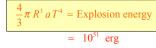
As the shock wave passes through the star, matter is briefly heated to temperatures far above what it would have experienced had it burned in hydrostatic equilibrium. This material expands, then cools nearly adiabatically. The time scale for the cooling is approximately the *hydrodynamic time scale*, though a little shorter (because speeds are faster than free fall).

For (post-helium) burning in hydrostatic equilibrium, recall we had

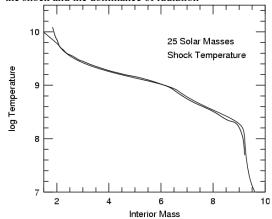
$$\langle \boldsymbol{\varepsilon}_{\mathrm{nuc}} \rangle \approx \langle \boldsymbol{\varepsilon}_{v} \rangle$$

hydrostatic nucleosynthesis advanced stages of stellar evolution

For explosive nucleosynthesis we have instead :


$$\tau_{nuc}(T_{shock}) \leq \tau_{HD}$$

$$\rho(t) = \rho_{shock} \exp(-t/\tau_{HD}) \qquad \rho \propto T^{3}$$


$$T(t) = T_{shock} \exp(-t/3\tau_{HD}) \qquad T_{shock} \approx 2.4 \times 10^{9} R_{9}^{-3/4}$$

$$\tau_{HD} = \frac{446 \sec}{\sqrt{\rho_{shock}}} \qquad \rho_{shock} \approx 2 \rho_{o}$$

Except near the "mass cut", the shock temperature to which the explosive nucleosynthesis is most sensitive is given very well by

This is because of the near constancy of pressure behind the shock and the dominance of radiation

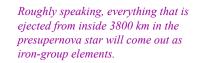
Example:

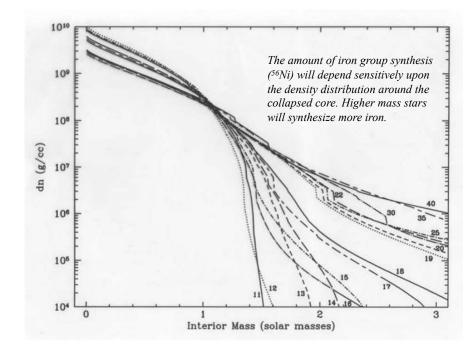
Any carbon present inside of 10⁹ cm will burn explosively since:

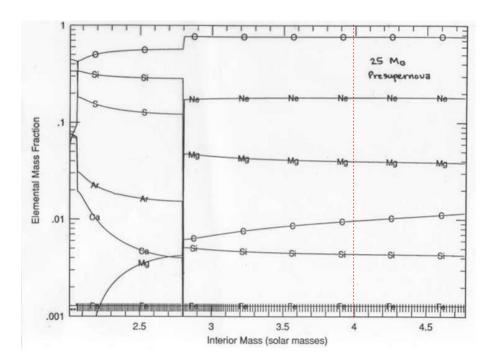
At
$$T_{3} = 2$$
 $\lambda_{12,12} \approx 4.3 \times 10^{-4} \left(\frac{T_{3}}{2}\right)^{20}$
 $\frac{dY_{12}}{dt} = -2 Y_{12}^{4} q \lambda_{12,12}/2$
 $\tau_{12,12} = \left(qY_{12} \lambda_{12,12}\right)^{-1} = \frac{12}{qX_{12}} \lambda_{12,12}$ $X_{12} \approx 0.15$
 $= 1.9 \left(\frac{2}{T_{3}}\right)^{20} = 45/\sqrt{10^{5}} = 0.145$
 $\Rightarrow T_{3} = 2.3$ $0.1 \tau_{HD}$

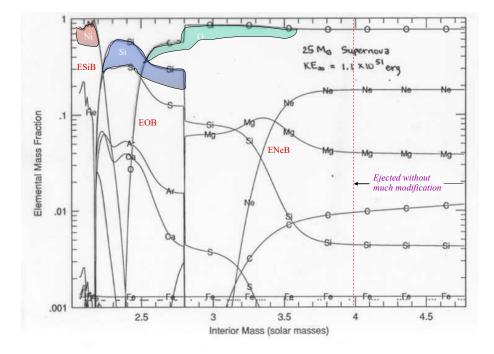
where in the star does this occur?

$$10^{91} = \frac{4}{3} \pi R^3 a (2.3 \times 10^9)^4 \implies \underbrace{R = 1.0 \times 10^9 \text{ cm}}_{about}$$


$$\underline{nb}. \quad T_p \propto R^{-3/4} \qquad about 3.2 \text{ Me on} \\ \text{the 25 Mg presN star}$$


Lecture 15


Explosive Nucleosynthesis and the r-Process


To nse	$T_9 > 5$	$R_9 < 0.38$	yes
Silicon	4 - 5	0.38 - 0.51	yes
Oxygen	3 - 4	0.51 -0.74	yes
Neon	2.5 - 3	0.74-1.0	a little
Carbon	2.0 - 2.5	1.0-1.3	no
Helium	>0.5	< 8	no
Hydrogen	>0.2	< 27	no

