
Lecture 7

Evolution of Massive
Stars on the Main Sequence

and During Helium Burning -
Basics 



Generalities:

Because of the general tendency of the interior temperature of 
main sequence stars to increase with mass*, stars of over two 
solar mass are chiefly powered by the CNO cycle(s) rather than 
the pp cycle(s). The high temperature sensitivity of the CNO
cycle (n = 17 instead of 4 for pp-cycle) makes the energy 
generation very centrally concentrated. This, plus the increasing 
fraction of pressure due to radiation, makes their cores 
convective. Because of the greater temperature, the opacity in 
their interiors is dominantly  due to electron scattering.

Despite their convective cores, the  overall main sequence 
structure can be crudely represented as an n = 3 polytrope. This 
is especially true of the outer radiative part of the star that 
typically includes the majority of the mass.

Massive Stars

* To provide a luminosity that increases as M3
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15 M⊙  half way 

through hydrogen
burning

B star 10,000 – 30,000 K



15 Solar mass
Convective history



  

15 M⊙  H-burning

              X = 0.50
  

blue

P =const × ρ4/3

Edge of 
convective

core
4.5 solar
masses

  

d lnρ

d ln P
=

1

γ

γ ≈ 4 / 3  for standard model

       (with β  = const) in radiative 

       regions



The convective core (30% of the mass) resembles
more an n=1.5 polytrope as expected for constant 
entropy for an ideal gas  with P proportional to  ρ5/3

(see appendix). Overall though γ = 4/3 is not bad

  

red

P =const × ρ5/3

  

15 M⊙  H-burning

              X = 0.50

  

P ∝ ργ

γ = n +1
n

     n = polytropic index

Constant entropy and ideal gas 

implies 
T 3/2

ρ
 is a constant hence

P ∝ρ5/3



If µ and β  were constant throughout the star, this would imply that 
the star was an n=3 polytrope
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See also Clayton eq. 6-7
β will be constant if
κ L(r) /M(r) is  everywhere 
constant in radiative equilibrium.

If µ and β are constants throughout
the star this is an n = 3 polytrope



Near the surface
the density declines
precipitously making
radiation pressure
more important.

1− β =  fraction of the pressure 

            from radiation 

inner ~4.5 Msun is 
convective

β is nearly constant outside the convective core

|



inner ~8 Msun
convective



Consider a star in which radiation pressure is important
(though not necessarily dominant) and energy transport
is by radiative diffusion 

dPrad
dr

= d
dr

1
3
aT 4⎛

⎝⎜
⎞
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= 4

3
aT 3 dT

dr

But for radiative diffusion, 
dT
dr

= 3κρ
16πacT 3

L(r )
r 2   so

             
dPrad
dr

= − κρ
4πc

L(r )
r 2

but hydrostatic equilibrium requires 
dP
dr

= −Gmρ
r 2

Divide the 2 eqns
dPrad
dP

= κL(r )
4πGmc

= L(r )
LEdd

      where LEd = 4πGMc
κ

Eddington’s standard model (n=3)



Since Prad = P −Pgas = (1− β) P    and

dPrad
dP

= (1− β)= κL(r )
4πGmc

= L(r )
LEdd

If, and it is a big IF, β   (or 1-β) were a constant throughout 
the star, then one could write everywhere, including the surface

                      L(r) = 1− β( )  LEd  
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For n = 3 (β= constant), ρc  drops out and this becomes
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Eddington’s quartic 
equation

  

lim
β→1

M →0

lim
β→0

M →∞

 
β =

Pgas

Ptotal

2.01824

(Clayton 155- 165)

  
µ= (Zi +1) Xi / Ai∑⎡⎣ ⎤⎦

−1

EDDINGTON’S  QUARTIC EQUATION



from Clayton p. 163

µ= (1+Zi ) Yi∑⎡⎣ ⎤⎦
−1

= 0.73 for 50% H, 50% He

                                      0.64 for 75% H, 25% He

For 20 M⊙  β ≈0.85 µ2M ≈11
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β 4  and since

L(r) =   (1 - β ) LEdd = 1− β( ) 4πGMc
κ

For low M, 1− β( )∝M2, and L ∝M3

For high M, β ≪1 and  L→ LEd ∝M 

This was obtained with no mention of nuclear reactions.
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For M not too far from M β is close to 1 and L ∝M3.

