
Lecture 6 
 

p+p, Helium Burning and 
Energy Generation 



Proton-proton reaction: 

  
p ( p,e+

ν
e
)2 H (+0.42MeV)

  This cross section is far too small (~10-47 cm2 at 1 MeV) 
 to measure in the laboratory, but it does have a nearly constant,  
calculable S-factor.  
 
    The theory is straightforward, but complex  
(e.g., Clayton 366 - 368) because it includes a strong interaction 
and weak interaction happening in rapid succession . 
 
Two stages: 
 
•  Temporarily form diproton (initial wave function 
   is same as for proton scattering). Initial diproton must  
   have J = 0 because can’t have protons in identical states. 
 
•  Diproton experiences a weak interaction (with a  
   spin flip) to make deuteron. 



We shall be terse in our classroom discussion of this reaction, chiefly 
because it involves a lot of concepts we have not discussed so far 
(weak decays, axial/vector currents, etc), but also because it is  
unimportant in massive stars. Read Adelberger, RMP, pages 1272 – 1275 
for background. This is given at the class website. 
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where α  is the fine structure constant, mp is the mass of the proton, 

c is the speed of light, GV and G A  are the Fermi and axial vector

weak-coupling constants, γ = 2µED( )=  0.23161 fm-1  is the deuteron

binding wave number, µ is the proton-neutron reduced mass and ED  is

the deuteron binding energy, (=1), f pp
R  is the phase space factor, (ft)

0+→0+

is the (ft) value for the superallowed 0+ →0+  transitions, Λ is 
proportional to the overlap of the pp and deuteron wave functions,
and δ  is a small correction to the nuclear force for the exchange of 
heavier mesons.



2  is given by the overlap integral between the initial pp wave function 
    and the final state deuteron wave function. The wave functions are  
    determined by integrating Schroedinger’s equation for the two nucleon 
    system with an assumed nuclear potential. The potential for the pp wave 
    function must fit the data on proton-proton scattering. Five different  
    potentials* were explored by Kamionkowski and Bahcall (1994) and give 
    results consistent with the quoted error bar. The deuteron wave function 
    must be consistent with the deuteron binding energy and other experimental 
    constraints. Seven different possibilities were explored. The overall 
    error is in 2 is about 0.2%. 
 
(ft) and GA/GV are determined by measurements of weak decay in a variety 
   of nuclei and especially the lifetime of the free neutron. The standard value for  
   the latter is 887 +- 2.0  seconds. The weak decay here is of the Gamow-Teller  
   type (J = 0,1), not Fermi (J = 0). GT is mediated by the axial current (A). 
   Fermi is mediated by the vector current (V). 
 
The other factors are either accurately measurable (deuteron BE),  
   straightforward to calculate (fpp), or complicated and not very 
   important (). *square well, Gaussian, exponential 

 Yukawa,  and repuslive core 





The overlap is insensitive to the form of nuclear  
potential assumed inside a few fm and is determined 
by the tail of the potential at the nuclear surface. 
 
This is highly constrained by proton scattering  
experiments. 

Bethe and Critchfield (1938) 
Salpeter (1952) 

History: 
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 3.78 ± 0.15 ×10−25  in Bahcall (1968)



Adelberger et al. RMP, (1998) 



Helium Burning 

Helium burning is a two-stage nuclear process in which two  
alpha-particles temporarily form the ground state of unstable 8Be*. 
Occasionally the 8Be* captures a third alpha-particle before it flies 
apart. No weak interactions are involved. 

unstable 



The ground state of 8Be* is unbound by 92 keV to  
-decay. It has a width  = 6.8 eV and a lifetime of  

   
τ = 

Γ
= 6.58x10−22 MeV s

6.8x10−6  MeV 
= 9.7 x10−17  sec



The 7.654 MeV excited state of 12C plays a critical role in the 3&
reaction. Its -width is much greater than its photon width, 
so it predominantly decays back to 8Be*, setting up an equilibrium 
abundance of 12C*.  is augmented by a small contribution from 
pair production. 
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Recall the Saha equation: (e.g., Clayton p 29). For example,
for ionized and neutral hydrogen:
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The same thermodynamic arguments (equilibrium, chemical potential,
etc.)also give a nuclear  Saha equation. In particular, the equilibrium
concentration of an unbound transitory 8Be*  nucleus is given by
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Qαγ (4He) = BE(8Be*)-2BE(α )=56.4995-2(28.2957)

