
Lecture 11

Neutrino Losses and Advanced
Stages of Stellar Evolution - I

The late stages (> helium burning) of evolution
in massive stars are characterized by large luminosities,
carried away predominantly by neutrinos, and
consequently, by short evolutionary time scales.

The nuclear physics can become quite complicated
because of the presence of many species and occurrence
of many reactions at high temperature.

Woosley, Heger, and Weaver (2002)
Rev. Mod. Phys.,  74, 1016.

Thermal Neutrino Emission

Fowler and Hoyle, ApJS, 2, 201, (1964)
Chiu in Stellar Physics p 259-282
Beaudet, Petrosian and Salpeter, ApJ, 150, 978, (1967)
Itoh et al, ApJ, 339, 354 (1989)
Itoh et al, ApJS, 102, 411, (1996)

In nature, both of the following weak interactions follow
all the necessary conservation laws:

νe +e
− → νe +e

−

e+ + e− → νe + νe
In about 1970 it was realized that neutral currents could 
lead to additional reactions and modifications of the rates of
old ones. Where one had ne, one could now have νe, νµ, or ντ.
(Dicus, Phys. Rev D, 6, 941, (1972)).

  

Thus, with different coupling constants

                  e+ +e− → νµ + νµ or ντ +ντ

also

                 ν + Z A →ν + Z A for  νe ,νµ ,ντ

a coherent process
with large cross section

Stellar Neutrino Energy Losses
(see Clayton p. 259ff, especially 272ff;

Fowler and Hoyle 1964, eq.  3)
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E  includes electron rest mass

! / mec = Compton wavelength/2π  of e−  = 3.86 ×  10−11  cm

E2 = me
2 c4 + p2c2 = γ 2me

2c4 p = mv; v is the relative velocity

GW = 3.00×10−12 (dimensionless)               of the pair ∼ c
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1) Pair annihilation - dominant in massive stars

   

kT ≥10% mec
2 (T9 > 0.5)

e+ + e−  radiation
νe + νe

about 10-19 branch

i.e., post helium burning 



In 1941 Gamow and Schonberg proposed this neutrino loss 
mechanism as the cause for core collapse in massive stars.
Hoyle 46 said photodisintegration

Aside:
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Thomson cross section 
for pair annihilation

Want energy loss per cm3 per second. Integrate over thermal distribution
of e+ and e- velocities. These have, in general, a Fermi-Dirac distribution.
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Fermi Integral 

E = total energy 
including rest mass

Clayton (Chap 4) and Lang in Astrophysical Formulae give 
some approximations (not corrected for neutral currents)

  

(NDNR) P± ≈ 4.9×1018 T9
3 exp(−11.86 / T9 ) erg cm-3  s-1

                                                         2mec
2 / kT

(NDR) P± ≈ 4.6×1015 T9
9 erg cm-3  s-1

(better is 3.2×1015)

Note origin of T9 :

If n± is relativistic, n± ∝ T 3 (like radiation)

                σ ∝ E2

v
∝ (kT )2

v
energy carried per reaction ~ kT
( )( )( )6 2 9
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±

+ −

≈ =

  

T9 > 3,  but not too 

bad at T9 > 2 ( fac 2)

T9 < 2

v cancels 1/v in σ

These formulae are very crude; factor of 2 at best. For more accurate results 
use subroutine neut01.f on the class website.

(3 pages back)

More frequently we use the energy loss rate per gram
per second

-1 -1
 erg gm s

Pν
νε

ρ
=

 

In the non-degenerate limit εν from pair annihilation

declines as ρ -1. 

In degenerate situations, the filling of phase space
suppresses the creation of electron-positron pairs
and the loss rate plummets. Usually pair annihilation
neutrino emission dominates other processes when the
matter is non-degenerate. This includes most of the advanced
stages of stellar evolution (especially when electron capture on 
nuclei is negligible).



note that units here are erg cm-3 s-1 not erg g-1 s-1

Per unit volume pair rate is roughly independent of
density until degeneracy cuts it off.

quenching due 
to degeneracy

2) Photoneutrino process: (Clayton p. 280)

Analogue of Compton scattering with the outgoing photon
replaced by a neutrino pair. The electron absorbs the extra
momentum. This process can be marginally significant  
during helium and carbon burning.