 
At higher masses however the mass dependence of β
 becomes important.  Eventually β 4 ∝ M −2 so that L∝M. 
In fact,  the luminosity of very massive stars approaches

the Eddington limit as β → 0  ( L(r) = 1− β( )LEdd )
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For n = 3 one can also derive useful equations for the central
temperature based upon the original polytropic equation for 
mass

M = −4πα 3ρc ξ1
2 dθ
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⎞
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= 2.01824 (4πα 3ρc )
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and Pc =
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β
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ρcNAkTc

µβ
    and 
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=
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For the n=3 polytrope

 
Tc = 4.6 × 106  K µβ M

M
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ρc
1/3 (in general for n = 3)

For massive stars on the main sequence and half way through
hydrogen burning, µ ≈   0.84 and, unless the star is very massive,
β ≈  0.8 - 0.9. Better values are given in Fig 2-19 of Clayton
replicated on the next page.

The density is not predicted from first principles since the actual
radius depends upon nuclear burning, but detailed main 

sequence models (following page) give  ρc ≈ 10
10 M⊙

M
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  K           (main sequence only)

β~ 0.8 – 0.9



9              3.27           9.16             2.8             .02  
12             3.45           6.84             7.0             .04
15             3.58           5.58              13             .06         
20             3.74           4.40              29             .10
25             3.85           3.73              50             .14
40             4.07           2.72             140            .24
60(57)      4.24           2.17              290            .35
85(78)      4.35           1.85              510            .44
120(99)    4.45           1.61              810            .56

M             Tc/107          r
C L/1037      L/LEd

All evaluated in 
actual models at
a core H mass 
fraction of 0.30
for stars of solar
metallicity (but
outer layers still 
unburned).

 

ρc decreases with mass as a general consequence of the fact that 
Tc

3

ρc

∝ M 2β 3µ3 and H burning happens at a relatively constant 

temperature. Until about 40 M,  the density decreases roughly

as M-1. After that it decreases more slowly. Recall β ∝  M-1/2  for
very large masses

L ∝ M
2.5

  L ~ (1− β) LEd



Complications

• Beta not really constant, star not really an n=3 polytrope
to begin with

• Star evolves and develops variations in β and µ from center
to surface

• L varies almost a factor of two from beginning to end
of main sequence

• Opacity not constant and not all due to electron scattering.

• L good to about a factor of two for conditions given 
(i.e., current µ, current M). Temperature to better 
than  10%.



Competition between the p-p
chain and the CNO Cycle 

The temperature dependence of the CNO cycle is given by the sensitivity
of the proton capture rate of 14N. See previous lectures



The slowest reaction is 14N(p,γ)15O. For temperatures near 2.5 x 107 K.

εnuc∝Tn n = τ -2
3

τ =4.248
7212 14 ⋅1

14 + 1
0.025

⎛

⎝

⎜
⎜
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⎟
⎟
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1/3

=51.9

n=17  (less at higher T)
(More on nucleosynthesis later)

The Primary CNO Cycle

In a low mass star



CNO tri-cycle

3 4 5 6 7 8 9
neutron number

C(6)

N(7)
O(8)

F(9)
Ne(10)

CN cycle (99.9%)
O Extension 1 (0.1%)

O Extension 2
O Extension 3

All initial abundances within a cycle serve as catalysts and accumulate at largest t,
i.e., where the (p,γ) reaction rate is smallest



The extra loops are mainly of interest for nucleosynthesis and for
bringing 16O into the cycle



In general, the rates for these reactions proceed through known
resonances whose properties are all reasonably well known.

There was a major revision of the rate for 14N(p,γ )15O in 
2001 by Bertone et al., Phys. Rev. Lettr., 87, 152501.
The new rate was about half as large as the old one, 
so the main sequence lifetime of massive stars is longer
(but definitely not linear in the reciprocal rate). Mainly 
affected globular cluster ages (0.7 to 1 Gy increase in 
lifetime due to the importance of the CNO cycle at the 
end of the MS life and during thick H shell burning).



Equation of state

Well defined if tedious to calculate up to the point 
of iron core collapse.

   

Ions - ideal gas - P = 
ρ
µ

NA k T

Radiation   P =   
1
3

aT4

Electrons - the hard part - can have arbitrary relativity and degeneracy
                                         (solve Fermi integrals or use fits or tables). 
                                         At high T must include electron-positron pairs.

Beyond 1011g cm-3  - neutrino trapping, nuclear force, nuclear excited
                                   states, complex composition, etc.



