
The 12C(↵, �)16O reaction and its implications for stellar helium burning

R. J. deBoer,

⇤

J. Görres, and M. Wiescher

The Joint Institute for Nuclear Astrophysics
Department of Physics,
University of Notre Dame, Notre Dame,
Indiana 46556 USA

R.E. Azuma

†

Department of Physics,
University of Toronto,
Toronto, Ontario M5S 1A7,
Canada
The Joint Institute for Nuclear Astrophysics,
Department of Physics,
University of Notre Dame, Notre Dame,
Indiana 46556 USA

A. Best

‡

INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi,
Italy

C.R. Brune

Edwards Accelerator Laboratory,
Department of Physics and Astronomy,
Ohio University, Athens, Ohio 45701,
USA

C.E. Fields

§

The Joint Institute for Nuclear Astrophysics
Department of Physics and Astronomy,
Michigan State University,
East Lansing, MI 48824,
USA

S. Jones

Heidelberg Institute for Theoretical Studies,
Schloss-Wolfsbrunnenweg 35,
D-69118 Heidelberg,
Germany
NuGrid Collaboration,
http://nugridstars.org

M. Pignatari

E.A. Milne Centre for Astrophysics,
Department of Physics & Mathematics,
University of Hull, HU6 7RX,
United Kingdom
Konkoly Observatory,
Research Centre for Astronomy and Earth Sciences,
Hungarian Academy of Sciences,
Konkoly Thege Miklos ut 15-17,
H-1121 Budapest,
Hungary
NuGrid Collaboration,
http://nugridstars.org

D. Sayre

Lawrence Livermore National Laboratory,
Livermore, California 94550,

ar
X

iv
:1

70
9.

03
14

4v
1 

 [n
uc

l-e
x]

  1
0 

Se
p 

20
17



2

USA

K. Smith

Department of Physics & Astronomy,
University of Tennessee Knoxville, Knoxville,
Tennessee 37996 USA¶

F.X. Timmes

The Joint Institute for Nuclear Astrophysics
School of Earth and Space Exploration,
Arizona State University, Tempe, AZ,
USA

E. Uberseder

Cyclotron Institute,
Texas A&M University, College Station,
TX 77843 USA⇤⇤

(Dated: September 12, 2017)

The creation of carbon and oxygen in our universe is one of the forefront questions in
nuclear astrophysics. The determination of the abundance of these elements is key to
both our understanding of the formation of life on earth and to the life cycles of stars.
While nearly all models of di↵erent nucleosynthesis environments are a↵ected by the
production of carbon and oxygen, a key ingredient, the precise determination of the
reaction rate of 12C(↵, �)16O, has long remained elusive. This is owed to the reaction’s
inaccessibility, both experimentally and theoretically. Nuclear theory has struggled to
calculate this reaction rate because the cross section is produced through di↵erent un-
derlying nuclear mechanisms. Isospin selection rules suppress the E1 component of
the ground state cross section, creating a unique situation where the E1 and E2 con-
tributions are of nearly equal amplitudes. Experimentally there have also been great
challenges. Measurements have been pushed to the limits of state of the art techniques,
often developed for just these measurements. The data have been plagued by unchar-
acterized uncertainties, often the result of the novel measurement techniques, that have
made the di↵erent results challenging to reconcile. However, the situation has markedly
improved in recent years, and the desired level of uncertainty, ⇡10%, may be in sight.
In this review the current understanding of this critical reaction is summarized. The
emphasis is placed primarily on the experimental work and interpretation of the reaction
data, but discussions of the theory and astrophysics are also pursued. The main goal is
to summarize and clarify the current understanding of the reaction and then point the
way forward to an improved determination of the reaction rate.
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“There are three kinds of lies: lies, damned lies, and

statistics.”

-Mark Twain

“Consider the subtleness of the sea; how its most

dreaded creatures glide under water, unapparent for the

most part, and treacherously hidden beneath the loveliest

tints of azure.”