e eγ ν ν− −
+ → + +

When non-degenerate and non-relativistic 
Pphoto is proportional  to the density (because it 
depends on the electron abundance) and en,photo
is independent of the density. At high density, 
degeneracy blocks the phase  space for the 
outgoing electron. Also for relativistic electrons
the density dependence is weaker.

relativistic                             ~non-relativistic

Usually pair production (hi T) or plasma losses (hi ρ) more important

3)  Plasma Neutrino Process: (Clayton 275ff)

  

This process is important at high densities where the 
plasma frequency is high and ω plasma can be comparable

to  kT. This limits its applicability to essentially white dwarfs, 
and to a lesser extent, the evolved cores of massive stars. It is 
favored in degenerate environments.

A�plasmon� is a quantized collective charge oscillation in an 
ionized gas. For our purposes it behaves like a photon with rest
mass. 



A photon of any energy in a vacuum cannot decay into e+ and
e- because such a decay would not simultaneously satisfy the 
conservation of energy and momentum (e.g., a photon that had
energy just equal to 2 electron masses, hν = 2 mec2, would also have
momentum hν/c = 2mec, but the electron and positron that are created,
at threshold, would have  no kinetic energy, hence no momentum.
Such a decay is only allowed when the photon couples to matter 
that can absorb the excess momentum.

The common case is a γ-ray of over 1.02 MeV passing near
a nucleus, but the photon can also acquire an effective mass by 
propagating through a plasma. 

plasmon e eγ + −
→ +
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suppression for
degeneracy

increases with density

Consider a neutral plasma, consisting of a gas of positively 
charged ions and negatively charged electrons. If one displaces 
by a tiny amount all of the electrons with respect to the ions, 
the Coulomb force pulls back, acting as a restoring force. 

If the electrons are cold it is possible to show that the plasma
oscillates at the plasma frequency.
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Separate cloud of Ne electrons into two pieces
separated by r

   

a) ω p ≤kT

Pplasma ≈7.4×1021
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For moderate values of temperature and density, raising the density
implies more energy in the oscillations and raising the temperature excites
more oscillations. Hence the loss rate increases with temperature and density.

p

However, once the density becomes so high that, 

for a given temperature ,  raising the density 

still further freezes out the oscillations. The thermal plasma

no longer has enough energy to exite t

kTω >

hem. The loss rate

plummets exponentially.



This is a relevant temperature
for Type Ia supernovae and the red line
a relevant density

4) Ordinary weak interactions – neutrinos from the decay of 
unstable nuclei

Fuller, Fowler, & Newman, ApJS, 48, 27 (1982a)
ApJ, 252, 715, (1982b)
ApJ, 293, 1, (1985)

Oda et al, Atom. Data and Nuc. Data Tables, 56, 231, (1996)
Langanke & Martinez-Pinedo, Nuc Phys A, 673, 481 (2000)

• Beta-decay
• Electron capture
• Positron emission

Electron capture – and to a lesser extent beta-decay can be very
important in the final stages of stellar evolution – especially 
during silicon burning and core collapse. 

Typically these are included by studying each nucleus individually,
its excited state distribution, distribution of weak strength, etc.
The results are then published as fitting functions at f(T,r).

The late stages of stellar evolution are accelerated by
(pair) neutrino losses.

Carbon Burning



Approximate initial conditions:

As we shall see, the temperature at which carbon 
burns in a  massive star is determined by a state of balanced 
power between  neutrino losses by the pair process and 
nuclear energy generation. This gives 8 x 108 K for carbon 
core burning. Burning in a shell is usually a little hotter at 
each step, about 1.0 x 109K for carbon burning.

Assuming that T3/ρ scaling persists at the center, and that 
helium burned at 2 x 108 K and 1000 gm cm-3, this implies a 
carbon burning density around a few x  105 gm cm-3.

Initial composition:

The initial composition is the ashes of helium burning, chiefly 

C and O in an approximate 1 : 4 ratio (less carbon in more

massive stars).  

There are also many other elements present in trace 

amounts:

• 22Ne, 25,26Mg from the processing of CNO elements in 

He-burning

• The light s-process

• Traces of other heavy elements present in the star since birth

• Up to ~1% 20Ne from 16O(a,g)20Ne during He-burning

Principal nuclear reaction
many resonances in 
Gamow window.