 $R_{9} = \left(\frac{T_{9}}{2.4}\right)^{-4/3}$

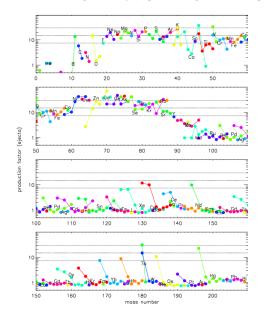
Produced pre-explosively and just ejected in the supernova:

• Helium

- Carbon, nitrogen, oxygen
- The s-process
- Most species lighter than silicon

Produced in the explosion:

- Iron and most of the iron group elements Ti, V, Cr, Mn, Fe Co, Ni
- The r-process (?)
- The neutrino process F, B


Produced both before and during the explosion:

- The intermediate mass elements Si, S, Ar, Ca
- The p-process (in oxygen burning and explosive Ne burning)

Explosive Nucleosynthesis

Fuel	Main Product	Secondary Products	Temp (10 ⁹ K)	Time (sec)
Innermost Ejecta	r- process	-	>10 low Y _e	about 1
Si, O	⁵⁶ Ni	Iron group	> 4	0.1
0	Si,S	Cl, Ar K, Ca	3 - 4	1
O, Ne	O, Mg Ne	Na, Al P	2 - 3	5
		p - process ¹¹ B, ¹⁹ F		н

25 Solar Masses; Rauscher et al. (2002), parameterized explosion $KE = 1.2 \times 10^{51}$ erg at infinity (requires strong successful explosion)

The nucleosynthesis that results from explosive silicon burning is sensitive to the density (and time scale) of the explosion.

1) High density (or low entropy) NSE, and long time scale:

Either the material is never photodisintegrated even partially to α -particles or else the α -particles have time to reassemble into iron-group nuclei. The critical (slowest) reaction rate governing the reassembly is $\alpha(2\alpha,\gamma)^{12}C$ which occurs at a rate proportional to ρ^2 .

If as $T \rightarrow 0$, X_n , X_p , and $X_{\alpha} \rightarrow 0$ then one gets pretty much the unmodified "normal" results of nuclear statistical equilibrium calculated e.g., at $T_q = 3$ (fairly indedendent of ρ).

Abundant nuclei at $\eta = 0.002 - 0.004$ ^{56,57}Ni, ⁵⁵Co, ^{52,53,54}Fe, ^{48,49,50}Cr, ⁵¹Mn Products after all decays are complete: ^{54,56,57}Fe, ⁵⁵Mn, ^{48,49}Ti, ^{50,51,52,53}Cr, ⁵¹V 2) Low density or rapid expansion \rightarrow the " α -rich" freeze out

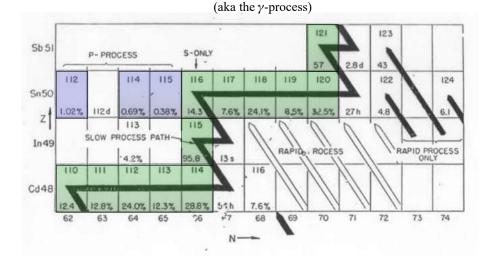
If all the α 's from photodisintegration cannot reassemble on $\tau_{\rm HD}$, then the composition will be modified at late times by α -capture. The composition will "freeze out" with free α -particles still present (and, in extreme cases, free n's or p's). The NSE composition at low T willbe modified by reactions like

$^{54}Fe(\alpha,\gamma)^{58}Ni$	$^{56}Ni(\alpha,p)^{59}Cu$	
$^{56}Ni(\alpha,\gamma)^{60}Zn$	$^{40}Ca(\alpha,\gamma)^{44}Ti$	
$^{57}Ni(\alpha,\gamma)^{61}Zn$	$^{58}Ni(\alpha,\gamma)^{62}Zn$	etc.

Abundant:

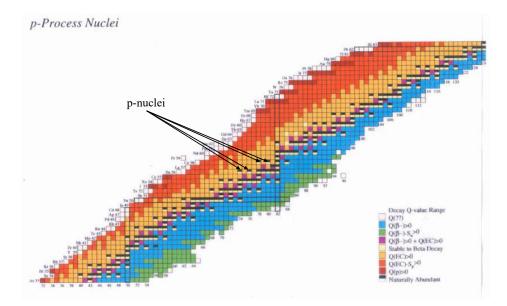
Produced: $\frac{{}^{44}\text{Ti}, {}^{56,57,58}\text{Ni}, {}^{59}\text{Cu}, {}^{60,61,62}\text{Zn}, ({}^{64,66}\text{Ge})}{{}^{44}\text{Ca}, {}^{56,57}\text{Fe}, {}^{58,60,61,62}\text{Ni}, {}^{59}\text{Co}, ({}^{64,66}\text{Zn})}$

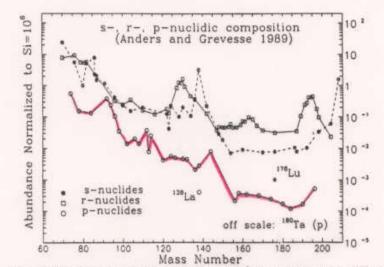
Both kinds of freeze-out occur in a typical explosion