-Herman Melville, Moby Dick

I. INTRODUCTION

The baryonic matter that is a product of the Big
Bang takes the form of hydrogen, helium, and very small
amounts of lithium. This is the seed material that has
fueled the chemical evolution of our Universe. Through

the many generations of stars their life cycles have been
governed by myriads of microscopic interactions driven
by the short range strong and weak forces and the long
range electromagnetic force. Chemical reactions define
the molecular configurations of elements in our environ-
ment, while nuclear processes are responsible for the for-
mation of the chemical elements themselves. The history
and environments where the formation processes occur
dictate the elemental and isotopic abundance distribu-
tions that we observe today.
The nuclear reactions necessary for the formation of

the elements can only take place at conditions of high
density and temperature. These conditions occur only
in special settings in the universe, such as the center of
stars and during stellar explosions. Tens of thousands of
nuclear reactions can participate in a specific nucleosyn-
thesis scenario, depending on the various environmental
conditions. However, only a small fraction of these reac-
tions have a strong impact on the overall chemical evolu-
tion of the elements. These few reactions have far reach-
ing consequences for the chemistry and the subsequent
molecular evolution of baryonic matter. There is one
reaction of particular relevance, 12C(↵,�)16O, that influ-
ences the 12C/16O ratio in our universe. This reaction,
together with the 3↵-process, the fusion of three 4He nu-
clei into one 12C nucleus, defines the carbon and oxygen
abundance that is the fundamental basis for all organic
chemistry and for the evolution of biological life in our
universe. As Willy Fowler wrote in his 1983 Nobel Prize
lecture (Fowler, 1984), “The human body is 65% oxy-
gen by mass and 18% carbon with the remainder mostly
hydrogen. Oxygen (0.85%) and carbon (0.39%) are the
most abundant elements heavier than helium in the sun
and similar Main Sequence stars. It is little wonder that
the determination of the ratio 12C/16O, produced during
helium burning, is a problem of paramount importance
in nuclear astrophysics.” As a consequence, the reaction
has been dubbed “the holy grail of nuclear astrophysics”.
The significance of the 12C(↵, �)16O reaction for en-

ergy production and nucleosynthesis in stars is closely
tied to that of the 3↵ process. The simultaneous fusion
of three ↵ particles was discussed by Bethe (1939), but it
was not until preliminary measurements of the long life-
time of the 8Be were made that it was realized by Salpeter
(1952) that a much more e�cient two-step reaction was
possible. Finally it was Hoyle (1954) who deduced that
there must be an actual resonance in the 8Be(↵, �)12C re-
action, the famous Hoyle state in 12C, that enhances the
cross section even further (Salpeter, 2002). The experi-
mental work of Cook et al. (1957) rather quickly estab-
lished the rate of the 3↵ process since it depends mainly
on the strength of the Hoyle state (see Freer and Fynbo
(2014) for a recent review). Current estimates of the un-
certainty in the 3↵ rate are at about the 10% level over
the regions of typical astrophysical interest. However, at
lower temperatures (< 0.1 GK), the uncertainty is likely
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much larger, because other reaction mechanisms become
significant (see, e.g. (Suno et al., 2016) and references
therein).

Nature is not so kind to us with the 12C(↵, �)16O reac-
tion. Here the cross section enhancement is not the result
of a single narrow resonance or even several such reso-
nances, but stems from the very delicate (and seemingly
devious!) interferences between broad overlapping reso-
nances and nonresonant reaction components, properties
which are much more di�cult to determine accurately.
Originally only the E1 contribution to the cross section
was thought to dominate and the reaction rate and esti-
mates were based purely upon the properties of the 1�

subthreshold state in 16O. At that time, since no direct
measurements had been made, only very rough predic-
tions of the cross section, based on theory and indirect
measurements, were possible. For example, in the sem-
inal work of Burbidge et al. (1957) (B2FH), the ground
state � width of the 1� subthreshold level at E

x

= 7.12
MeV had been measured by Swann and Metzger (1956)
as �

�0 = 130+90
�80 meV but no experimental information

was available for the reduced ↵ width, which had to be
calculated based on rudimentary nuclear theory. The
significance of the comparable E2 contribution was not
realized for another 30 years (Redder et al., 1987).

