
Lecture 7 
 

Evolution of Massive 
Stars on the Main Sequence 

and During Helium Burning -  
Basics  



Massive Stars - Key Physics and Issues 

•  Nuclear Physics 
 •  Equation of state 
 •  Opacity 
 •  Mass loss 
 •  Convection 
 •  Rotation (magnetic fields) 
 •  Binary membership 
 •  Explosion physics 

•  Evolution in HR diagram 
 
•  Nucleosynthesis 
 
•  Surface abundances  
 
•  Presupernova structure 
 
•  Supernova properties 
 
•  Remnant properties 
 
•  Rotation and B-field 
   of pulsars 



Generalities: 

   Because of the general tendency of the interior temperature of  
main sequence stars to increase with mass, stars of over two  
solar mass are chiefly powered by the CNO cycle(s) rather than  
the pp cycle(s). This, plus the increasing fraction of pressure due to  
radiation, makes their cores convective. The opacity is dominantly  
due to electron scattering. Despite their convective cores, the  
overall main sequence structure can be crudely represented as  
an n = 3 polytrope. This is especially true of the outer radiative  
part of the star that typically includes the majority of the mass. 

Massive Stars 



Ideal gas (convective with negligible radiation entropy): 

Radiation dominated gas or a gas with constant : 

P = const × ρ × T ∝ρ × ρ2/3  = ρ5/3 = ργ

       since T3/2

ρ
=  constant

           γ  = n+1
n

 ⇒   n = 3
2

P = 1
3
aT4 ∝ρ 4/3

       if  T3

ρ
∝ Prad
Pideal

 = 1− β
β

=constant

           γ  = n+1
n

 ⇒   n = 3

For a non-degenerate gas, the entropy is given by (Clayton 2-136) 

For non relativistic, but  
possibly partly degenerate  
electrons, the electrons are  
 given as a separate  
term see Clayton 2-145. 

integrate the 1st 
law of thermo- 

dynamics 
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( Reif - Statistical Physics - 7.3.6)

The electrons are included in µ and in S0  T dS = dU +P dV



(S/NAk)  half  way through hydrogen burning 
15 and 100 solar masses  

For normal massive stars, the ionic entropy always dominates on  
the main sequence, but for very massive stars Selec, Srad and Sionic   
can become  comparable. 

More massive stars have 
larger entropies on the  
main sequence that are 
more radiation - dominated 



Not surprisingly then, it turns out that massive stars  
are typically hybrid polytropes with their convective  
cores having 3 > n > 1.5 and radiative envelopes with n  
approximately 3.  
 
Overall n = 3 is not bad. 



Convection plus entropy from ideal gas 
implies n = 1.5 

  

d lnρ

d ln P
=

1

γ

γ ≈ 5 / 3  for ideal gas   

       at constant entropy

40% of the mass 



Most of the mass and  
volume. 

  

d lnρ

d ln P
=

1

γ

γ ≈ 4 / 3  for standard model

       (with β  = const) in radiative 

       regions

continuing farther out 



  

Consider a star in which radiation pressure is important
(though not necessarily dominant) and energy transport
is by radiative diffusion 

dPrad

dr
= d

dr
1
3

aT 4⎛
⎝⎜

⎞
⎠⎟
= 4

3
aT 3 dT

dr

But for radiative diffusion, 
dT
dr

= 3κρ
16πacT 3

L(r )
r 2   so

             
dPrad

dr
= − κρ

4πc
L(r )
r 2

but hydrostatic equilibrium requires 
dP
dr

= − Gmρ
r 2

Divide the 2 eqns
dPrad

dP
= κL(r )

4πGmc
= L(r )

LEdd

      where LEd = 4πGMc
κ

Eddington’s standard model (n=3) 



  

Define β =
Pgas

P
 = 1-

Prad

P
 where P= Pgas +Prad ,

then Prad = P −Pgas = (1− β) P    and

dPrad

dP
= (1− β)= κL(r )

4πGmc
= L(r )

LEdd

If, and it is a big IF, β   (or 1-β) were a constant throughout 
the star, then one could write everywhere, including the surface

                      L(r) = 1− β( )  LEd  (Main sequence only) 
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lim
β→1

M →0

lim
β→0

M →∞

 
β =

Pgas

Ptotal

2.01824 

(Clayton 155- 165) 



Near the surface 
the density declines 
precipitously making 
radiation pressure 
more important. 