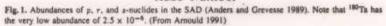

3) Explosive oxygen burning $(3 \le T_9 \le 4)$

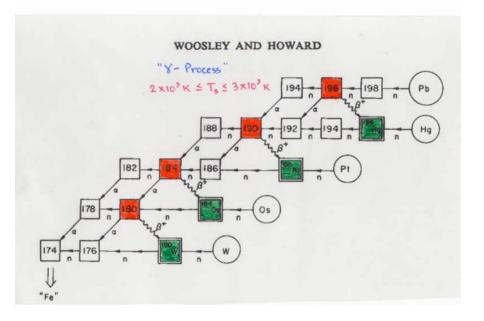
Makes pretty much the same products as ordinary oxygen burning (T_{_9} \approx 2) at low $\eta \approx 0.002$ (Z/Z $_{\odot}$)

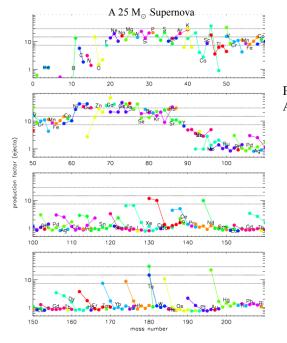
Principal Products:

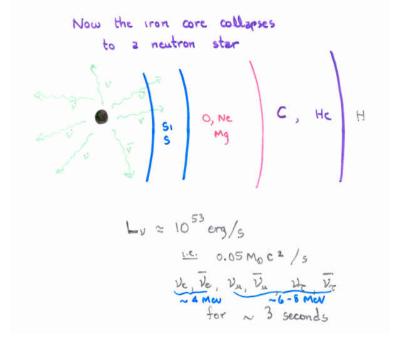

- 4) Explosive neon and carbon burning $(2 \le T_9 \le 3)$ Same products as stable hydrostatic buring More ²⁶Al, the p-process or γ -process.
- 5) Explosive H and explosive He burning.The former occurs in novae; the latter in some varieties of Type Ia supernovae. Discuss later.

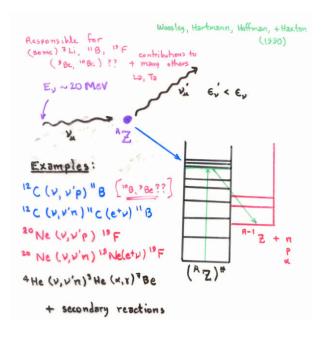

The *p*-Process




The "
$$p$$
 - " or
 γ - Process


At temperatures $\sim 2 \times 10^{\circ}$ K before the explosion (oxygen burning) or between 2 and 3.2 x 10° K during the explosion (explosive neon and oxygen burning) partial photodisintegration of pre-existing s-process seed makes the proton-rich elements above the iron group.


Problems below $A \sim 130$.


Summary: γ – Process

- Makes nuclei traditionally attributed to the "p-process" by photodisintegration of pre-existing s-process nuclei. The abundance of these seeds is enhanced at least for A < 90 by the s-process that went on in He and C burning.
- Partially produced in oxygen shell burning before the collapse of the iron core, but mostly made explosively in the carbon, neon, and oxygenrich shells that experience shock temperatures between 2 and 3.2 billion K.
- Production factor ~100 in about 1 solar mass of ejecta. Enough to make solar abundances
- A secondary (or tertiary) process. Yield is proportional to abundance of s-process in the star.
- There remain problems in producing sufficient quantities of p-nuclei with atomic masses between about 90 and 120, especially ⁹²Mo.

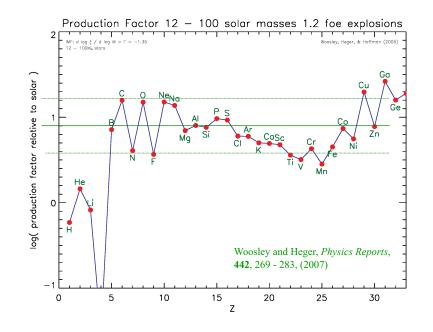
The Neutrino Process $(\nu$ -process)

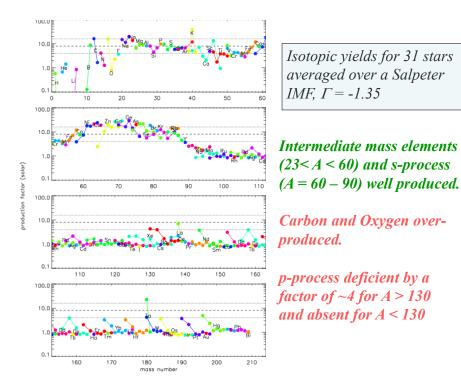
The neutrino flux from neutron star formation in the center can induce nuclear transmutation in the overlying layers of ejecta. The reactions chiefly involve μ and τ -neutrinos and neutral current interactions. Notable products are ¹¹B, ¹⁹F. ¹³⁸La, ¹⁸⁰Ta, and some ⁷Li and ²⁶Al.

