





It is customary to define the transmission function for particles 
(not photons)  as 

   

T =4π S f (ρPl )

where S, the strength function, could be thought of in terms
of resonance properies as 

S =
Γ j

D
= 32

µR2

θ j
2

D
(see 3 pages ahead)

which is a constant provided that θ j
2 ∝ D,  the level spacing.

This is consistent with the definition

T =2π Γ
D

Here �f� is the �reflection factor�, empirically 2.7 for n and p 
and 4.8 for alpha-particles, which accounts for the fact that the  
reflection is less when the potential does not have infinitely 
sharp edges at R. Hence the transmission is increased. 

But actually the strength function is parameterized in 
terms of the black nucleus approximation used in the  
transmission function calculation. Unknown parameters  
are fit to data. 
 
For nuclei A < 65 
 
    R = 1.25 A1/3 + 0.1   fm     for n,p 
           1.09 A1/3 + 2.3   fm     for alpha particles 
 

   

S =
1

πKR
K =

2µV
o


2

V
o
≈ 60MeV

This is what is used in the Hauser Feshbach formalism 



Analogously the photon transmission function is defined as: 

3

5

2 Strength function * phase space factor

Phase space E for dipole radiation

                       E  for quadrupole radiation

 

T
D

γ

γ

γ

γ

π
Γ

= =



The strength function is usually taken to be a constant  
or else given a ``Giant Dipole� (Lorentzian) form. 
 
The transmission functions to the ground state and each excited 
state are calculated separately and added together to get a total photon 
transmission function. 

Typically  ~ eV – larger for large E in the transition; smaller if 
                                 a large J is required or E is small. 
 
For nucleons and alpha particles it can be shown (Clayton 330 – 333)  
   that  

   

Γ
j

l
=

32

µR2

⎛

⎝⎜
⎞

⎠⎟
θ

j

2 ρP
l
=

125.41 MeV

ÂR2( fm)
θ

j

2 ρP
l

where j
2  is the �dimensionless reduced width� which must be 

evaluated experimentally, but is between 0 and 1 (typically 0.1).  
 
   The resulting widths are obviously very energy sensitive (via Pl) 
but for neutrons and protons not too much less than the Coulomb  
energy, they are typically keV to MeV. 

Semi-empirical ’s 

The decay rate of the state is qualitatively given by (Clayton p 331)

λ ≡probability/sec for particle from decaying system to cross large

                                                     spherical shell

λ =
1

τ
=  velocity at infinity * penetration factor * probability per unit dr

                                                                  that the particle is at the nuclear 

                                                                  radius ± dr

      = 
Γ


= v   P

l

3

R
θ
2
=
ρ

µR

3

R
P
l
θ
2
=
3

µR2
ρP

l
θ 2

                   where 
3

R
=
4πR

2
dr

4 / 3πR
3

 is the probability per unit radius

                             for finding the nucleon if the density is constant

                           θ 2 =dimensionless constant < 1

                           ρ = kR =
µv


R=

2µE


2
R

( )d volume

volume

aside: 

Typically  ~ eV – larger for large E in the transition; smaller if 
                                 a large J is required or E is small. 
 
For nucleons and alpha particles it can be shown (Clayton 330 – 333 
and appendix to this lecture) that  

   

Γ
j

l
=

32

µR2

⎛

⎝⎜
⎞

⎠⎟
θ

j

2 ρP
l
=

125.41 MeV

ÂR2( fm)
θ

j

2 ρP
l

where j
2  is the �dimensionless reduced width� which must be 

evaluated experimentally, but is between 0 and 1 (typically 0.1). 
See appendix to this lecture (last page)  
 
   The resulting widths are obviously very energy sensitive (via Pl) 
but for neutrons and protons not too much less than the Coulomb  
energy, they are typically keV to MeV. 

Very approximate estimates for '

use this only in the  
absence of any  
experimental data 