1− β =  fraction of the pressure 

            from radiation 

inner ~5 Msun is  
convective 

 is nearly constant 



κ L
M

∝(1− β ) decreases as M(r)↑

because L  is centrally concentrated,
so β  within a given star increases with M(r)
(for radiative regions)

inner ~8 Msun  
convective 



from Clayton p. 163 

 

µ= (1+Zi ) Yi∑⎡⎣ ⎤⎦
−1

= 0.73 for 50% H, 50% He

                                      0.64 for 75% H, 25% He

For 20 M  β ≈0.80− 0.85 µ2M ≈11
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where κ surf  is the value of the opacity near the surface.

This was obtained with no mention of nuclear reactions.

Mass luminosty 
   Relation 
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For M not too far from M β is close to 1 and L ∝M3.

 
At higher masses however the mass dependence of β
 becomes important.  Eventually β 4 ∝ M −2 so that L∝M. 
In fact,  the luminosity of very massive stars approaches

the Eddington limit as β → 0  ( L(r) = 1− β( )LEdd )
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For n = 3 one can also derive useful equations for the central
conditions based upon the original polytropic equation for 
mass

M = −4πα 3ρc ξ1
2 dθ
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=
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For the n=3 polytrope 

 
Tc = 4.6 × 106  K µβ M
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ρc
1/3 (in general for n = 3)

 

For stars on the main sequence and half way through
hydrogen burning, µ ≈   0.84 and, unless the star is very massive,
β ≈  0.8 - 0.9. Better values are given in Fig 2-19 of Clayton
replicated on the next page.

The density is not predicted from first principles since the actual
radius depends upon nuclear burning, but detailed main 

sequence models (following page) give  ρc ≈ 10
10 M

M
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  K           (main sequence only)



 9              3.27           9.16             2.8                
12             3.45           6.84             7.0               
15             3.58           5.58              13             
20             3.74           4.40              29              
25             3.85           3.73              50             
40             4.07           2.72             140            
60(57)      4.24           2.17              290           
85(78)      4.35           1.85              510             
120(99)    4.45           1.61              810         

M             Tc/107           
C              L/1037 

All evaluated in  
actual models at 
a core H mass  
fraction of 0.30 
for stars of solar 
metallicity. 

 

ρc decreases with mass as a general consequence of the fact that 
Tc

3

ρc

∝ M 2β 3µ3 and H burning happens at a relatively constant 

temperature. Until about 40 M,  the density decreases roughly

as M-1. After that it decreases more slowly. Recall β ∝  M-1/2  for
very large masses

µ ≈0.8

L ∝ M
2.5

  L ~ (1− β) LEd



Competition between the p-p 
chain and the CNO Cycle  

The temperature dependence of the CNO cycle is given by the sensitivity 
of the proton capture rate of 14N. See previous lectures 



The slowest reaction is 14N(p,)15O. For temperatures near 2 x 107 K. 
1/3

2 2
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(More on nucleosynthesis later) 

The Primary CNO Cycle 

In a low mass star 



CNO tri-cycle 

3 4 5 6 7 8 9 
neutron number 

C(6) 

N(7) 
O(8) 

F(9) 
Ne(10) 

CN cycle (99.9%) 
O Extension 1 (0.1%) 

O Extension 2 
O Extension 3 

All initial abundances within a cycle serve as catalysts and accumulate at largest t	



Extended cycles introduce outside material into CN cycle (Oxygen, …) 



The extra loops are mainly of interest for nucleosynthesis and for 
bringing 16O into the cycle 



In general, the rates for these reactions proceed through known 
resonances whose properties are all reasonably well known. 
 
 
There was a major revision of the rate for 14N(p,γ )15O in 

2001 by Bertone et al., Phys. Rev. Lettr., 87, 152501.

The new rate is about half as large as the old one, 

so the main sequence lifetime of massive stars is longer

(but definitely not linear in the reciprocal rate). Mainly 

affected globular cluster ages (0.7 to 1 Gy increase in 

lifetime due to the importance of the CNO cycle at the 

end of the MS life and during thick H shell burning).



Equation of state 

    Well defined if tedious to calculate up to the point  
of iron core collapse. 

Ions - ideal gas - P = 
ρ

µ
N

A
kT

Radiation   P =   
1

3
aT

4

Electrons - the hard part - can have arbitrary relativity and degeneracy

                                         (solve Fermi integrals or use fits or tables). 