Measured to about 2.5 MeV and S-factor is overall smooth but
shows poorly understood broad �structures� at the factor of 2 
level. See Rolfs and Rodney, p 419 ff - alpha cluster?  Not seen in 16O + 16O



T9                 Bn T9 Bn T9 Bn

0.7        1.6(-5)      1.0          1.1(-3)       2            0.024
0.8        1.1(-4)      1.2          4.0(-3)       3            0.042
0.9        4.0(-4)      1.4          8.8(-3)       5            0.054

BP = 0.45 –Bn/2 Ba = 0.55 – Bn/2

Many important secondary reactions:

20Ne(a,g)24Mg 23Na(a,p)26Mg            26Mg(p,g)27Al
23Na(p,g)24Mg 23Na(p,a)20Ne             25Mg(p,g)26Al
22Ne(a,n)25Mg            25Mg(a,n)28Si             23Mg(n,p)23Na
25Mg(n,g)26Mg            23Mg(e+n)23Na            21Na(e+ν)21Ne
20Ne(p,g)21Na              21Ne(p,g)22Na             22Na(e+ν)22Ne

and dozens (hundreds?) more

Dayras, Switkowsky, & Woosley, Nuc Phys A, 279, 70, (1979)

12 12 23
C+ C Mg + n→

See also Butcher et al (2015)
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There are also some important weak interactions that can 
change the neutron excess h.

• The neutron branch of 12C + 12C itself makes 23Mg.
At lower temperature this decays by 23Mg(e+n)23Na.
At higher temperature it is destroyed by 23Mg(n,p)23Na.
The former changes h; the latter does not, so there
is some temperature, hence mass dependence of the result.

• 20Ne(p,g)21Na(e+n)21Ne

• 21Ne(p,g)22Na(e+n)22Ne

Together these reactions can add - a little - to the neutron excess that was
created in helium burning by 14N(a,g)18F(e+n)18O or, in stars of low
metallicity they can create a neutron excess where none existed before.

   

Recall
14N(α,γ )18F(e+ν)18O
made η ≈0.002 Z / Z( )



Principal Nucleosynthesis in carbon burning:

20,21Ne, 23Na, 24,25,26Mg,  (26),27Al, and to a lesser extent, 29,30Si, 31P

The 16O initially present at carbon ignition essentially survives
unscathed. There are also residual products from helium 
burning – the s-process, and further out in the star H- and 
He-burning continue.

A typical composition going into neon burning – major
abundances only would be

70% 16O,      25% 20Ne,      5% 24Mg,   and traces of heavier elements

25 solar mass star, whole star
production factors at central 
carbon depletion.

Model s25a28

Includes H- and He-shells and products
of CNO cycle and helium burning 
s-process as well.

Carbon burning

s-process

Several carbon shell burning episodes remain

D. Energy Generation
Suppose we make 20Ne and 24Mg in a 3:1 ratio  (approximately solar)

  

7 12C( ) → 3 20 Ne( ) + 24Mg
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 was given a few pages back.
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The total energy released during carbon burning is

Since DX12 << 1, this is significantly less than 
helium burning (1018 erg g-1)

ε
nuc

≈ εν sin ce   Lν = εν dM >> Lγ∫
Neutrino losses in carbon burning are due to pair annihilation.

Near T9 =1the non-relativistic, non-degenerate formula applies and

εν  is approximately proportional to T16   (at ρ~105  gm cm-3)

E. Balanced Power
Averaged over the burning region, which is highly centrally concentrated

Fowler and Hoyle (1964) showed that averaged over an n = 3 polytrope
a density and temperature sensitive function has an average:

ε =
ε dM∫
dM∫

= εo
3.2

3u + s( )3/2

where εo  is the central value of ε , and ε ∝ ρu-1T s

For carbon burning    u = 2      s = 30
neutrino losses     u = 0      s ~ 16
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en Energy is also provided by the Kelvin-Helmholz contraction
of the core and this decreases the ignition temperature just a 
little. In more massive stars where  X(12C) is less than about 10%,
carbon burning and neon burning at the middle generate so little
energy that the core never becomes convective. The carbon and 
neon just melt away without greatly exceeding the neutrino losses.