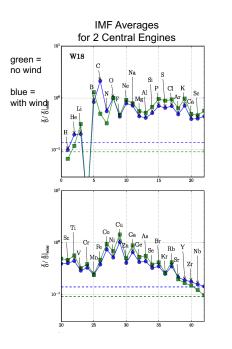
Production factor relative to solar normalized to ¹⁶O production as a function of μ and τ neutrino temperature (neutral current) and using 4 MeV for the electron (anti-)neutrinos (for charged current only). 6 MeV is now considered a more likely value for T_{ur}

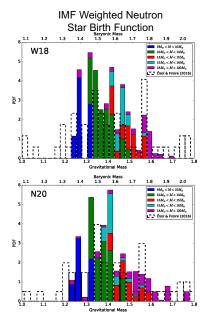
Product	_ 15 M _☉				_ 25 M _☉			
	6 MeV		8 MeV		6 MeV		8 MeV	
	WW95	This work	WW95	This work	WW95	This work	WW95	This work
$^{11}\mathbf{B}$	1.65	1.88	3.26	3.99	0.95	1.18	1.36	1.85
¹⁹ F	0.83	0.60	1.28	0.80	0.56	0.32	1.03	0.53
¹⁵ N	0.46	0.49	0.54	0.58	0.09	0.12	0.15	0.19
¹³⁸ La		0.97		1.10		0.90		1.03
¹⁸⁰ Ta		2.75		3.07		4.24		5.25

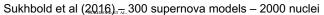
Heger et al,, 2005, Phys Lettr B, 606, 258

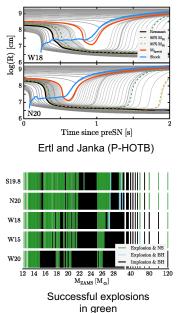

Integrated Ejecta

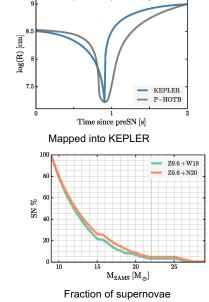

Averaged yields of many supernovae integrated either over an IMF or a model for galactic chemical evolution.

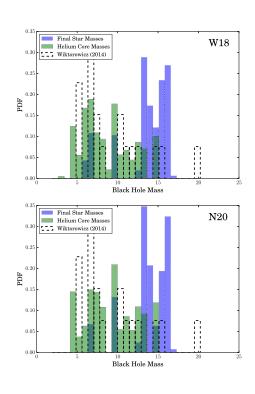

Survey - Solar metallicity:


(Woosley and Heger 2007)


- Composition Lodders (2003); Asplund, Grevesse, & Sauval (2004)
- 32 stars of mass 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 35, 40, 45, 50, 55, 60, 70, 80, 100, 120 solar masses.
- Evolved from main sequence through explosion with two choices of mass cut $(S/N_AkT = 4 \text{ and } Fe\text{-core})$ and two explosion energies (1.2 B, 2.4 B) - 128 supernova models
- Averaged over Salpeter IMF







THE ASTROPHYSICAL JOURNAL, 821:38 (45pp), 2016 April 10

1.56

0.81

1.41

9.23

Cal.

W15.0

W18.0

W20.0

N20.0

SUKHBOLD ET AL.

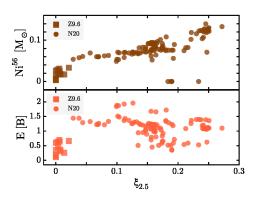
13

74

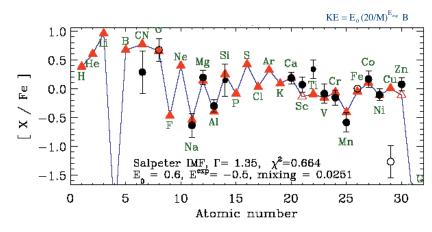
0.062

52

2


0

5


Table 6 Integrated Statistics (see Section 6.4 for Descriptions; All Masses in M_{\odot}) \overline{E} (erg) $\overline{M_g}$ SN% (>12) (>20) (>30) M_h Lower $\overline{M_{\rm BH}}$ Upper \overline{M}_{BH} $M_{\rm Ni}, l$ $M_{\rm Ni}, u$ 0.68 47 1.55 1.40 8.40 13.3 0.040 0.049 66 8 0.72 1.56 1.40 9.05 13.6 0.043 0.053 67 48 9 1.54 1.38 7.69 13.2 0.036 0.044 55 37 0.65 3

0.047

13.8

Integrated yield of 126 masses 11 - 100 M_{\odot} (1200 SN models), with Z= 0, Heger and Woosley (2008, ApJ 2010) compared with low Z observations by Lai et al (ApJ, 681, 1524, (2008)). Odd-even effect due to sensitivity of neutron excess to metallicity and secondary nature of the s-process.