                                         At high T must include electron-positron pairs.

Beyond 1011 g cm-3   - neutrino trapping, nuclear force, nuclear excited

                                   states, complex composition, etc.



Opacity 

In the interior on the main sequence and within the helium 
core for later burning stages, electron scattering dominates. 
 
In its simplest form: 
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Recall that for 75% H, 25% He, Y
e
=0.875,  so κ

e
=0.35

For He and heavier elements κ
e
 ≈  0.20.
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There are correction terms that must be applied to es especially at  
high temperature and density 
 
1)  The electron-scattering cross section and Thomson cross section  
        differ at high energy. The actual cross section is smaller. 

2) Degeneracy – at high density the phase space for the scattered electron  
    is less. This decreases the scattering cross section.  
 
3) Incomplete ionization – especially as the star explodes as a supernova. 
    Use the Saha equation. 
 
4) Electron positron pairs may increase  at high temperature. 



Effects 1) and 2) are discussed by  
 
               Chin, ApJ, 142, 1481 (1965) 
               Flowers & Itoh, ApJ, 206, 218, (1976) 
               Buchler and Yueh, ApJ, 210, 440, (1976) 
               Itoh et al, ApJ, 382, 636 (1991) and references therein 

Electron conduction is not very important in massive stars but is 
important in white dwarfs and therefore the precursors to Type Ia 
supernovae 
 
                       Itoh et al, ApJ, 285, 758, (1984) and references therein 



For radiative opacities other than es, in particular bf and bb, 
 
                   Iglesias and Rogers, ApJ, 464, 943 (1996) 
 
                   Rogers, Swenson, and Iglesias, ApJ, 456, 902 (1996) 



see Clayton p 186 for a definition of terms. 
“f” means a continuum state is involved 





During hydrogen 

    burning

Note centrally concentrated 
nuclear energy generation. 

convective 



Convection 

All stellar evolution calculations to date,  except for brief snapshots, 
have been done in one-dimensional codes. 
 
In these convection is universally represented using some variation 
of mixing length theory. 
 
Caveats and concerns: 

•  The treatment must be time dependent 
 
•   Convective overshoot and undershoot   (next lecture) 
 
•   Semiconvection   (next lecture) 
 
•  Convection in parallel with other mixing processes, 
   especially rotation 
 
•  Convection in situations where evolutionary time scales are 
   not very much longer than the convective turnover time. 



Kuhlen, Woosley, and Glatzmaier  
exploried the physics of stellar convection 
using 3D anelastic hydrodynamics. 
See also Meakin and Arnett (2007) 
Gilet et al (ApJ, 2013) 
 
The model shown is a 15 solar mass star  
half way through hydrogen burning. For now 
the models are not rotating. Mixing length  
theory is not a bad description of the  
overall behavior. 



from Kippenhahn and Wiegert 

Convective structure 

Note growth of the  
convective core with M 



  

The (Swartzschild) adiabatic condition can be written 
in terms of the temperature as

            
dP
P

+
Γ2

1− Γ2

dT
T

= 0

This defines Γ2 (see Clayton p 118)

2For an ideal gas 5 / 3,   but if radiation is 

included the expression is more complicated

Γ =



Convective instability is favored by a large fraction of radiation 
pressure, i.e., a small value of .%

star 2

2

2 22

2 2

32 24 3 4 5
      (Clayton 2-129)
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⎜ ⎟Γ⎝ ⎠

So even a 20% decrease in  causes a substantial decrease in the 
critical temperature gradient necessary for convection.  Since   
decreases with increasing mass, convection becomes more extensive. 
 
Also more massive stars are generating a lot more energy in a star 
whose physical dimension is not much larger. 



 9              3.27           9.16             2.8               0.26  
12             3.45           6.84             7.0               0.30 
15             3.58           5.58              13               0.34 
20             3.74           4.40              29               0.39 
25             3.85           3.73              50               0.43 
40             4.07           2.72             140              0.53 
60(57)      4.24           2.17              290             0.60 
85(78)      4.35           1.85              510             0.66 
120(99)    4.45           1.61              810             0.75 

M             Tc/107           
C              L/1037              Q

conv core 

All evaluated at 
a core H mass  
fraction of 0.30 
for stars of solar 
metallicity. 



The convective core shrinks during hydrogen burning  

During hydrogen burning the mean atomic weight is increasing from 
near 1 to about 4. The ideal gas entropy is thus decreasing.  
 