Further out in a shell, the burning temperature is higher (set by the 
gravitational potential at the bottom of the shell - similar energy 
generation has to come from less fuel set by the pressure scale height).

from formula      from sneut01

T9 εnuc εν

0.6 3.4(3) 1.9(5)
0.7 4.0(5) 1.1(6)
0.8 2.2(7) 1.0(7)
0.9 6.0(8) 7.8(7)
1.0 1.0(10) 4.4(8)

ρ = 2 x 105

X(12Χ) = 0.20 Balanced power at 
~ 8 x 108 K



assuming the burning
density scales as T3

C

C

C

O

O

O

Si

Si

Convection

Carbon core burning not centrally convective
in more massive stars.

O

O
C

Si

CNeO

See problem set 3

τ = qΔX(12C)
εnuc

⎛
⎝⎜

⎞
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≈ 5 ×1017 i 0.2

2 ×107

⎛
⎝⎜

⎞
⎠⎟
=5 ×109  s=1500 years

F. Approximate lifetime

But

• Hotter in more massive stars

• Gets shorter as temperature rises during C burning

• Lengthened by convection



τ KH ∼
GMcoreMenv

(R / 2)(L / 2)

For 15 M⊙, Mcore = 4M⊙ , Menv = 10 M⊙ R = 3×1013   cm

                   L = 3×1038

              τ KH ∼
6.7 ×10−8( ) 8 ×1033( ) 2 ×1034( )

(1.5 ×1013)(1.5 ×1038 )
=150 years

G. How long does it take the envelope to adjust its structure?
Its Kelvin Helmoltz time.

The actual time is more like several thousand years
to go from e.g., a red supergiant to a blue one. 
The atmosphere does not contract uniformly. The inner
part contracts to 1011  - 1012 cm while the surface stays 
near its original value. Should use that smaller radius in the 
above estimate

15 solar mass star (KEPLER)

Stage        T9 Radius                      Lg Ln

H-burn      0.03      4.36(11)              1.06(38)            7.0(36)
He-burn    0.18     3.21(13)                1.73(38)            7.4(36)
C-ign 0.50      4.76(13)               2.78(38)            7.1(37)
C-dep 1.2       5.64(13)               3.50(38)            3.5(41)
O-dep 2.2       5.65(13)               3.53(38)            3.8(43)
Si-dep 3.7       5.65(13)              3.53(38)            2.3(45)
PreSN 7.6        5.65(13)              3.53(38)            1.9(49) 

Burning Stages in the Life of a Massive Star

0

Neon Burning

Following carbon burning, at a temperature of about 1.5 x 109 K,
neon is the next abundant nucleus to burn. It does so in a novel
�photodisintegration rearrangement� reaction which basically
leads to oxygen and magnesium (nb. not 20Ne + 20Ne  burns to 40Ca)

20 16 242 ( Ne) O  +  Mg  + energy→

The energy yield is not large, but is generally sufficient 
to power a brief period of convection. It was overlooked early
on as a separate burning stage, but nowadays is acknowledged
as such. 

The nucleosynthetic products resemble those of carbon burning
but lack 23Na and have more of the heavier nuclei, (26),27Al, 29,30Si,
and 31P.



A. Basics: The composition following carbon burning is chiefly
16O, 20Ne, 24Mg

but 16O is not the next to burn (influence of Z = N = 8 = magic)

Species     Sa(MeV)                     energy required to remove 
an a-particle.

16O             7.16
20Ne           4.73
24Mg          9.32              

Before the temperature becomes hot enough for oxygen to fuse
(T9 = 1.8 as we shall see), photons on the high energy tail of the 
Bose-Einstein distribution function begin to induce a new kind of reaction -

20Ne(g,a)16O

The a-particle �photo-disintegrated” out of 20Ne usually just adds back 
onto 16O creating an �equilibrated link� between 16O and 20Ne.
Sometimes though an a captures on 20Ne to make 24Mg. When this 
happens the equilibrium between 16O and 20Ne quickly restores the 
a that was lost.