Opacity

In the interior on the main sequence and within the helium
core for later burning stages, electron scattering dominates.

In its simplest form:

  

κ
e
=

n
e
σ

Th

ρ
=
ρN

A
Y

e
σ

Th

ρ
= Y

e
(N

A
σ

Th
)

σ
Th
=

8π
3

e
2

m
e
c

2

⎛

⎝
⎜

⎞

⎠
⎟

2

κ
e
=0.40 Y
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Recall that for 75% H, 25% He, Y
e
=0.875,  so κ

e
=0.35

For He and heavier elements κ
e
 ≈  0.20.
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There are correction terms that must be applied to κes especially at 
high temperature and density

1) The electron-scattering cross section and Thomson cross section 
differ at high energy. The actual cross section is smaller.

2) Degeneracy – at high density the phase space for the scattered electron 
is less. This decreases the scattering cross section.  Opacities small in
white dwarfs and evolved stellar cores

3) Incomplete ionization – especially as the star explodes as a supernova.
Use the Saha equation.

4) Electron positron pairs may increase κ at high temperature.



Effects 1) and 2) are discussed by 

Chin, ApJ, 142, 1481 (1965)
Flowers & Itoh, ApJ, 206, 218, (1976)
Buchler and Yueh, ApJ, 210, 440, (1976)
Itoh et al, ApJ, 382, 636 (1991) and references therein

Electron conduction is not very important in massive stars but is
important in white dwarfs and therefore the precursors to Type Ia
supernovae

Itoh et al, ApJ, 285, 758, (1984) and references therein



For radiative opacities other than κes, in particular κbf and κbb,

Iglesias and Rogers, ApJ, 464, 943 (1996)

Rogers, Swenson, and Iglesias, ApJ, 456, 902 (1996)



see Clayton p 186 for a definition of terms.
�f� means a continuum state is involved





During hydrogen 

    burning

Note centrally concentrated
nuclear energy generation.

convective



Convection

All stellar evolution calculations to date,  except for brief snapshots,
have been done in one-dimensional codes.

In these convection is universally represented using some variation
of mixing length theory.

Caveats and concerns:

• The treatment must be time dependent

• Convective overshoot and undershoot   (next lecture)

• Semiconvection (next lecture)

• Convection in parallel with other mixing processes,
especially rotation (next lecture)

• Convection in situations where evolutionary time scales are
not very much longer than the convective turnover time.



Kuhlen, Woosley, and Glatzmaier
exploried the physics of stellar convection
using 3D anelastic hydrodynamics.
See also Meakin and Arnett (2007)
Gilet et al (ApJ, 2013)

The model shown is a 15 solar mass star 
half way through hydrogen burning. For now
the models are not rotating. Mixing length 
theory is not a bad description of the 
overall behavior except at boundaries.



from Kippenhahn and Wiegert

Convective structure

Note growth of the 
convective core with M

10 40Sun



  

The (Swartzschild) adiabatic condition can be written 
in terms of the temperature as

            
dP
P

+
Γ2

1− Γ2

dT
T

= 0

This defines Γ2 (see Clayton p 118)

2For an ideal gas 5 / 3,   but if radiation is 

included the expression is more complicated

Γ =



Convective instability is favored by a large fraction of radiation
pressure, i.e., a small value of β (and of course by large L).

star 2

2

2 22

2 2

32 24 3 4 5
      (Clayton 2-129)

24 18 3 3 3

1 1
For =1

1
1 convection

0.4 0.25

                         

, 1- ;    for = 0,  1-

f                or 

dT T dP

dr P dr

β β
β β

β β

− −
Γ = < Γ <

− −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟Γ Γ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
> − ⇒⎜ ⎟⎜ ⎟ ⎜ ⎟Γ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎝ ⎠

2

1
 = 0.8  1- 0.294 = β

⎛ ⎞
⎜ ⎟Γ⎝ ⎠

So even a 20% decrease in β causes a substantial decrease in the
critical temperature gradient necessary for convection.  Since β 
decreases with increasing mass, convection becomes more extensive.

Also more massive stars are generating a lot more energy in a star
whose physical dimension is not much larger than the sun.



9              3.27           9.16             2.8               0.26 
12             3.45           6.84             7.0               0.30
15             3.58           5.58              13               0.34
20             3.74           4.40              29               0.39
25             3.85           3.73              50               0.43
40             4.07           2.72             140              0.53
60(57)      4.24           2.17              290             0.60
85(78)      4.35           1.85              510             0.66
120(99)    4.45           1.61              810             0.75

M             Tc/107          r
C L/1037              Q

conv core

All evaluated at
a core H mass 
fraction of 0.30
for stars of solar
metallicity.