Cr I and II. non-LTE effects: see also Sobeck et al (2007)

28 metal poor stars in the Milky Way Galaxy -4 < [Fe/H] < -2; 13 are < -.26

Survey $Z = 0; 10 \text{ to } 100 \text{ M}_{\odot}$

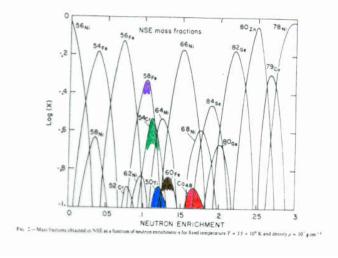
(Heger & Woosley, 2010, ApJ, 724, 341)

Big Bang initial composition, Fields (2002), 75% H, 25% He

 $10-12 M_{\odot} \Delta M = 0.1 M_{\odot}$ $12 - 17 M_{\odot} \Delta M = 0.2 M_{\odot}$ $17 - 19 M_{\odot} \Delta M = 0.1 M_{\odot}$ $19 - 20 M_{\odot} \Delta M = 0.2 M_{\odot}$ 20 - 35 M_{\odot} $\Delta M = 0.5 M_{\odot}$ $35 - 50 M_{\odot} \Delta M = 1 M_{\odot}$ $50 - 100 M_{\odot} \Delta M = 5 M_{\odot}$

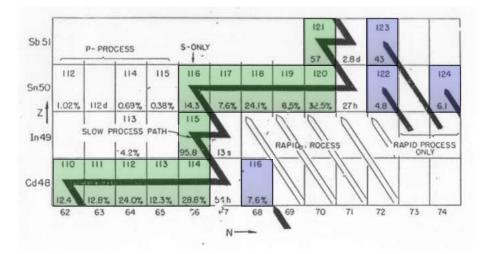
> 126 Models at least 1000 supernovae

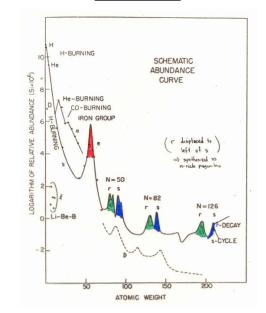
Evolved from main sequence to presupernova and then exploded with pistons near the edge of the iron core $(S/N_A k = 4.0)$

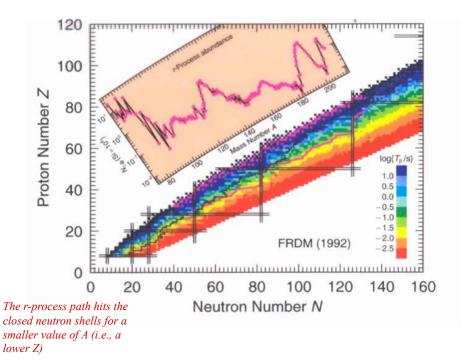

Each model exploded with a variety of energies from 0.3 to $10 \times 10^{51} \text{ erg.}$

MISSING PIECES

- ⁶Li, ⁹Be, ¹⁰B, part of ⁷Li Cosmic ray spallation, some ⁷Li from AGB
- $\bullet\,^{15}\mathrm{N}\,$ and now $^{17}\mathrm{O}_{Classical}$ Novae
- 43Ca?, part of 44Ca, 47Ti, part of 51V Helium detonation Type Ia supernovae
- ⁴⁸Ca, ⁵⁰Ti, ⁵⁴Cr, (^{58,60}Fe, ⁶⁶Zn in grains) Chandrasekhar Mass Type Ia supernovae
- ⁶⁴Zn, ⁷⁰Ge, ⁷⁴Se, ⁷⁸Kr, ^{84,88}Sr, ⁸⁹Y, ⁹⁰Zr, ⁹²Mo? Neutrino driven winds from neutron stars

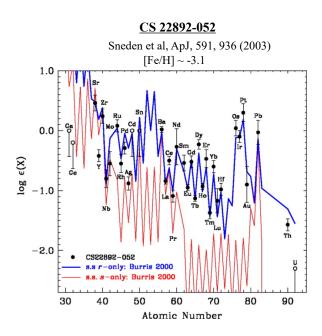

NUCLEOSYNTHESIS IN NEUTRON-RICH SUPERNOVA EJECTA¹ D. Hartmass,^{2,3} S. E. Woosley,^{2,4} and M. F. El Eid^{1,3}


The r-Process


The rapid addition of neutrons to iron group nuclei that produces the most neutron-rich isotopes up to uranium and beyond. This is thought to occur either in the deepest ejecta of supernovae or in merging neutron stars.

The r-Process

The r-Process


These heavy nuclei cannot be made by the s-process, nor can they be made by charged particle capture or photodisintegration.

Photodisintegration would destroy them and make p-nuclei. The temperatures required for charged particle capture would destroy them by photodisintegration.

Their very existence is the proof of the addition of neutrons on a rapid, explosive time scale. This requires a high density of neutrons.

They were once attributed to the Big Bang (Gamow 1946), but we now know the density is far too low.

Still, observations suggest though that the r-process arose or at least began to be produced very early in the universe, long before the s-process.

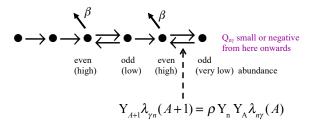
If neutrons are to produce the r-process nuclei then β -decay must be responsible for the increase in proton number along the r-process path. Protons would combine with neutrons and end up in helium.

The neutron density must be high both because the abundances themselves indicate a path that is very neutron-rich (so $\rho Y_n \lambda_{ny}$ must be >> $1/\tau_{\beta}$ near the valley of β -stability) and because only very neutron-rich nuclei have sufficiently short β -decay lifetimes to decay and reach, e.g., Uranium, before Y_n goes away (τ_{HD}) in any realistic scenario.

