Lecture 4

Basic Nuclear Physics — 2

Nuclear Stability and
the Shell Model

Most collections of nucleons have positive binding energy,

i.e., are temporarily bound, but a nucleus is still considered
“unbound” if it can gain binding by ejecting a neutron or proton.
or ion (like “He). If energetically feasible, this ejection occurs on
a very short time scale (e.g.5Li 3x1022s).

The neutron and proton “drip lines” are defined by

BE(*!Z) < BE(*Z) S,<0
BE(**'Z) < BE(*Z-1) S, <0

Note that by definition

BE(n) = BE(p) = 0

Even a nucleus that is bound is usually unstable
to weak decay or alpha-decay.

Nuclear Stability

A necessary condition for nuclear stability is that,

for a collection of "A “nucleons, there exists no more e
tightly bound aggregate. 0\
® E. g, a single 8Be nucleus. Though it has finite binding energy,
(56.4995 MeV), has less binding energy than two “He nuclei
(2 * 28.2957 = 56.591), hence 8Be quickly (6.7 x 10-17 s) splits
into two heliums (i.e. two alpha particles).

N
2 4He

® An equivalent statement is that the nucleus AZ is stable if there is
no collection of A nucleons that weighs less.

® However, one must take care in applying this criterion, because
while unstable, some nuclei live a very long time. An operational
definition of “stable” is that the isotope has a measurable abundance
and no decay has ever been observed (ultimately all nuclei heavier
than the iron group are unstable, but it takes almost forever for
them to decay). One must also include any lepton masses emitted
or absorbed in a weak decay.

Only the half black squares are stable nuclei, all
the squares are bound but most are unstable



Protons
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Classification of Decays

B~ FC
e+

N

7
Neutrons

The lightest known alpha-unstable nuclei
(except for 8Be) are 104-110Tg

a-decay: (no weak interaction)
e emission of Helium nucleus
o7 >72

e N> N-2

e A> A4

€™-decay (or -decay)
e emission of e~ and p
o7 >7+1

N> N-1

e A = const

et-decay

e emission of e+ and v
o7Z>71

e N> N+1

e A = const

Electron Capture (EC)

» absorbtion of e and emiss 7
7> 71
e N> N+1
e A = const

Energy can often be released by adding nucleons or
other nuclei to produce a more tightly bound product:

BE(%Fe) = 492.247 MeV

BE(*Fe)
Quy(*°Fe)

499.893 MeV
7.646 MeV

Both *Fe and “"Fe
are stable

The reaction r'bl“l'\‘n.'}l'-:"_l*'v provides 7.646

MeV of kinetic energy and radiation. To go
the other way;, t”nl"v{*,-.nI:—‘G!f'v, would require
7.646 MeV. The locus of nuclei with Qn7y
= 0 is known as the “neutron-drip line”.
Similarly Qp~y = 0 defines the “proton=drip

line”.

The criterion for weak decay is a little more
complicated because of the mass difference
between the neutron and proton and be-
cause electrons or positrons may be created

or destroyed.

For Fe the
neutron drip line
is found at A =73;
the proton drip is
at A=45.

Nuclei from “Fe

to 7’Fe are stable
against strong decay
but only four 3436:57-38F¢
are stable against weak
decay.

The mass of the nentral atom, defined as

the “atomic mass’ can be written

Examples:

’He - diproton-BE <0 unbound (~700 keV) |

27.56
29.27
28.86

26.33
31.99
39.24
41.27
56.50

etc

BE =7.718 MeV
28.296 stable

stable

unstable n-emission 7.6 x107%
bound but decays to °Li in 807
unstable n-emission 3 x 10%' s

stable

stable

bound (but decays to °Be in 840 ms)
(barely) unbound - decays to 2 ‘He

in6.7 x107" sec

The difference in binding energies for reactions other
than weak interactions is also the "Q-value for the reaction”
e.g. *He(n,y)*He Q=20.56 MeV

nuclear part (but my contains e°)

BE(n) = BE(p) =0

S
ms

unstable p-emission —*He +pin3 x10% s

M(AZ) =Zmy + Nmy — BE(AZ) /c* -

F(15.732°3 &V = Z(136 ¢V

electronic binding energy

where m; is the mass of the neutral hydro-

gen atom (including m, ), my, is the mass
of the neutron, and the tenm in the brack-
ets is an approximation to the difference in

electronic binding energy. The Z* 3 term

is a Thomas-Fermi approximation to the to-

tal binding energy of Z electrons and the
Z(13.6) eV term is clearly the electronic bind-

ing energy of Z hydrogen atoms.