The convective core shrinks during hydrogen burning 

During hydrogen burning the mean atomic weight is increasing from
near 1 to about 4. The ideal gas entropy is thus decreasing. 

Also convection is taking entropy out of the central regions and
depositing it farther out in the star.

As the central entropy decreases compared with the outer layers of the star
it becomes increasingly difficult to convect through most of the star�s mass.



For an ideal gas plus radiation:
(see Clayton p. 123)

µ = 1
2

 for pure hydrogen; 4
3

  for pure helium

also T
3/2

ρ
 decreases with time



change in entropy during He
burning is small

Red giant formation



blue = energy generation
purple = energy loss
green = convection

H-burn
He-burn

Surface convection zone



The convective core grows during helium burning.

During helium burning, the convective core grows, largely because the 
mass of the helium core itself grows. This has two effects:

a) As the mass of the core grows so does its luminosity, while the radius
of the convective core stays nearly the same (density goes up). For
a 15 solar mass star:

10 37 -1 38 -1

 He mass fraction       Radius conv core     Lum conv core             Lum star

                1                         0.87 x 10  cm       3.2 x 10 erg s 2.16 x 10 erg s

              

     

  0. 10 37 -1 38 -15                      1.04 x 10  cm 6.8 x 10 erg s    2.44 x 10 erg s

The rest of the luminosity is coming from the H shell..

3.0 M

3.6 M







b) As the mass of the helium core rises its β decreases.

T 3

ρ
∼ M 2 β 3 1/ 3aT 4

(ρ / µ)NA kT
∼
1− β
β
∼ M 2β 3

The entropy during helium burning also continues to decrease,
and this would have a tendency to diminish convection, but the 
β and L effects dominate and the helium burning convective core
grows until near the end when it shrinks due both to the decreasing 
central energy generation and central entropy.

This decrease in β favors convection.

Lecture 1



This growth of the helium core can have several 
interesting consequences:

•Addition of helium to the helium convection 
zone at late time increases the O/C ratio made
by helium burning

• If a star loses its envelope to a companion the 
helium core will not grow but will shrink due to
mass loss. Presupernova helium cores may be 
smaller in mass exchanging binaries

• In very massive stars with low metallicity the 
helium convective core can grow so much that 
it encroaches on the hydrogen shell with major
consequences for stellar structure and 
nucleosynthesis. 



Metallicity affects the evolution in four distinct ways:

• Mass loss
• Energy generation
• Opacity
• Initial H/He abundance

κ  decreases if Z decreases   L ∼κ o
−16/13 εo

1/13 ↑

                                            Tc ∼ κ oεo( )−2/15
↑

For example, 1 M⊙ at half hydrogen depletion

 Z = 0.02 Z = 0.001 
logTc 7.202 7.238

L                 L⊙ 2.0L⊙

lower main sequence: homology – see appendix

Because of the higher luminosity, the lifetime of the lower
metallicity star is shorter (it burns about the same fraction of its mass).
But this is the sun, it’s opacity is not due to electron scattering and 
so depends on Z

METALLICITY



Upper main sequence:

The luminosities and lifetimes are very nearly the same because the
opacity is, to first order, independent of the metallicity. The central 
temperature is a little higher at low metallicity because of the decreased 
abundance of 14N to catalyze the CNO cycle.

For example in a 20 solar mass star at XH = 0.3

0.02 0.001

log 7.573 7.647

log / 4.867 4.872

0.390 0.373

/ 19.60 19.92 (mass loss)

c

cc

Z Z

T

L L

Q

M M

= =









Zero and low metallicity stars may end their lives as 
compact blue giants – depending upon semiconvection
and rotationally induced mixing

For example,  Z = 0, presupernova, full semiconvection

a) 20 solar masses
R = 7.8 x 1011 cm    Teff = 41,000 K

b) 25 solar masses
R=1.07 x 1012cm     Teff = 35,000 K

Z = 0.0001 ZO

a) 25 solar masses, little semiconvection
R = 2.9 x 1012 cm    Teff = 20,000 K

b) 25 solar masses, full semiconvection
R = 5.2 x 1013 cm    Teff= 4800 K

Solar metallicity R = 9.7 x 1013 cm    Teff= 3500 K



As radiation pressure becomes an increasingly dominant part of
the pressure, β decreases in massive stars.  See quartic equation.

