Lecture 13

Presupernova Models, Core
Collapse and Bounce

How a massive star dies is determined by its presupernova
structure, especially that of its inner 2 solar mass core*,

its composition, density and temperature (entropy)
contours, and rotation rate. These in turn depend on

the properties of the ZAMS star, especially its mass and
angular momentum when it was born, and all that happened
along the way
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Generalities

When Massive Stars Die,
How Do They Explode?
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Rotation — some limits.

The moment of inertia of a cold neutron star is approximately

10 km
1=04MR*=04(1.4)2.x10”)(1.0x10°)* =1.1x 10* erg s

The rotational energy is % I w’, so the rotational frequency

corresponding to a typical supernova kinetic energy, 10°' erg,
is 1500 rad s™, or a period of 4 ms.

But during the time the explosion would develop,t<1 s, the
radius of the hot protoneutron star is larger, 20 - 50 km, so the

requisite final period is even smaller.

Discussion of ms magnetars deferred.
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E.g., the Crab not rotationally powered

In a calculation that included current approximations

to all known mechanisms of angular momentum transport
in the study, the final angular momentum in the iron core

of a 10 solar mass star when it collapsed was
5x 1047 erg s.

This corresponds to a pulsar period of 17 ms, just a bit
less than the Crab is believed to have been born with.

Spruit (2006) suggests modifications to original model

that may result in still slower spins.

Therefore---

The explosion of the Crab

SN was probably not (initially)
powered by rotation.The explosion
was weak although historical accounts
suggest that it was very bright.

The observed explosion energy was
~10%0 erg.

Density Profiles of Supernova Progenitor Cores
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Core compactness (a measure of preSN density structure):
O’Connor and Ott, ApJ, 730, 70, (2011)

Characterize possibility of an explosion based upon the compactness
parameter, C, Of the preSN model

25
=2.5M)/1000 km

§M =
R(M
( bary t—bounce
If  is big, R is small and the 2.5 solar mass point lies
close in. The star is hard to explode. Based upon a series

of 1D models they find stars with { over 0.45 are particularly

difficult to explode.
5 maybe too
& (explosion) <0.45 e e
Gravitational Binding Energy
of the Presupernova Star Outside
the Iron Core.
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O’Connor and Ott (2011) original plot
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Presupernova Compactness — more recent work
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M, is the mass location of the point with entropy 4.0 (usually the edge
of the Si core and u4 is the gradient of the enclosed mass there. When
my is large the density gradient is shallow. Small x4 corresponds to small
accretion rate and small u4M, to high accretion luminosity



Looking ahead: 1 D simulated explosions. Black = explosion; grey = BH
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Presupernova stars — Type IIp and II-L
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The solid line is for a Salpeter IMF with a maximum mass of 16.5
solar masses. The dashed line is a Salpeter IMF with a maximum of 35
solar masses

Low Mass Stars Woosley and Heger (2015)
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oob 1 Lower mass stars produce degenerate
’ 0 H cores of carbon and oxygen or oxygen,
~0.5 “He ] magnesium and neon. All three models
shown here are red supergiants with very
7.5 Mo low density extended hydrogenic envelopes.
- If mass loss removes the envelope, one
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10 — T T Single stars 6.5 - 12.0 Mg (Woosley and Heger 2015)
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eg..M, =22M, ie., main sequence mass ="10 M_" (Nomoto et al)
envelope is carried, so maybe main sequence mass ~ 8.5 M) already falling in. Very degenerate runaway.Burn to
iron group (NSE) butkT < &;,,,. No appreciable overpressure.
O, Ne, Mg core develops - residual of carbon burning, but not Instead capture electrons on Fe group nuclei. Collapse accelerates.
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Original model due to Miyaiji et al (1980). Studied many times since.

A similar evolution may occur for accreting Ne-O white dwarfs (or

very rapidly accreting CO-white dwarfs) in binary systems - an
alternate outcome to Type la supernovae. This phenomena in a binary
is generally referred to as “Accretion Induced Collapse (AIC)”.

Once the collapse is well underway, the outcome does not
vary appreciably from what one would expect for a collapsing
iron core of the same (zero temperature Chandrasekhar)
mass.