Usually

the term in the brackets is negligible and ne-

glected.

)} /c?



More commonly used is the Atomic Mass Excess

Lamu = 1/12 the mass of the neutral *>C atom  6p, 6n, 6 e in the atom
931.494 MeV /c?
1.00727647 amu

mp =
my = 1008665012 amu M(AZ)
my = L007825037 amu i.e., m,+0.511/931.494 the amomic mass
16 . =
= ST
neutral atoms , )() 15.994915 amu

“C' = 12.00000 amu

The atomic mass excess is then defined:

A = atomic mass excess or M(AZ):A+L mu's

al
= 931.494 MeV [M(*Z) — A] - ?ilgt?“

(15.994915-16)/931.494

=-4.737 The mass excess of 2C is obviously zero.
The mass excess of 00 is -4.737 MeV. That
is the neutral *°0 atom weighs less than 16 This automatically includes
times 1/12 of the neutral 12C atom. ~ the electron masses

Wilhelm Ostwald suggested O as the standard in 1912 (before isotopes were
known) In 1961 the carbon-12 standard was adopted. O was not really pure 1O

The binding energy (MeV) is given in terms of the mass excess by
the previous definition of mass excess (neglecting electronic binding energy)

and the definition of the binding energy

BE " include electron mass but

2 Zmy+ Nm, -M("Z) neglect electron binding energy
M(*Z)=A + A amu's (1 amu) ¢*=931.494 MeV

931.494 A

BE(M Aty
BEMeV) =7 (1.007825 amu) + N (1.008649 amu) - Z - N - A0D)
931.494 931.494

A*Z)

=7 (0.007825 amu) + N(0.008649 . at24)
( amu) + N( M) - 494

BE = ZA, +NA, - A*Z

.007825*931.494 = 7.2889

where A, =7.288969 MeV = mass excess of H in amu x 931.494 MeV
A, =8.071323 MeV = mass excess of n in amu X 931.494 MeV
eg. ‘He A =+2.425 Audi and Wapstra, Nuc. Phys A., 595, 409 (1995)
BE =2(8.07132)+2(7.2889)-2425  http://t2.1anl.gov/nis/data/astro/molnix96/massd.html

=29.296 MeV

Nocloar Wallet Cards
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. https://www.nndc.bnl.gov/wallet/

WEAK DECAY

2 NUCLEAR STAILITY

“cle)” ‘ f-decay: n—>pre +v, | unstableif N A=2863
Clew) N ° “C A= 3.020

MZ-1) = AZ 4+ ¢ + 1

Al Ag
Add Z-1 electron +Z-T)m Mue("Z = 1) > Mmuuc("Z) + me Nuclear masses
masses e{ M(AZ-1) > M(A2) Atomic masses
APZ -1 > A2 Mass excesses
A=M-4

stg(e+v)23Na ‘ positron-decay: p—n+e’+v, ‘

AZ4+1) 242 + e + v
m,,;h-("lz +1) > m,,uv("tZI + Mg
Add Z+1 electron masses M(AZ+1) > .‘\!(,"’Z) + 2 m :I' +HZ+1)me
AAZ +1) > A(%Z) + 2me
This is a little tricky since one electron mass
has to be paid to create the positron, but an-
other also must be paid for the electron that

disappears when a neutral atom (Z+1) turns #Na A= -9.53
into Z. That is, mpuc(4Z + 1) = M(AZ + BMg A= —5.47
1) = (Z + 1)me but myye(42) = M(A2) -

Zme



"Be (e”v)'Li
Be A= 15.768
Li A=14.907

Add Z electrons
Also possible at high T
e +n—>p+v,
positron capture

At high density even “stable”
nuclei capture electrons

- CNAPTER 2 NUCLEAK JHYVSCS

electron capture: p+e —n+v,

‘4(Z+ 1) + e — AZ ixexx+ v
me + '"mx-‘.AZ*l) > ’"ulu-(AZ)

M(AZ +1) > M(12) } *Zme

A1Z +1) > A(MZ)

These decays may procesd to excited states
of the daughter nucleus in which case one or
more -rays will be emitted. This is the ba-
sis for y-ray line astronomy.