= -0.0919 MeV Qαγ (4He)/kT = -0.0919  × 11.6045/T9 = -1.066/T9
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n(8Be*)= 5.94×1033 23/2T9
3/2( )−1

nα
2 exp(−1.066 / T9 )

n(8Be*)= nα
2 T9

-3/2 (5.95×10-35)exp(-1.066/T9 ) cm-3

Â= 4× 4
4+ 4

=2

or, since n ≡  ρNA Y   and Y=
X
A

   X(8Be*) = 1.79×10-11 ρXα
2

T9
3/2 e-1.066/T9

For example, at 2 ×  108 K, ρ=103 gcm-3,Xα =1

X(8Be*)≈ 10-9

This works because the dominant decay mode of 8Be* is to 
the same products from which it is assembled, i.e.,

                              α +α 8Be*



   

The time scale for establishing this equilibrium is very short.

Now consider the excited state of 12C at 7.6542 MeV. It also

has as its dominant width, Γα >>Γγ . That is 8Be*  + α 12C*

where we have denoted the excited  state as 12C*.

                
n(8 Be*)nα

n(12C*)
=5.94×1033T9

3/2 4 i8
4+8

⎛
⎝⎜

⎞
⎠⎟

3/2

e−Qαγ (8 Be* )/kT

                n(12C*) = (5.94×1033)-1 T9
-3/2 12

32
⎛
⎝⎜

⎞
⎠⎟

3/2

n(8 Be*)nα exp −0.287 / kT( )
 Qαγ (8 Be*) = BE(12C)− BE(8 Be*)− BE(α )− 7.6542

= 92.1617 −56.4995 -28.2957 - 7.6542 MeV
                                   = -0.2870  MeV   (*1/k = 11.6045 ⇒  -3.330)

n(12C*) = 3.87×10−35 T9
-3/2 n(8 Be*)nα exp −3.330 / T9( )

=3.87×10−35 (5.95×10-35)T9
-3nα

3 exp( − 3.330 / T9-1.066/T9 )

= 2.303×10−69 T9
-3nα

3 exp( − 4.396 / T9 )





   

The number of 12C formed permanently per second is

R3α = n(12C*)
Γ rad



Γ rad is the one thing besides binding energies and excited state

energy that has to be measured
Γ rad =3.41±1.12×10-3 eV (1976)

=3.67±0.46×10-3 eV (1988) 
                             = 3.64±0.5 meV (1990)

                       Γe± = 60.5±3.9 µeV

see article by Hale (1997). Current error about 10%  (Sam Austin 2013)



  

This gives:
                R3α =1.28×10−56 T9

-3 nα
3 exp(−4.396 / T9 ) cm−3 sec-1

dn12

dt
= R3α

dnα

dt
= − 3R3α

converting to our standard, Yi notation

                 nα = ρNA Yα Yα =
X (4 He)

4

n12 = ρNA Y12 Y12 =
X (12C)
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where
λ3α =3!× NA

2 R3α = 2.79×10−8 T9
-3 exp(−4.396 / T9 ) cm6 gm-2  Mole−2 sec−1

(the units are such that ρ 2 Y
α

3 λ
3α

 has units of Mole/s)



The current value is due to Caughlan and Fowler (1988) using 
mesurements from Sam Austin

                    λ3α =2.79× 10−8 T9
-3 exp (−4.396 / T9 )

                    T9
d lnλ
d ln T

                   0.1                41

                   0.2                19 = 4.396
T9

− 3

                   0.3                12

Unlike most reactions in astrophysics, the temperature dependence 
here is not determined by barrier penetration but by the Saha equation.  
In fact, at high temperature (T9 > 1.5)   the rate saturates and actually  
begins to decline slowly as the resonance slips out of the Gamow window. 

Slight revisions to

Γγ here



Helium burning 2 – the 12C(,) rate 

No resonance in Gamow  
window – C survives ! 