   α +
16

O
20

Ne+γ 20
Ne+α →

24
Mg +γ

( )20 16 24

20

16 20

The net result is that 2 Ne O + Mg at a rate

that is determined by how fast Ne captures alpha particles

from the equilibrium concentration set up by O and Ne. 

→

Other secondary reactions:

24Mg(a,g)28Si                  27Al(a,p)30Si

25Mg(a.n)29Si                  30Si(p,g)31P

26Mg(a,n)30Si                   etc.

Products:

some more 16O and 24Mg, 29,30Si, 31P, 26Al

and a small amount of s-process.

fast                                                    slow

B. Photodisintegration Reaction Rates

At high temperatures, the inverse reaction to radiative capture, 
[(n,g),(p,g),(a,g)] becomes important as there exists an appreciable
abundance of g-rays out on the tail of the Bose-Einstein distribution
that have energy in excess of several MeV. The reactions these 
energetic photons induce are called photodisintegration reactions –
the major examples being (g,n),(g,p), and (g,a)

Consider

                         +

   and                 

I j L

L I j

γ

γ

+ →

+ → +

   

In equilibrium, the abundances must obey the Saha equation
For the reaction I + j L+ γ
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(deriveable from considerations of entropy and the 
chemical potential and the fact that the chemical potential
of the photon is zero). Thus, in equilibrium (a more stringent
condition than "steady state")
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for Qij measured in MeV



   

Equilibrium in the reaction I + j L + γ  also implies
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 16O+α ! 20Ne+γ
i.e., Y(16O) Yα ρλαγ (16O) ≈ Y(20Ne) λγα (20Ne)

⇒ Yα =
Y(20Ne) λγα (20Ne)
Y(16O) ρλαγ (16O)

Energy Generation During Neon Burning

 

The net process 2(20Ne) → 16O+24Mg  releases energy. It 
takes 4.73 MeV to remove the α -particle from 20Ne but 
one gets 9.32 MeV from adding it onto another 20Ne to
make 24Mg.  It must be very hot however to boil the 
first α -particle off. The background blackbody radiation
drives the first reaction. Soon an equilibrium is established

-

And since
dY(20Ne)

dt
=− 2Y(20Ne)Yα ρλαγ (20Ne) ≡ − 2f

 and 
dY(24Mg)
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= +f dY(16O)

dt
== +f

 and

λγα (20Ne)=9.87 ×109T9
3/2 16 i4

20
⎛
⎝⎜

⎞
⎠⎟

3/2

λαγ (16O) e−11.6045 i4.73/T9

Yα = 5.65 ×1010 T9
3/2 Y(20Ne)

ρY(16O)
⎛
⎝⎜

⎞
⎠⎟
e−54.89/T9

εnuc = 9.65 ×1017 1/ 2 198.258( )+1/ 2(127.62)−160.646⎡⎣ ⎤⎦ i 2f
24Mg                   16O                 20Ne   

εnuc
Ne = 9.65 ×1017( ) 2.29( ) 2 f  erg  g−1 s−1

εnuc
Ne = 2.49 ×1029T9

3/2 Y 2(20Ne)
Y(16O)

⎛
⎝⎜

⎞
⎠⎟
λαγ (20Ne) e−54.89/T9 erg  g−1 s−1

qnuc = 9.65 ×1017 1.29
20

ΔX(20Ne)

qnuc = 1.1×1017 ΔX(20Ne)  erg g−1 Relatively small

independent of density



Example

X(16O)= 0.7 X (20Ne)=0.2 ρ ∼106 − 107

  Near T9 = 1.5 λαγ (20Ne) ≈ 3.43×10−3T9
10.5
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10.5 exp(−54.89 /T9) ∼ T9
49    very temperature sensitive

Above approxiation for λαγ ⇒
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1.4 1.1(9) 8.9(9) 2.9(8)
1.5 3.3(10) 2.2(10) 7.8(8)
1.6 7.8(11) 4.9(10) 2.0(9)
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The density is closer to 107 than 106 at least in a 15 MO star 
so  neon burns at about 1.4 - 1.5  GK (somewhat higher in a 
higher mass star or a shell where the density is less)

Balanced Power During Neon Burning 

assuming the burning
density scales as T3

τ ~qnucΔX (
20Ne) / εnuc ≈

1.1×1017 i0.2
1010

=2×106 s

At a temperature between T9 = 1.5  

This is lengthened by convection – if it occurs –
because of high T sensitivity.  Typically ~  years.