An example of weak instability

ZNAMY) 0y oo
Bce 7 sc 312
BN 7_6775.315 oN 5345
13 5 8 IUJJB 130 23.114

The “Q-value”, or energy carried away by
the products, is just the difference in the
mass excesses, adjusted in the case of positron-

Example: p(p,e*v)?H

Mass excess 2 H =2 x 7.289 MeV

= 14.578 MeV

Mass excess H = 13.136 MeV. Thisis a
smaller number so the diproton is unstable to
weak decay. The Q value is given by

14.578 -13.136
- 2m_c?

1.442 MeV
= 0.420 MeV

but the electron and positron annihilate and
so we get the 2m_c? back and the reaction
yields 1.442 MeV

But the neutrino carries away a variable amount
of energy that averages to 0.262 MeV so really
only deposit 1.18 MeV of energy locally

o N @ 9N

o NN ® Z

-
T

The energy released in the decay

22 NUTLEAR STAMUITY w

Foop 92
emission by 2m .

= A ‘Z:» - A(AZ-1) ¢ — decay
Qacy = APZ+1) - A(*Z) - 2m, et — decay
= A("Z +1) - Al"‘Z} ¢ — capture

For example:
BN(ety)BC  Qgs =1.20 MeV
72m‘,cZ
where 1.20 = 5.345 - 3.125. Note in the same
example, that for electron capture the Q- 2,100 Mev
value would be Qe = 2.22 MeV, ie., 2mec?
larger. Also, 16.562 - 3.125 = 13.437, and

Bpe~v)¥C Qg = 13.437 MeV

Frequently nuclei are unstable to both electron-capture
and positron emission.

e P18 Ft

- & ~ 284 - L. SS— )
< ..‘.;.,t{:‘o .&E_nhww—,__ s
o 1}‘3"‘?2 P ) 19,35 48

b )

Decays may proceed though excited states A2 Kev




In terms of binding energy
Q,=BE("Z+1)-BE("Z)+0.782MeV
Q,. =BE("Z-1)-BE("Z)-1.804 MeV
Q,.=BE(*Z-1)-BE(*Z)-0.782 MeV

Another example, pick out the stable iso-

lopes:
Nucleus A
) -27.54
WAy -35.04
WK -33.54 (less negative) mass excesses
00y -34.85 are unstable.
g -20.53

0C] and YSc are obviously unstable. 40K
can decay either to *Ar (10.7%) or to *’Ca
(89.3%), but both **Ar and *’Ca are stable,

—472

stab stab )

—[%J(AZ 4AZ + 472 - N>+ 4AZ
4
z_(% (Z Zsztab) [24](2 Zsztab AZ+AZstab)

+222,,,-222,,)

stab stab stab

= —[—3](22 277, +7?
4a
- (74)(22 - 2Zzstab + Zsztab - 2Z:tab - AZ + Azstab + 2ZZstab)
2
= K(Z - Zstab) [A1/3 ](2zzstab Zzsztab)

stab stab

—[4: j( 272, -AZ+AZ,, +27Z,,)=K(Z-Z,,) +F

The ones with the bigger

2 NUCLEAR STAIMLITY n

How many stable isotopes are there for
each A? Recall the mass formula

7Z?
BE(1Z) = a)A—apA*® — ag 7
A - 27)
—ﬂl(—‘—iﬁ((‘l

We previously solved for Z.,1. such that
the partial of BE with respect to Z at con-
stant A was zero
2/
Zq:x.‘ylv ge %

azA“? + day
A little algebra (omitted here) shows that if
A= constant and § = 0 (i.c., A is odd), then
the differences in binding energy for two nu-
clei, one having arbitrary Z and the other
having Zg.p,. Will be parabolic in Z

ABE(odd A) = const (Z — Zetabie)”

CONSE = = v = e

See the figure on the next page. This means

[

(434J (-222,-AZ+AZ,, +222,,)

j ZZZ -272

stab stab )

stab stab
A

2Zstab[A133 +_J Z Zstab)

- (4a )(Zstab_z)
(o s 22 ()22
aA2/3+4a
= % (asA2/3+4a4)(zslab_Z)_ (4a4)(z

n

stab

eglecting shell
corrections

for constant A

_z)
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that for all A = odd, there is one and only
one stable isotope, e.g., 13C, N, 170, 19F,
ZINe, PNa, 7TAl etc. There are some near
calls - 113Cd decays to *3In with a half life
of 9 x 1019 y; 119 decays to M198n with a
half life of 4 x 10M y: and 12Te decays to
123} with a half life of 1 x 10 y. These
special cases are because of shell closures.
e.g..at Z = 50 for In and Sn.