Also convection is taking entropy out of the central regions and 
depositing it farther out in the star. 
 
As the central entropy decreases compared with the outer layers of the star 
it becomes increasingly difficult to convect through most of the star’s mass. 
 



For an ideal gas plus radiation: 
(see Clayton p. 123) 

µ =
1

2
 for pure hydrogen; 

4

3
  for pure helium



change in entropy during He 
burning is small 

Red giant formation 



blue = energy generation 
purple = energy loss 
green = convection 

H-burn 
He-burn 

Surface convection zone 



The convective core grows during helium burning. 

 
During helium burning, the convective core grows, largely because the  
mass of the helium core itself grows. This has two effects: 
 
a) As the mass of the core grows so does its luminosity, while the radius 
   of the convective core stays nearly the same (density goes up). For 
   a 15 solar mass star: 

10 37 -1 38 -1

 He mass fraction       Radius conv core     Lum conv core             Lum star

                1                         0.87 x 10  cm       3.2 x 10 erg s 2.16 x 10 erg s

              

     

  0. 10 37 -1 38 -15                      1.04 x 10  cm 6.8 x 10 erg s    2.44 x 10 erg s

The rest of the luminosity is coming from the H shell.. 

3.0 M

3.6 M







b) As the mass of the helium core rises its  decreases. 

3 4

2 3 2 31/ 3 1

A

T aT
M M

N kT

β
β β

ρ ρ β

−
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The entropy during helium burning also continues to decrease, 
and this would have a tendency to diminish convection, but the  
 and L effects dominate and the helium burning convective core 
grows until near the end when it shrinks both due to the decreasing  
central energy generation. 

This decrease in  favors convection. 



This growth of the helium core can have two  
interesting consequences: 

•  Addition of helium to the helium convection  
   zone at late time increases the O/C ratio made 
   by helium burning 
 
•  In very massive stars with low metallicity the  
   helium convective core can grow so much that  
   it encroaches on the hydrogen shell with major 
   consequences for stellar structure and  
   nucleosynthesis.  



Metallicity affects the evolution in four distinct ways: 

•  Mass loss 
•  Energy generation 
•  Opacity 
•  Initial H/He abundance 
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lower main sequence: homology – see appendix 

Because of the higher luminosity, the lifetime of the lower 
metallicity star is shorter (it burns about the same fraction of its mass). 
But this is the sun, it’s opacity is not due to electron scattering and  
so depends on Z 

METALLICITY 



Upper main sequence: 
 
The luminosities and ages are very nearly the same because the 
opacity is, to first order, independent of the metallicity. The  
central temperature is a little higher at low metallicity because of the  
decreased abundance of 14N to catalyze the CNO cycle. 
  
For example in a 20 solar mass star at XH = 0.3 

0.02 0.001

log 7.573 7.647

log / 4.867 4.872

0.390 0.373

/ 19.60 19.92 (mass loss)

c

cc

Z Z

T

L L

Q

M M

= =









There is a slight difference in the lifetime on 
the upper main sequence though because of the  
different initial helium abundances. Schaller et al. 
used Z = 0.001, Y = 0.243, X=0.756 and Z = 0.02, 
Y = 0.30, X = 0.68. 
 
So for the higher metallicity there is less hydrogen to  
burn. 
 
But there is also an opposing effect, namely mass loss. 
For higher metallicity the mass loss is greater and the  
star has a lower effective mass and lives longer. 
 
Both effects are small unless the mass is very large. 



For helium burning, there is no effect around 10 solar mases, 
but the higher masses have a longer lifetime with higher 
metallicity because mass loss decreases the mass. 

For lower masses, there is a significant metallicity dependence 
for the helium burning lifetime. The reason is not clear. 
Perhaps the more active H-burning shell in the solar 
metallicity case reduces the pressure on the helium core. 



Zero and low metallicity stars may end their lives as  
compact blue giants – depending upon semiconvection 
and rotationally induced mixing 
 
For example,  Z = 0, presupernova, full semiconvection 
 
a)  20 solar masses 
               R = 7.8 x 1011 cm    Teff = 41,000 K 
b)  25 solar masses 
                R=1.07 x 1012cm     Teff = 35,000 K 
 
Z = 0.0001 ZO 
 
a)  25 solar masses, little semiconvection 
                R = 2.9 x 1012 cm    Teff = 20,000 K 
b) 25 solar masses, full semiconvection 
                R = 5.2 x 1013 cm    Teff= 4800 K 

Caveat: Primary 14N production 



Caution - rotationally induced mixing changes these results 



As radiation pressure becomes an increasingly dominant part of 
the pressure,  decreases in very massive stars.  
 