The beta decay lifetimes of nuclei that are neutron-rich become increasingly short because of the large Q-value for decay:

- More states to make transitions to. Greater liklihood that some of them have favorable spins and parities
- Phase space the lifetime goes roughly as the available energy to the fifth power

We shall find that the typical time for the total r-process is just a few seconds. Neutron rich nuclei have smaller neutron capture cross sections because $Q_{n\gamma}$ decreases, eventually approaching zero


Take $\lambda_{n\gamma} \sim 10^4$. One needs $\rho Y_n \lambda_{n\gamma} >> 1$. This implies that $n_n = \rho N_A Y_n >> \frac{N_A}{\lambda_{n\gamma}} \sim 10^{20} \text{ cm}^{-3}$ for many captures to happen in a second $\frac{1}{Y_A} \left(\frac{dY_A}{dt}\right) = \rho Y_n \lambda_{n\gamma}$

For such large neutron densities neutron capture will go to the (T-dependent) neutron drip line and await a beta decay.

How it works

The r-process proceeds by rapidly capturing neutrons while keeping Z constant, until a "waiting point" is reached. At the waiting point(s), photo-neutron ejection (photodisintegration) balances neutron capture. At zero temperature, the waiting point would be the neutron drip line ($S_n \leq 0$), but the r-process actually happens at high temperature (a necessary condition to obtain the high neutron density).

At the waiting point (or points), beta decay eventually happens creating Z+1. Neutron capture continues for that new element until a new waiting point is found.

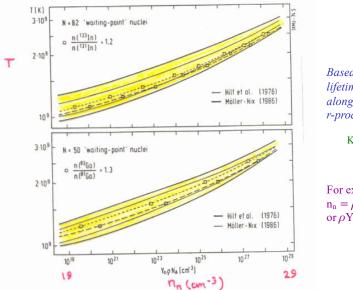
The temperature cannot be too high or

- The heavy isotopes will be destroyed by photodisintegration
- (γ, n) will balance (n, γ) too close to the valley of β stability where τ_{β} is long

At a waiting point for a given Z:

$$\frac{\mathbf{Y}_{A+1}}{\mathbf{Y}_{A}} = \rho \,\mathbf{Y}_{n} \frac{\lambda_{n\gamma}(A)}{\lambda_{\gamma n}(A+1)} \qquad \qquad \mathbf{A} + n \rightleftharpoons A+1$$

$$= \rho \,\mathbf{Y}_{n} \left(9.89 \times 10^{9}\right)^{-1} \frac{G(A+1)}{G(A)} T_{9}^{-3/2} \frac{(A+1)}{A} \exp(11.6045 \frac{Q_{n\gamma}}{T_{9}} / T_{9})$$


At a waiting point photodisintegration will give Y_{A+1} and Y_A comparable abundances - at least compared with abundances far from A. Since we only care about log's anyway ...

Ignoring G' s and other less dominant terms

$$\log \frac{Y_{A+1}}{Y_A} \sim 0 \sim \log \rho Y_n - 10 + 5.04 Q_{n\gamma} / T_9$$

$ ho Y_n$	T 9	Q _{lim} (MeV)
1 gm cm ⁻³	1	1.98
-	2	3.97
	3	5.94
10 ³ gm cm ⁻³	1	1.39
-	2	2.78
	3	4.17

Therefore the path of the r-process (Q_{lim}) depends upon a combination of T_9 and n_n . Actually both are functions of the time.

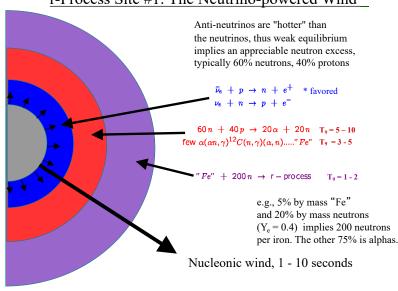
Optimal conditions for the r-process

Based upon estimated lifetimes and Q-values along path of the r-process.

Kratz et al. (1988)

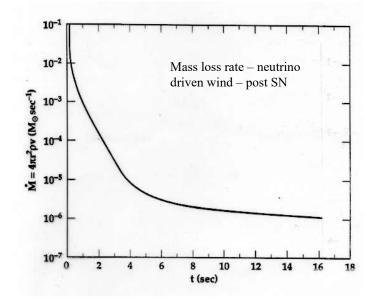
For example, at T₉=2.5, $n_n = \rho N_A Y_n \sim 10^{27} \text{ cm}^{-3}$ or $\rho Y_n \sim 10^3$.

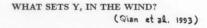
Sites for the r-process:


All modern scenarios for making the r-process achieve a very large density of neutrons and a very high neutron-toseed ratio by invoking an explosive event in which the matter is, at least briefly, in the form of nucleons – neutrons and protons – with a large excess of neutrons. The ensuing nucleosynthesis then resembles a dense, neutron-rich Big Bang.

Many n + some p \rightarrow Some ⁴He + many neutrons \rightarrow Heavy elements + ⁴He + many neutrons

This last step would not happen at Big Bang densities but happens in a stellar environment where the density is enormously greater.