Things are more complicated for even A
because of the pairing correction and the two
different ways of making even A (even ZN:

odd Z.N).

ABE(even A) = const (Z — Z\,,,l,)’)
o ’S (J(ll!z
~ & evenZ

As a result one gets two curves, one for

the odd-Z, even-A isotopes, and one for the
even-Z, even-A isotopes. Depending on the

placement of points on these curves one can
have 1, 2, or even 3 stable isotopes at each

Odd A. A=135
Single parabola

even-odd and odd-even

\ >

52 54 T6
Te I Xe GCs Ba La

Even A:
two parabolas
one for 0-0 & one for e-e

lowest 0-0 nucleus often has
two decay modes

most e-€ nuclei have two
stable isotopes

there are nearly no stable 0-o0
nuclei in nature because these
can usually decay to an e-¢
nucleus

Exceptions 2H, °Li, 1°B, 14N

58
Ce

Only '**Ba
is stable.

Pr

Even A. A=102

Two parabolas separated by 29,
odd-odd and even-even

\'\\odd}odd ;)

even-even

42
Mo

Tc

44 46 48
Ru Rh Pd Ag Cd

Stable '92Ru and 192Pd




“ ”

an “even-even nucleus must decay to
“ ” .

an “odd-odd” nucleus and vice versa.

mass 64

To summarize:
odd A

oddZ —odd N

even Z —even N

(achaatly "2r way seca
to Yenb with 3 yery
long hatk- Lbe ; Mass

6~ Xe, Ba, Ce wught
be 3 better exavyle)

There exists one and only one stable isotope

Very rarely stable. Exceptions 2H, °Li, 1°B, '“N.
Large surface to volume ratio. Our liquid drop
model is not really applicable.

Frequently only one stable isotope (below
sulfur). At higher A, frequently 2, and
occasionally, 3.

22 NUCLEAR STAMLTY n

A. For example 2C, 1N and 1°0; but also
A0Ar, ©Cq, MCr, HFe, ¥Ni %Zn; and even
36xe, 136y, 1%6Ce, Because the pairing
energy gets smaller as one goes to large A,
the two parabolas lie closer and it is easier
to have multiplets. For light elements below
sulfur, 1 isotope is typical for even A. Above
about calcium, two isotopes are typical, but
there are exceptions, especially in the vicin-
ity of closed shells. Nuclei with both odd Z
and odd N are very rarely bound, but there
are notable exceptions, 2H, %Li, 198, 1N,
but these are so light that our liquid drop
model is quite inadequate.

The Shell
Model



Shortcomings of the Liquid Drop Model

® Simple model does not apply for A <20
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Fig. 1.11 Difference between experimental ground-state atomic mass
excess (Audi et al. 2003) and the mass excess predicted by the spher-
ical macroscopic part of the finite-range droplet (FRDM) mass formula
(Moller et al. 1995) versus neutron number

Shell Model — Mayer and Jensen 1963 Nobel Prize

Our earlier discussions treated the nucleus as sets of
identical nucleons and protons comprising two degenerate
Fermi gases. That is OK so far as it goes, but now we shall
consider the fact that the nucleons have spin and angular
momentum and that, in analogy to electrons in an atom, are
in ordered discrete energy levels characterized by conserved
quantized variables — energy, angular momentum and spin.

Clayton 311 - 319
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A highly idealized nuclear potential
looks something like this “infinite
square well”.

(e o]
1
1
1

-R ===
As is common in such problems
one applies boundary conditions to
Schroedinger’ s equation.