This implies that the luminosity approaches Eddington. 
But in a 100 solar mass star   is still 0.55. 
 
Recall for n = 3 
 
 
 

Very massive stars 

  
L(r)= (1− β ) 4πGMc

κ
.= (1− β ) LEd

For very massive stars L is proportional to M and  
approaces the Eddington luminosity 



 
In fact, except for a thin region near their surfaces, such stars  
will be entirely convective and will have a total binding energy 
that approaches zero as b approaches zero. But the calculation applies 
to those surface layers which must stay bound. 
 
Completely convective stars with a luminosity proportional 
to mass have a constant lifetime, which is in fact the shortest 
lifetime a (main sequence) star can have. 

   

LEdd =
4πGMc

κ
=1.47 ×1038 erg s-1 M

M

⎛

⎝⎜
⎞

⎠⎟
0.34
κ

⎛
⎝⎜

⎞
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qnuc =4.8×1018 erg/g

τMS =qnuc M / LEdd =2.1 million years

(exception supermassive stars over 105 solar masses – post-Newtonian 
 gravity renders unstable on the main sequence) 



Similarly there is a lower bound for helium 
burning. The argument is the same except one 
uses the q-value for helium burning to carbon and  
oxygen. 
 
One gets 7.3 x 1017 erg g-1 from burning 100% He to  
50% each C and O. 
 
Thus the minimum (Eddington) lifetime for helium  
burning is  about 300,000 years. 



Limit 

Limit 



Since  ~ 4/3, such stars are loosely bound (total energy much 
less than gravitational or internal energy) and are subject to  
large amplitude pulsations. These can be driven by either 
opacity instabilities (the  mechanism) or nuclear burning  
instabilities (the  mechanism).   is less than 0.5 for such 
stars on the main sequence, but ideal gas entropy still dominates. 
 
For solar metallicity it has long been recognized that such stars 
(well over 100 solar masses) would pulse violently on the main 
sequence and probably lose much of their mass before dying. 
 
 

Ledoux, ApJ,  94, 537, (1941) 
Schwarzschild & Harm, ApJ, 129, 637, (1959) 
Appenzeller, A&A, 5, 355, (1970) 
Appenzeller, A&A, 9, 216, (1970) 
Talbot, ApJ, 163, 17, (1971) 
Talbot, ApJ, 165, 121, (1971) 
Papaloizou, MNRAS, 162, 143, (1973) 
Papaloizou, MNRAS, 162, 169, (1973) 

VERY HIGH MASS STARS 



 

100M ZAMS at hydrogen 
depletion (66 M )

%

L 



Eddington luminosity for 66 solar masses 

  

L
Edd

=
4πGMc

κ
=9.6 ×10

39
erg s

-1 0.34

κ
⎛
⎝⎜

⎞
⎠⎟

So model is about ~2/3 Eddington luminosity for electron 
scattering opacity near the surface. 
 
As the star contracts and ignites helium burning its luminosity  
rises from 6 to 8 x 1039 erg s-1 and its mass continues to decrease 
by mass loss. Super-Eddington mass ejection? 

 

M
ΔLexcess R

GM
 0.001M


y−1  ΔL38 R13 M100

-1

ΔLexcess depends on κ  which is at least as large

as electron scattering.

Luminous blue 
variable stars? 



 

 As β → 0, the luminosity approaches Eddington
and Γ→4/3.  The star is unbound. How close does
one need to get?



Upper mass limit: theoretical predictions 

Ledoux (1941) 
radial pulsation, e- opacity, 
H 

100 M� 

Schwarzchild & Härm (1959) 
radial pulsation, e- opacity, 
H and He, evolution 

65-95 M� 

Stothers & Simon (1970) radial pulsation, e- and atomic 80-120 M� 

Larson & Starrfield (1971) pressure in HII region 50-60 M� 

Cox & Tabor (1976) 
e- and atomic opacity 
Los Alamos 

80-100 M� 

Klapp et al. (1987) 
e- and atomic opacity 
Los Alamos 

440 M� 

Stothers (1992) 
e- and atomic opacity 
Rogers-Iglesias 

120-150 M� 



Upper mass limit: observation 
R136 Feitzinger et al. (1980) 250-1000 M� 

Eta Car various 120-150 M� 

R136a1 Massey & Hunter 
(1998) 136-155 M� 

Pistol Star Figer et al. (1998) 140-180 M� 

Eta Car Damineli et al. (2000) ~70+? M� 

LBV 1806-20 Eikenberry et al. (2004) 150-1000 M� 

LBV 1806-20 Figer et al. (2004) 
130 (binary?) 