The energy release from oxygen burning and silicon burning is
small compared with the gravitational potential at which the
burning occurs

Miyaji et al, PASJ, 32,303 (1980)
Nomoto, ApJ, 277, 791(1984)

Nomoto, Ap.J, 322,206 (1987)

Mayle and Wilson, 4pJ, 334, 909 (1988)
Baron et al, ApJ, 320, 304, (1987)

3 case 2.2

H-rich envelope

M /Mg

M, =85M,_
M, =22M_

Nomoto, ApJ, 322, 206, (1987)

Case 22
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TABLE 2. LATE EVOLUTION BELOW 2.5 Mg

Helium stars with mass loss

Minit  Mourrent Mco Lss Ri3

Me] Mol  [Me] [10%®erg s7!] [10'* cm)

1.6 1.21 1.21 - - CO WD
1.7 1.31 1.22 2.85 1.34 CcO
1.75 1.33 1.26 3.27 1.39 NeO
1.8 1.39 1.24 3.03 1.33 CO/NeO
1.9 1.48 1.26 3.18 1.41 NeO
2.0 1.59 1.26 3.25 1.48 NeO
2.1 1.73 1.23 3.19 1.53 NeO
2.2 1.80 1.28 3.71 1.63 NeO
2.3 1.87 1.32 4.16 1.74 NeO
2.4 1.96 1.32 4.18 1.77 NeO
2.5 2.07 1.37 0.96 0.72 Si flash
NOTE. — For models from 1.7 to 2.4 M, conditions are given

at the last model calculated and are not the terminal values. CO
and NeO indicate the major constituents of the core at that time.
Were the envelope not lost, continued growth of the core to the
Chandrasekhar mass would lead to electron-capture supernovae in
all cases from 1.8 to 2.5 M model.

200 400
ty [ms]

Kitaura, Janka, and Hillebrandt
(2006) using 2.2 solar mass He
core from Nomoto (1984, 1987)

Explosion ~10°? erg,
basically the neutrino wind.
Very little Ni or heavy
elements ejected.

Faint supernova(?)

Star of ~ 10 solar masses suggested as progenitor of the
Crab nebula by Nomoto et al. (1982, Nature, 299, 803)

Observed for Crab: KE = 0.6 to 1.5 x 105 erg in 4.6+- 1.8 solar masses
of ejecta (Davidson and Fesen 1985)



Lag mass fraction

“FLAME” STARS (9.0 — 10.5 Solar Masses) Convectively Bounded Flame
(e.g., Timmes et al (1994))

Due to plasma neutrino losses which increase rapidly with Flame
the density, a temperature inversion develops. Neon, oxygen and ~L
silicon burning ignite off center and burn inwards in “convectively Y. i
bounded flames”. RPNV
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Convectively bounded oxygen flame Later in the same star silicon ignites with a powerful degenerate flash!
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Afterwards silicon burns inas a second convectlvely bounded flame Eventually an iron core forms and collapses to a neutron star
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Single stars 10.5 solar masses and above ignite all post-helium
burning stages in their centers without violent flashes (KEPLER)

15MG

E.g. Sukhbold and Woosley (2014)

Top: Carbon, neon, and oxygen
burning

m / Mg

&

% Bottom: Silicon burning. x-axis is
4 3 2 : 0 5 log time until iron core
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Figure 8. Convective history of a 15 My model, a typical supernova mass

Ordinary supernovae

CH Central O Flame Stable
AME | C Ignition | and Si Flash | Central Burning
7 8 9 103 >I104

COWwWD ONeWD <«——Fe Core Collapse =

EC SN

Overview M > 10.5

+ All stars up to very large values (Mg, 4o ~ 65) ignite all 6 fuels

—H, He, C, Ne, O, Si —in their centers and burn to completion.
The corresponding ZAMS mass depends on mass loss and
rotation.

The larger the star, the greater the mass of heavy elements,
Z > 2, it produces. Stars lighter than 10.5 don’t contribute
much nucleosynthesis (even though they explode easily).

* Generally, but not necessarily monotonically, and depending

on mass loss, bigger stars are harder to blow up and will
tend to leave black hole remnants.

The iron core mass sets a lower bound on the baryonic

mass of the compact remnant. It collapses as a unit, has

steep density gradients at its edge and is composed of isotopes
that the solar abundances tell us are rarely ejected.



mess froction

Overview M > 10.5

The explosion mechanism and nucleosynthesis are most
sensitive to the mass of the helium core when the star
dies. This will end up meaning that stars with the same
initial mass have a different final fate in close binaries

Rotation may become a more important consideration

to the explosion mechanism for the more massive stars.

It probably (my opinion) is not very important for supernovae

the mass of the Crab or even the most common supernovae.
The importance of rotation depends on the rotation rate

of the initial star, its mass loss history (and hence metallicity),
and some uncertain physics previously discussed (e.g., magnetic
torques).

The following discussion should apply to most common

core collapse supernovae — both Type Il and I,.. “Unusual”
supernovae will be discussed separately. 15 Mg is often taken
to be typical.
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Stars of larger mass have thicker, more massive shells of heavy elements

surrounding the iron core when it collapses.