This implies that the luminosity approaches the Eddington limit.
But even in a 100 solar mass main sequence star,  β is still 0.55.

Recall for n = 3

Quite massive stars, M ~ 100 Mo

  
L(r)= (1− β ) 4πGMc

κ
.= (1− β ) LEd

So L is about ½ Eddington



Except for a thin region near their surfaces, such stars 
will be entirely convective and will have a total binding energy
that approaches zero as β approaches zero. But the calculation applies
to those surface layers which must stay bound.

Completely convective stars with a luminosity proportional
to mass have a constant lifetime, which is in fact the shortest
lifetime a (main sequence) star can have. 

LEdd =
4πGMc

κ
=1.47 ×1038 erg s-1 M

M⊙

⎛

⎝⎜
⎞

⎠⎟
0.34
κ

⎛
⎝⎜

⎞
⎠⎟

qnuc =4.8×10
18 erg/g

τMS =qnucM / LEdd =2.1 million years

(exception supermassive stars over 105 solar masses – post-Newtonian
gravity renders unstable on the main sequence)



Similarly there is a lower bound for helium
burning. The argument is the same except one
uses the Q-value for helium burning to carbon and 
oxygen.

One gets 7.3 x 1017 erg g-1 from burning 100% He to 
50% each C and O.

Thus the minimum (Eddington) lifetime for helium 
burning is  about 300,000 years.



Limit

Limit



Since Γ ~ 4/3, very massive stars are loosely bound (total energy much
less than gravitational or internal energy) and are subject to 
large amplitude pulsations. These can be driven by either
opacity instabilities (the κ mechanism) or nuclear burning 
instabilities (the ε mechanism).  b is less than 0.5 for such
stars on the main sequence, but ideal gas entropy still dominates.

For solar metallicity it has long been recognized that such stars
(well over 100 solar masses) would pulse violently on the main
sequence and probably lose much of their mass before dying.

Ledoux, ApJ, 94, 537, (1941)
Schwarzschild & Harm, ApJ, 129, 637, (1959)
Appenzeller, A&A, 5, 355, (1970)
Appenzeller, A&A, 9, 216, (1970)
Talbot, ApJ, 163, 17, (1971)
Talbot, ApJ, 165, 121, (1971)
Papaloizou, MNRAS, 162, 143, (1973)
Papaloizou, MNRAS, 162, 169, (1973)



Upper mass limit: theoretical predictions

Ledoux (1941)
radial pulsation, e- opacity,
H

100 M�

Schwarzchild & Härm (1959)
radial pulsation, e- opacity,
H and He, evolution

65-95 M�

Stothers & Simon (1970) radial pulsation, e- and atomic 80-120 M�

Larson & Starrfield (1971) pressure in HII region 50-60 M�

Cox & Tabor (1976)
e- and atomic opacity
Los Alamos 80-100 M�

Klapp et al. (1987)
e- and atomic opacity
Los Alamos

440 M�

Stothers (1992)
e- and atomic opacity
Rogers-Iglesias

120-150 M�



Calculations suggested that strong non-linear pulsations 
would grow, steepening into shock in the outer layers and 
driving copious mass loss until the star became low
enough in mass that the instability would be relieved.

But what about at low metallicity?

Ezer and Cameron, Ap&SS, 14, 399 (1971) pointed out that Z = 0
stars would not burn by the pp-cycle but by a high temperature
CNO cycle using catalysts produced in the star itself,
Z ~ 10-9 to 10-7. High temperature suppresses T sensitivity

Maeder, A&A, 92, 101, (1980) suggested that low metallicity might 
raise Mupper to 200 solar masses.

Baraffe, Heger, and Woosley, ApJ, 550, 890, (2001) found that zero 
metallicity stars (Pop III) are stable on the main sequence up to at least
several hundred solar masses.  This only concerns the main sequence
though. Mass may be lost later as a giant, especially if nitrogen is
produced by dredge up of carbon from the helium burning core. 



• NGC 3603-A1 – 120+26-17 (Crower et al 2010)

• WR20a – 85+-5, 82 +- 5 (Bonanos et al 2005)

• R145 –116 +- 33  (Schnurr et al (2009))

Read F. Martins (2015) on the class website.