Resonance in Gamow window 
- C is made ! 

But some C is converted 
 into O … 



resonance 
(high lying) 

resonance 
(sub threshold) 

E1 E1 
 DC 

resonance 
(sub threshold) 

E2 

some tails of resonances 
just make the reaction 
strong enough … 

complications: •  very low cross section makes direct measurement impossible 
•  subthreshold resonances cannot be measured at resonance energy 
•  Interference between the E1 and the E2 components 

invisible 



Sub-threshold resonances  
(See Rolfs and Rodney, Cauldrons in  

the Cosmos, p. 185ff) 
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An excited state of a compound nucleus 
lies Er below the threshold of the reaction, 
Q. The excited state is known to decay 
by  emission and is characterized by  
a width  .  Because of this width the state 
extends energetically to both sides of Er 
on a rapidly decreasing scale.  

E.g, 1 is an α-particle and 2 is

a photon. Γ1 is the probability that the 

α penetrates to the nuclear surface. Γ2  

is the photon width evaluated at E + Q.

e.g., for dipole radiation  
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Uncertainty in the 12C(,) rate is the single most important nuclear  
physics uncertainty in astrophysics 

Affects:  •  C/O ratio à further stellar evolution (C-burning or O-burning ?) 
•  iron (and other) core sizes (outcome of SN explosion)  

More than 30 experiments in past 30 years … 





Woosley and Weaver, 
Physics Reports (2007) 
 

Pr ediction:

(300 keV) = 170 keV-barnsS

See also Woosley & Weaver, 
Phys. Reports, 227, 65, (1993) 

Buchmann, L. 1996, ApJ, 
   468, L127 gives fits good 
at both low and hi T 



Kunz et al., ApJ, 567, 643, (2002) 



AFor binary reactions, N vλ σ≡
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Helium Burning 



In a 15 solar mass star: 

12

3( ) / 3Cαγ αλ λ



Because of the tendency of ρ
T3  to decrease with increasing mass

and the near constancy of helium burning temperatures, massive stars
make a decreasing ratio of carbon to oxygen as M increases. Variation
with Z reflects the different extent of convection during He burning
resulting from e.g., mass loss in solar Z stars, red vs. blue supergiant
structure, different He abundance, and different structure (esp Z= 0) 
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Nuclear Energy Yield 

  When an arbitrary composition, {Yi}, rearranges by nuclear  
reactions to a new composition, {Yi

’}, where Yi
‘ = Yi + Yi  ,  

there is a change in internal energy that can be positive or negative 

Here 1.602 x 10-6 is the conversion factor from MeV (which are the  
units of BE) to erg and the q corrects for any neutrinos that might be 
emitted by weak interactions or thermal processes (like pair 
annihilation). If there are no weak interactions and thermal neutrino 
losses are negligible, e.g., in helium burning, q = 0. 



Example:          Hydogen burning

a) 100% 1H → 4He δY(1H) = −1 BE(1H) = 0

δY(4 He) = 1
4

BE(4He)=28.296MeV

q=9.65×1017 28.296
4

⎛
⎝⎜

⎞
⎠⎟ = 6.83×1018  erg g−1

b) 70% 1H; 30% 4He →4 He δY(1H) = − 0.7

δY (4 He) = 1
4
− 0.3

4

q=9.65×1017 1
4
− 0.3

4
⎛
⎝⎜

⎞
⎠⎟ 28.296 = 4.78×1018  erg g−1



 
A related quantity, the energy generation rate is given by  

17 -1 -1

, ,9.65 10 ( ) erg g seci
nuc i weak thermal

dY
BE q q

dt
ν ν

ε = × − −∑

BE(12C) = 92.162  MeV 
BE(16O) = 127.619 
BE() = 28.296 MeV 

values for helium burning 



Both these expressions are only good for strong interactions. 
In a weak interaction one has to worry about n and p mass 
differences, electron masses created and destroyed, as well as 
the mean neutrino energy loss.  
 
A correct expression uses the atomic mass excesses. To within a  
constant 
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In the absence of weak interactions the second term may be dropped. 
(this includes the energy that the positrons deposit when they  
annihilate in  positron emission). 