M� 

HDE 269810  Walborn et al. (2004) 150 M� 

WR20a 
R139 

Bonanos et al. (2004) 
Rauw et al. (2004) 
Taylor et al (2011)  

82+83 M� 
78+66 M6 

binaries 

R136 
NGC3603 Crowther et al (2010) ~300 M6 

Figer (2005) 
Nature, 434, 192 
Arches cluster 
M < 150 MO 



Calculations suggested that strong non-linear pulsations  
would grow, steepening into shock in the outer layers and  
driving copious mass loss until the star became low 
enough in mass that the instability would be relieved. 

But what about at low metallicity? 
 
Ezer and Cameron, Ap&SS, 14, 399 (1971) pointed out that Z = 0 
stars would not burn by the pp-cycle but by a high temperature 
CNO cycle using catalysts produced in the star itself, 
Z ~ 10-9 to 10-7.  
 
Maeder, A&A, 92, 101, (1980) suggested that low metallicity might  
raise Mupper to 200 solar masses. 
 
Baraffe, Heger, and Woosley, ApJ, 550, 890, (2001) found that zero  
metallicity stars (Pop III) are stable on the main sequence up to  
several hundred solar masses.  This only concerns the main sequence 
though. Mass may be lost later as a giant, especially if nitrogen is 
produced by dredge up of carbon from the helium burning core.  



 
If very massive stars keep their large masses until their death 
the resulting supernovae and nucleosynthesis is special. 
 
These stars may also play an important role in reionizing the  
universe (even if only a tiny fraction of the matter forms into  
such stars). 

8Mev/nucleon

13eV/nucleon
 10

6

There are really three important distinct issues: What masses  
were the early stars born with, what were there typical masses  
on the main sequence, and with what mass did they die? 



WARNING! 



Freezing out of convection? 

  

Lmax = 4πr 2ρvconvfε
     with r the radius
             ρ  the density
             vconv  the convection speed   << csound

             f < 1
             ε   the internal energy of the zone at radius r

As ρ ↓ in the RSG envelope csound  decreases

Currently being explored



Appendix 
 

Homology 



Homology 

  

Kramer's opacity law (bound-free)
κ = const if eleectron scattering

n ~ 18 



  

β = constant would imply that the star was an n=3 polytrope!

P=
Prad

(1− β)
= aT 4

3(1− β)
⇒T = 3P(1− β)

a
⎡

⎣
⎢

⎤

⎦
⎥

1/4

P =
Pgas

β
=

NAk
µβ

ρT ⇒ P =
NAk
µβ

ρ 3P(1− β)
a

⎡

⎣
⎢

⎤

⎦
⎥

1/4

hence   P3/4 =
NAk
µβ

ρ 3(1− β)
a

⎡

⎣
⎢

⎤

⎦
⎥

1/4

 and 

              P = 
3(NAk)4(1− β)

a(µβ)4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/3

ρ4/3

If β  = constant thoughout the star, this would be the equation 

for an n = 3 polytrope and the multiplier of ρ4/3 is K. 



Aside: 
For an ideal, non-degenerate gas our (and Clayton's)
equations suggest that the electronic entropy is
proportional to Ye  (i.e., the number of electrons) and 
the ionic entropy to 1/A (the number of ions). For hydrogen
burning composition (75% H, 25% He) Ye = .875 and

1/A = 0.81 (Lecture 1)

This suggests that the entropy of the electrons and ions should 
be about equal in the envelopes on the previous page. Our equation 
for the entropy is too simple and contains only the T and rho dependent 
terms for an ideal gas plus radiation. There are additive constants 
that depend on the mass of the particle 

  

For an ideal gas

        S0 = 3
2

ln
2πmk

h2

⎛
⎝⎜

⎞
⎠⎟
+ 5

2

( Reif - Statistical Physics - 7.3.6)

3
2

ln(1836) = 11.3

so in H envelope
Si ≈ Se + 10

Different equation for electrons when they are degenerate – Fermi integrals 