Binaries:

Based on luminosities and stellar models

R136 is in S-Doradus
in the LMC. Once thought
to have a mass of 1000
solar masses

WHAT IS SEEN?



General Relativistic Stars
Hoyle and Fowler (1963)

Feynman (1963)

Iben (1963)

Chandrasekhar (1964)

Fuller, Woosley and Weaver (1984)

The first order general relativistic correction to gravity

leads to its strengthening because all kinds of energy

contribute to gravity, not just rest mass. The Tolman –

Oppenheimer-Volkov (TOV) equation for hydrostatic

equilibrium is 

Chandrasekhar (1939) gives the local adiabatic index

for very high entropy (radiation dominated stars)

  
Γ1 = 4 / 3 + β

6
+O(β 2)

  

dP
dr

= −Gm
r 2 ρ 1+ P

ρc2

⎛
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dv
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=4πr 2 ∂P
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−
Grelmr

r 2

Grel = G 1+ P
ρc2

+
2Gmr

rc2
+ 4πr P

3
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2
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⎞
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Instability when (Chandrasekhar (1964)

Rcrit ≈
6.8
β

2GM
c2
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ρcrit =1.99×1018 0.5
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7/2

g cm−3

Unstable at H-ignition  - 3 x 105 MO

Unstable at He ignition - 4 x 104 MO



Fuller, Woosley, and Weaver (1984)



From a current calculation

3 x 104 M0 helium star  at helium burning (50% burned)

Central density 24.5 g cm-3

Central temperature  3.18 x 108 K
Luminosity 7.8 x 1042 erg s-1

Effective temperature   1.1 x 105 K
Radius = 8.6 x 1012

µ = 1.5
β = 0.016

Γ1 = 1.336 throughout most of the mass

Hovering on collapse

5 x 104 M0 helium star collapses at helium ignition



Appendix

Homology
and 

Entropy



Homology

  

Kramer's opacity law (bound-free)
κ = const if eleectron scattering

n ~ 18



Ideal gas (convective with negligible radiation entropy):

Radiation dominated gas or a gas with constant β:

P = const × ρ × T ∝ρ × ρ2/3  = ρ5/3 = ργ

       since T3/2

ρ
=  constant

           γ  = n+1
n

 ⇒   n = 3
2

P = 1
3
aT4 ∝ρ 4/3

       if  T3

ρ
∝ Prad
Pideal

 = 1− β
β

=constant

           γ  = n+1
n

 ⇒   n = 3

For a non-degenerate gas, the entropy is given by (Clayton 2-136)

For non relativistic, but 
possibly partly degenerate 
electrons, the electrons are 
given as a separate 
term see Clayton 2-145.

integrate the 1st

law of thermo-
dynamics

 
β =

Pgas

Ptot

=
Pgas

Pgas +Prad

  

For an ideal gas

        S0 = 3
2

ln
2πmk

h2

⎛
⎝⎜

⎞
⎠⎟
+ 5

2

( Reif - Statistical Physics - 7.3.6)

The electrons are included in µ and in S0 T dS = dU +P dV



(S/NAk) half  way through hydrogen burning
15 and 100 solar masses 

For normal massive stars, the ionic entropy always dominates on 
the main sequence, but for very massive stars Selec, Srad and Sionic
can become  comparable.

More massive stars have
larger entropies on the 
main sequence that are
more radiation - dominated



Not surprisingly then, it turns out that massive stars 
are typically hybrid polytropes with their convective 
cores having 3 > n > 1.5 and radiative envelopes with n 
approximately 3. 

Overall n = 3 is not bad.



Aside:
For an ideal, non-degenerate gas our (and Clayton's)
equations suggest that the electronic entropy is
proportional to Ye  (i.e., the number of electrons) and 
the ionic entropy to 1/A (the number of ions). For hydrogen
burning composition (75% H, 25% He) Ye = .875 and

1/A = 0.81 (Lecture 1)

This suggests that the entropy of the electrons and ions should
be about equal in the envelopes on the previous page. Our equation
for the entropy is too simple and contains only the T and rho dependent
terms for an ideal gas plus radiation. There are additive constants
that depend on the mass of the particle

  

For an ideal gas

        S0 = 3
2

ln
2πmk

h2

⎛
⎝⎜

⎞
⎠⎟
+ 5

2

( Reif - Statistical Physics - 7.3.6)

3
2

ln(1836) = 11.3

so in H envelope
Si ≈ Se + 10

Different equation for electrons when they are degenerate – Fermi integrals