Three sites have been discussed in the last decade :

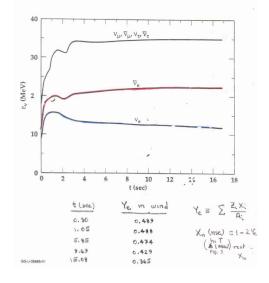

- · Neutrino-powered winds from proto-neutron stars
- Merging neutron stars and neutron stars merging with black holes
- Dense accretion disks around black holes could be an outcome of merging neutron stars)

Duncan, Shapiro, & Wasserman (1986), *ApJ*, **309**, 141 Woosley et al. (1994), *ApJ*, **433**, 229

r-Process Site #1: The Neutrino-powered Wind *

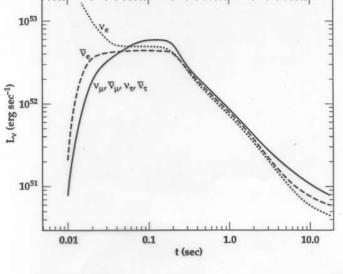
$$Y_e = \frac{X_p}{X_n + X_p}$$

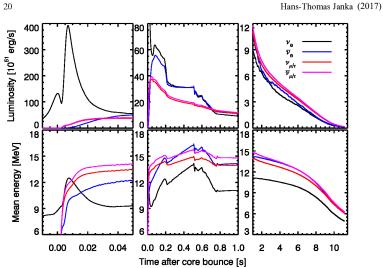
$$\begin{split} \frac{dX_n}{dt} &= X_p \left(\lambda_{\bar{\nu}}(p) + \lambda_{\epsilon}(p) \right) - X_n \left(\lambda_{\nu}(n) + \lambda_{\epsilon^+}(n) \right) \\ \frac{dX_p}{dt} &= -X_p \left(\lambda_{\bar{\nu}}(p) + \lambda_{\epsilon}(p) \right) + X_n \left(\lambda_{\nu}(n) + \lambda_{\epsilon^+}(n) \right) \end{split}$$


So long as the fluxes (and spectra) of ν and $\bar{\nu}$ are equal, the neutronproton mass difference negible, the electrons non-degenerate, and the number of positrons equal to the number of electrons, Y_e will be 0.50.

Of these the neutrino interactions predominate (it takes many such interactions to lift a proton from the neutron star).

$$Y_{\epsilon} ~pprox ~rac{\lambda_{
u}(n)}{\lambda_{ar{
u}}(p) ~+~ \lambda_{
u}(n)}$$


(which is less than 0.5 if $\lambda_{\bar{\nu}}(p) > \lambda_{\nu}(n)$.)


But the average energy each flavor of neutrino is not the same Y_e decreases with time.

Wilson (1994)

After 0.1 s, the luminosities of all flavors of neutrinos are equal - made by pair annihilation

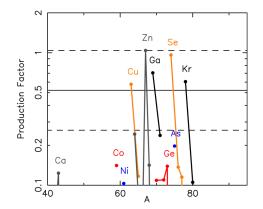
 $T_{\mu\tau}$ not as hot as it used to be Ratio of electron antineutrino and neutrino temperature also less 1) low Y_e because $T_{\overline{v}_a} > T_{v_a}$

2) High entropy

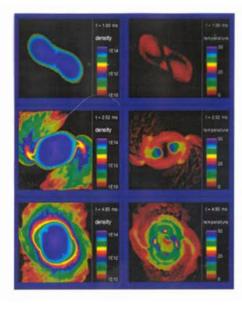
 $S \sim \frac{T^3}{\rho}$ (entropy dominated by radiation) need $S \sim 400$

If the density is too high, too many alphas reassemble and the neutron to seed ratio is small

For higher entropy the density is lower at a given temperature. The rates governing the reassembly of α -particles are proprtional to ρ^2 (the 3 α reaction) or ρ^3 (the $\alpha \alpha$ n reaction)


3) Rapid time scale -
$$\tau \sim \frac{R}{v_{wind}} \sim 100 \,\mathrm{ms}$$

Why it hasn't worked so far

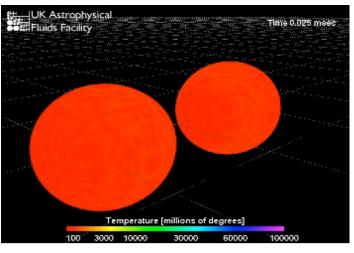

Need entropies $s_{rad}/N_A k \sim 400$. Most calculations give ~ 100 . Magnetic fields could help – Thompson 2003, ApJL, 585, L33.

Neutrino-powered wind

Roberts, Woosley and Hoffman (2010)

r=Process Site #2 - Merging Neutron Stars

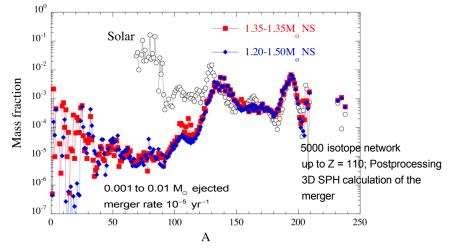


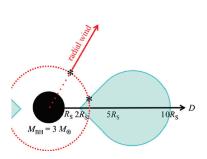

Merging Neutron Stars:

May happen roughly once every 10⁵ years* in the Milky Way galaxy. Eject 0.01 - 0.1 solar masses of r-process.