V==V . r<R
= oo r>R
Y(R)=10 V  =50-60MeV

nuc

'Vnuc

(In the case you have probably seen before of electronic energy levels in
a hydrogen atom, one would follow the same procedure, but the potential would
be the usual [attractive] 1/r potential.)



Schroedinger's Equation:

2
_ V¥ +(V-E)¥ =0
2M
Spherical symmetry:
\}In,l,m(r’e’(o): ﬂ,/(r) Y]m (97¢)
i ; Energy
Radial tion: Nuclear .
adia eq;llzl IOI; s, e - potfnti 1 e1§/;enstate
—| ==t +|———+V =E
M { ar2 ” al’J ](n,l(r) |: 2Mr2 nuc(r)]-fn,l(r) ](n,l(r)
f
Rotational
energy Clayton 4-102
Solve for E.
Substitute:
2M(E-V .
p - 2 - r Vnuc 18 < O
h
To obtain:

2 9°S
op’

+2pg—{)+(p2—l(1+l))f:0

T
f_\/; J1+1/2(p)

Spherical Bessel Functions

P

Solution is:

Abramowitz and Stegun 10.1.1

http://people.math.sfu.ca/~cbm/aands/

Classically, centrifugal force goes like
_mv:_mAVR? 12
F. = - 3 3
R mR mR
One can associate a centrifugal potential with this,
-2
 2mR?

JF.aR

Taking the usual QM eigenvaluens for the operator L*
one has
—l(1+1) W2
2mR’

The solutions to the infinite square well potential
are then the zeros of spherical Bessel functions (Landau and
Lifshitz, Quantum Mechanics, Chapter 33, problem 2)

B’ ) A% more negative
E, ==Vl t S| T (n + _j - f(f + 1) means more
2MR 2 bound

We follow the custom of labeling each state by a principal quantum
number, n, and an angular momentum quantum number, ¢, e.g.
3d (n=3,(=2) ¢=0,1,2,3,4,5,etc=s,p,d, f, g, hetc

¢ States of higher n are less bound as are states of larger ¢
{ can be greater than n

® Each state is 2 (2¢ +1) degenerate. The 2 out front is for the
spin and the 2 ¢ + 1 are the various z projections of ¢

® E.g., a 3d state can contain 2 (2(2) +1) = 10 neutrons
or protons



This gives an energy ordering

ﬂz(n+§) —0(0+1))

s> 1p°® 14" 257 1 etc.

2
) or

25
P 2 :

4n” -6 4x T

4
9.87 20.20

39.48

This simple progression would predict shell closures
atZ=N=2,8, 18, 20,34 etc,i.e, ‘He, "°0O, *Ar, “°Ca, etc
Agood beginning but increasingly in error at high Z,N

So far we have considered the angular momentum of the

nucleons but have ignored the fact that they are Fermions

and have spin

Improving the Nuclear Potential Well

The real potential should be of finite depth and should
probably resemble the nuclear density - flat in the middle with
rounded edges that fall off sharply due to the short range

of the nuclear force.

R = Nuclear Radius
d = width of the edge
R>>d

Vo

for neutrons

»r

Saxon-Woods

- \/Z
Vir)= -

1+exp (5(7/—?]

Energy —»

Infinite Square Well Solutions

As

Energy —>

2p

2

Infinite square
well

cumulative
occupation

168 desired
magic
numbers

166

156

1, 138

- 132

106
.92
90
68

58
40

34

126

dotted line is to
distinguish 3s, 2d,
82 and 1h.

50

28
20

states of higher |
shifted more to
higher energy.

Magic
numbers

With Saxon-Woods

potential



Better, the gap at 20 is now closer to correct.

But this still is not very accurate above Z = 20 because:

® Spin is very important to the nuclear force

® The Coulomb force becomes important for protons
but not for neutrons.
Introduce spin-orbit and spin-spin interactions
15 and §e§
Define a new quantum number
j=148
Get spliting of levels into pairs
Ip—=1pys 1Ipsp
2f = 1f5,, 25,
etc
Label states by nl;

infinite fine structure splitting A
square e T e i
3 "
Wﬁll_,_ ) ——— 'g"
L — P —
- ,____{;v.‘_:-u;_
-2‘__ T ——— V' -
oL S —
o —
\ : closed shells
by = (140 = (1 28] = 126
» g I i e 423
W s a3
2L 183
- U — ) — AT
AT W —
- —
NE— e R R
B . @~ Protons:
4 u' § —n 14
— 2 — By e (6] (64
e 1§ g e (10 For neutrons
- — see Clayton p. 315
e ——— PO = ® The closed shells are the
- | — ) = 40 .
o= e Ve (6= 138 same but the ordering of
e (4] o
2 * states differs from 1g;, on
O e 1 37y e () (28] — 28 .
1a n=ia up. For neutrons 2ds, is
" B e Wiy e M) (20— Es more tightly bound. The
o e L e
i S AT pe—— 2 35y, and 2ds, are also

reversed.