Lifetime Burning Neon



Nucleosynthesis from neon burning

The principal nuclei with major abundances at the end
of neon burning are 16O and 24Mg. Most of the neutron 
excess resides in 25,26Mg. Most of the 16O has in fact
survived even since helium burning.

In terms of major production of solar material, important 
contributions are made to 

[16O], 24,25,26Mg, (26),27Al, 29,30Si, and 31P

Oxygen Burning:

After neon burning the lightest nucleus remaining with appreciable
abundance is 16O. This not only has the lowest Coulomb barrier but 
because of its double magic nature, has a high α-particle separation
energy. It is the next to burn. 

Because of its large abundance and the fact that it is a true fusion
reaction, not just a rearrangement of light nuclei, oxygen burning
releases a lot of energy and is a very important part of the late stages
of stellar evolution in several contexts (e.g., pair-instability 
supernovae).

It is also very productive nucleosynthetically. It�s chief products 
being most of the isotopes from 28Si to 40Ca as well as (part of)
the p-process.
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Initial composition:

16O, 24Mg, 28Si

Nuclear reactions:

The deuteron, d, is quickly photodisintegrated into
a free neutron and proton.

proceeds through the 
32S compound nucleus 
with a high density of 
resonances. Very like 
carbon burning.



   

3) Onset of "quasi-equilibrium" clusters

     e.g.     28
Si + n

29
Si + γ 29

Si + p
30

P+γ etc.

These clusters apear and grow as oxygen burning proceeds

(Woosley, Arnett, & Clayton, ApJS, 26, 271 (1973))

4) Weak interactions increase h markedly during oxygen core 

burning (much less so during oxygen shell burning where the 

density is less and the time scale shorter).
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Nuclear energy generation

Approximation  2(16O) → 32S+16.54 Mev

(More correctly 28Si, 32S, 36Ar,40Ca in approximate proportions 10:5:1:1)
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ΔX16  can be large

f

ρ ~ 4 x 106 g cm-3 Oxygen burns at about 2.0 GK
Lifetime is approximately q/εnuc~ 3 x 106 s

(lengthened by convection)



s25        15690   2.36076366221015E+14  ca40(   1)= 1.7211E+03                                                         
 R = 9.3778E+13   Teff = 3.4791E+03  L = 9.1799E+38   Iter = 3   Zb = 80   inv = 441                                    
 Dc = 5.4365E+06   Tc = 2.3877E+09  Ln = 3.1145E+44   Jm = 1096   Etot = -8.553E+50                                
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Inner 1 MO of a 25 MO model near the time of central oxygen depletion
(X(16O) = 0.04). Neutron excess η = 0.0073. Too large to make solar
abundances. This matter must stay behind in the neutron star

34S
38Ar

42Ca

But in nature, i.e., the sun, 
28Si, 32S, 36Ar, and 40Ca predominate

Si-shell 25 MO presupernova star (region just outside the 
iron core, η = 0.0018 to 0.0028. Much more solar-like pattern. 
This will be altered by explosive nucleosynthesis.

s25        19917   1.41476990768108E+06   dtd(   1)= 9.2090E-03                                                         
 R = 9.3776E+13   Teff = 3.4792E+03  L = 9.1802E+38   Iter = 3   Zb = 19   inv = 19                                     
 Dc = 3.3394E+09   Tc = 7.8907E+09  Ln = 1.0584E+49   Jm = 1106   Etot = -1.136E+51                                
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Nucleosynthesis in Si shell where neutronization has been less.

28Si, 32,33,34S, 35,37Cl, 36,38Ar, 39,41K, 40,42Ca,  46Ti,
50Cr    some p-process

Element-wise: Si, S, Ar, Ca in roughly solar
proportions.

Destruction of the s-process



Sir Arthur Eddington The Internal Constitution of Stars 
(The Observatory, Vol. 43, p. 341-358 (1920)) p 354.

George Gamow in 
My World Line

    

Solving the wave equation in a plasma
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(e.g., http://scienceworld.wolfram.com/physics/PlasmaFrequency.html)
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