The currently favored site at least for the heavy r-process

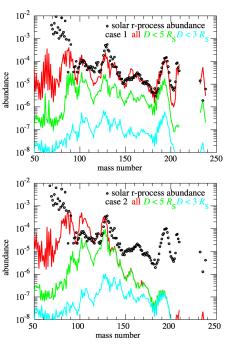
*24 My⁻¹ in the Milky Way Chruslinska et al (2017)



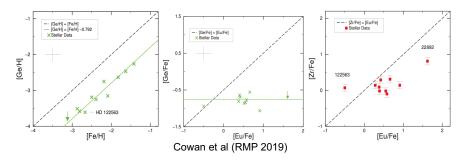

May also jet of neutron rich material after merger Burrows et al., 2007, *ApJ*, **664**, 416

Merging neutron stars – r-process nucleosynthesis

Goriely, Bauswein, and Janka (2011)



So many neutrons that "fission recycling" occurs leading to a robust pattern that fits the solar abundances above A = 110. Also need a "weak" r-process site.



Wanajo and Janka (2012)

Neutrino-powered wind from black hole accretion disk following neutron star merger

Wanajo & Janka

Two r-Processes?

Ge, Zr, and Eu are predominantly r-process elements. At early times Fe is free from SN Ia supernova contributions and is solely a massive star product.

The left frame shows that Ge (A = 70 - 76) correlates with iron and is probably a massive star product.

The center frame shows that no such correlation exists between Ge and much heavier Eu (A = 151 - 153), suggesting Eu has a different origin

The right frame suggests that Zr (isotopes 90 – 94) is intermediate.

"Kilonova"

Kasen et al MNRAS (2015)

6 Kasen, Fernández, & Metzger

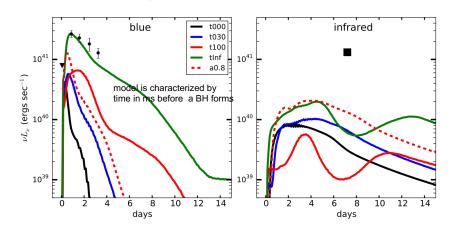
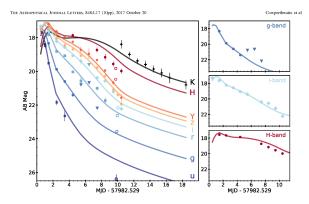
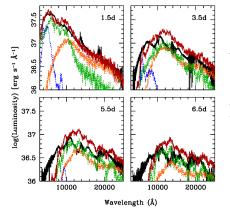



Figure 5. Left Panel: Angle averaged synthetic light curves of various wind models at optical blue wavelengths (3500 - 5000 Å). The closed circles show r-band observations of the possible kilonova following GRB 080503 (Perley et al. [2009). The triangle symbol denotes an upper limit. As the redshift of 080503 is unknown, we adopt a value z = 0.25 and neglect k-correction effects. Right Panel: Model light curves of the same models at infrared wavelengths ($1 - 3\mu m$). The square shows the Hubble Space Telescope observations of the possible kilonova associated with GRB130603B (Tanvir et al. [2013]. Berger et al. [2013).



Observed light curve GW 170817 vs a two component model for the r-process (Cowperthwaite et al ApJ, 2017)

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L17 (10pp), 2017 October 20

Cowperthwaite et al.

Table 1 Kilonova Model Fits											
Model	M_{ej}^{blue} (M_{\odot})	v _{ej} ^{blue} (c)	(cm^2g^{-1})	M_{ej}^{purple} (M_{\odot})	v _{ej} ^{purple} (c)	$(cm^2 g^{-1})$	$M_{ m ej}^{ m red}$ (M_{\odot})	v _{ej} ^{red} (c)	$(\text{cm}^2 \text{g}^{-1})$	$f^{\rm Ni}$	WAIC
2-Comp	$0.014\substack{+0.002\\-0.001}$	$0.266\substack{+0.007\\-0.002}$	(0.5)				$0.036\substack{+0.001\\-0.002}$	$0.123\substack{+0.012\\-0.014}$	$3.349^{+0.364}_{-0.337}$		-102
3-Comp	$0.014^{+0.002}_{-0.001}$	$0.267^{+0.006}_{-0.011}$	(0.5)	$0.034\substack{+0.002\\-0.002}$	$0.110\substack{+0.011\\-0.010}$	(3.0)	$0.010\substack{+0.002\\-0.001}$	$0.160\substack{+0.030\\-0.025}$	(10.0)		-106

Kilonova model compared to the AT 2017gfo spectra. X-shooter spectra (black line) at the first four epochs and kilonova models: dynamical ejecta ($Y_e = 0.1 - 0.4$, orange), wind region with proton fraction $Y_e = 0.3$ (blue) and $Y_e = 0.25$ (green). The red curve represents the sum of the three model components.

Pian et al (Nature 2017)