Note that the final masses of the 15 and 25 solar mass main sequence stars
are nearly the same — owing to mass loss.
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Neutrino Trapping

Trapping is chiefly by way of elastic neutral current scattering
Core Collapse on heavy nuclei. Freedman, PRD, 9, 1389 (1974) and Janka (2017)
give the cross section 2 4 (m 02)
_ | o zagN{ij 6, 0,==G L 176x10™ em’
Once the collapse is fully underway, the time scale becomes MeV T (hc)
very short. The velocity starts at 108 cm s™' (definition of the
“presupernova”) and will build up to at least ¢/10 = 30,000 km s before
we are through. Since the iron core only has an initial radius of 5,000 to

10,000 km, the next 0.2 seconds are going to be very interesting.
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neutral currents

Janka (2017)
£,=1.11(p,Y)"* MeV
~20MeV at Neutrino Emission from Supernovae 13
p=10" gcm® B
. . . . R [km] Initial Phase of Collapse R [km] Neutrino Trapping
Therefore neutrino trapping will start when (g, ~10—-20 MeV is better) o - 5000 (t~0) a {t~0.1s, g ~10% glom?)
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From this point on the neutrinos will not freely stream but, increasingly,

will diffuse. Neutrino producing reactions will be inhibited by the N MNM M M., 10 \ M) M
: . . . \ 5 My
filling of neutrino phase space. The total lepton number Si-burning shell heawy nuclel Siburming shel
v-trapping
Y, =Y. +Y, PreSN
will be conserved, not necessarily the individual terms. At the point Generic description but could be 15 pc=10"is central density.
where trapping occurs Y =Y, ~ 0.37. At bounce Y.~ 0.29; Y,~ 0.08. Mo Janka article is on website Average and densiy at

neutrinosphere is less



T (MeV)

Bounce

Up until approximately nuclear density the structural adiabatic
index of the collapsing star is governed by the leptons — the
electrons and neutrinos, both of which are highly relativistic.
Hence it is nearly I'=4/3.

As nuclear density is approached however, the star first experiences
the attractive nuclear force and I" goes briefly but dramatically
below 4/3.

At still higher densities, above p,,, the repulsive hard core
nuclear force is encountered and abruptly T >> 4/3.

JM. Lattimer, F. Douglas Swesty [ Generalized EOS

Phys. A, 935,331 (1991)
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Throughout the collapse,
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| part, bound, but above
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In general, favor the curves K =220. For densities significantly
below nuclear, I" is due to relativistic positrons and electrons.
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The portion of the core that collapses together is

called the “homologous core”. It collapses subsonically

(e.g., Goldreich & Weber, ApJ, 238, 991 (1980); Yahil ApJ, 265,

1047 (1983)). This is also approximately equivalent to the “sonic core”.

This part of the core is called homologous because it can be shown
that within it, Veoiapse i proportional to radius. Thus the homologous
core collapses in a self-similar fashion. Were I'" = 4/3 for the entire iron
core, the entire core would contract homologously, but because I' becomes
significantly less than 4/3, part of the inner core pulls away from the

outer core.

As the center of this inner core approaches and exceeds pn, the resistance
of the nuclear force is communicated throughout its volume by sound waves,
but not beyond its edge. Thus the outer edge of the homologous core is
where the shock is first born. Typically, Myc = 0.6 — 0.8 solar masses.

The larger Myc and the smaller the mass of the iron core, the less
dissipation the shock will experience on its way out.

Janka (2017)
Neutrino Emission from Supernovae
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Figure 17: Bonic Point
Relevant Physics To Shock Survival
Photodisintegration:

As the shock moves through the outer core, the temperature
rises to the point where nuclear statistical equilibrium favors
neutrons and protons over bound nuclei or even a-particles
49226 MeV
56
=8.5x10" erg gm”
=1.7x10"" erg/0.1 M

q,..C°Fe —26p,30n)=9.65x10" (

Neutrino losses

Especially as the shock passes to densities below 10'? g cm3, neutrino

losses from behind the shock can rob it of energy. Since neutrinos of

low energy have long mean free paths and escape more easily, reactions

that degrade the mean neutrino energy, especially neutrino-electron scattering
are quite important. So too is the inclusion of p— and t—flavored neutrinos



It is generally agreed that the so called “prompt
shock mechanism” — worked on extensively by Bethe,
and colleagues in the 1980’ s — does not work. The shock
fails and becomes in a short time (< 10 ms) an accretion
shock. What happens next depends on the transport of
energy by neutrinos.
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Collapse and bounce in a
13 solar mass supernova.
Radial velocity vs. enclosed
mass at 0.5 ms, +0.2 ms,
and 2.0 ms with respect to
bounce. The blip at 1.5
solar masses is due to
explosive nuclear burning
of oxygen in the infall
(Herant and Woosley
1996).