SIS T p—
- —— | o S— ()=} 2

This interaction is quite different from the fine

structure splitting in atoms. It is much larger and lowers
the state of larger j (parallel | and s) compared to one
with smaller j. See Clayton p. 311ff). The interaction has
to do with the spin dependence of the nuclear force, not
electromagnetism.

Empirically V=-al-s
a =13 A? MeV

o 1
AE=——] ]=(Z + —) These can be large
2 2 compared even to the
o 1 spacing between the
+ 5(1 + 1) j= (Z - 5) principal levels.

The state with higher j is more tightly bound; the splitting is
bigger as [ gets larger.

For neutrons the level scheme is the same as for protons

up to N = 50. Above that the Coulomb repulsion of the
protons has an effect and favors orbits (for protons) with
higher angular momentum. Thus for example the 51st neutron
is in the d level of j = 5/2 while for protons it is in the g level of
j=7/2. The effect is never enough to change the overall

shell closures and magic numbers.

Maria Goeppert Mayer — Nobel - 1963



The correct energy ordering then becomes:

For neutrons:

18’32 | 1pg/2 1p12/2 | 1d56/2 2812/2 1d:/2

1, | 2ps, 1, 2p2,19.) | etc.

712 3/2 75/2 9/2

where | denotes a large energy gap — hence “magic number

For protons the ordering is the same up to 1gg,, but differs
at the next level, 2ds;, for neutrons, 1g;, for protons

Each state can hold (2j+1) nucleons.

Some implications:

A. Ground states of nuclei

Each quantum mechanical state of a nucleus can be specified
by an energy, a total spin, and a parity.

The spin and parity of the ground state is given by the
spin and parity (-1)! of the “valence” nucleons, that is the
last unpaired nucleons in the least bound shell.
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eg, 12C first excited state
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Adding 3/2” and 1/2” gives 1" or 2"
The first excited state of '>C at 4.439 MeV is 2*

but it is not always, or even often that simple.

Multiple excitations, two kinds of particles, adding
holes and valence particles, etc. The whole shell
model is just an approximation.
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spin and excited states have either all integer or half-integer
parity spins according to the ground state.

Nuclear reactions:
As will be discussed more next time, the excited states or ground state
of a nucleus can serve as a “resonance” for a reaction. The more
the product state “looks like” the sum of the reactants, the more
likely it is to occur.

Reactions must conserve energy of course, but they must also
conserve spin and parity.

J is the vector sum of the spins of the reactants.
7t is the parity of the state or particle

For example, the spin and parity of the ground state of 2C is 0*.
The spin and parity of the a-particle is also 0*. The reaction
2C(a,y)'80 can thus only make 0* states in 80 — if the reactants
have no angular momentum. However, there is a quantized angular
momentum for the reactants characterized by a quantum number 1.
The parity of the interaction is (-1) . So by “I-waves 0, 1, 2, 3 etc
states of 0%, 1-, 2*, 3-, etc in 18O could serve as resonances.
1*would be invisible though.
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Could the resonant reaction still proceed? Yes but for a different

value of /.
Ji(12C) =0+ : ——
fomem e 2.365 MeV Jr (p) =12+ J (target) i— J(prOJectllez + [ (projectile)= )
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1y esonance and we want to couple 1/27 (target) to 1/2~ (product). So £=1 works since
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and the partity is + for the target state and - for /=1, so /=1
But what if the exited state had some other spin and parity

or | was not equal to 07 would make states in "°N with spin and parity, 1/27, and 3/2".

One could make a 3/2" state with an /=2 interaction and so on.

But an £=0 interaction is much more likely (if possible). Cross sections
decline rapidly with increasing £