This review will provide an overview of the astrophys-
ical significance of the 12C(↵, �)16O reaction, the partic-
ular role it plays in nuclear physics and a review of the
interpretation and analysis of the experimental nuclear
physics data that provide the basis for the presently used
nuclear reaction rate in astrophysical simulations. In this
work we seek to employ as comprehensive a study of the
12C(↵, �)16O reaction as possible by including other mea-
surements that provide important information on the 16O
compound nucleus for our interpretation of the reaction
mechanism. This is implemented using a state of the
art R-matrix analysis, whose theoretical basis and imple-
mentation is explored in detail. Based on this comple-
mentary information a reaction rate analysis is performed
that includes all available reaction and decay data asso-
ciated with the 16O compound nucleus. The goal is to
investigate the uncertainties associated with the low en-
ergy extrapolation of the existing laboratory data into
the stellar energy range. The uncertainties in the re-
action rate are determined by Monte Carlo simulation
techniques and a detailed investigation of the system-
atic uncertainties in both data and model. Finally, the
impact of these uncertainties will be investigated in the
framework of stellar model simulations.

II. HELIUM BURNING AND ITS ASTROPHYSICAL
SIGNIFICANCE

The 12C(↵,�)16O reaction plays a major role in key nu-
clear burning phases driving the evolution and the associ-

ated nucleosynthesis in low mass and massive stars. This
includes main-sequence hydrogen burning, where 12C and
16O formed by the 12C(↵,�)16O reaction in previous gen-
erations of stars can play a critical role. On the main-
sequence, hydrogen burning fuses four hydrogen nuclei
into helium releasing about 25 MeV of energy. This en-
ergy release generates the internal pressure conditions
for maintaining the stability of the stellar core against
gravitational contraction. For low mass stars with initial
masses M. 1.5 M

�

the fusion process is facilitated by the
pp-chains, a sequence of light ion capture reactions build-
ing upon the fusion of two protons into a deuteron by the
weak interaction. In more massive stars M & 1.5 M

�

, the
importance of the pp-chains is diminished and the fusion
process is dominated by a catalytic reaction sequence,
the CNO cycles that are characterized by four proton
capture reactions and two �+ decays on carbon and oxy-
gen forming a cycle by emitting an ↵ particle. The result
of CNO nucleosynthesis is the conversion of hydrogen to
4He and enrichment of 14N based on the depletion of the
initial 12C and 16O nuclei.
With the depletion of hydrogen in the stellar core, hy-

drogen burning continues only in a shell surrounding the
inert core. The hydrogen depleted core contracts gravi-
tationally, increasing the density and temperature of the
core matter. This contraction is halted with the ignition
of helium burning as a new energy source. Helium burn-
ing is triggered by the 3↵-process releasing 7.5 MeV in
fusion energy and producing 12C. This is a rather unique
process, setting stringent conditions for the ignition of he-
lium burning in stars. The 3↵-process is followed by the
subsequent ↵ capture reaction 12C(↵, �)16O, converting
the 12C into 16O. These two isotopes are the principal
products of helium burning. The ratio of these prod-
ucts a↵ects not only their own nucleosynthesis but the
future evolution of the star in its subsequent burning
phases. The ratio of 12C/16O is determined by the com-
petition between the 3↵ and 12C(↵,�)16O reaction rates
at a given temperature. The time evolution of the molar
abundances Y(12C) and Y(16O) can be calculated as a
function of the helium seed abundance Y(4He), the reac-
tion rates �reaction of the helium burning processes, and
the density ⇢ using the following equations:

dY (12C)

dt
=

1

3!
Y 3(4He) · ⇢2 · �(3↵)

� Y (4He) · Y (12C) · ⇢ · �12C(↵,�)16O

dY (16O)

dt
=Y (4He) · Y (12C) · ⇢ · �12C(↵,�)16O

� Y (4He) · Y (16O) · ⇢ · �16O(↵,�)20Ne,

(1)

where the stoichiometric factor of 1/3! accounts for in-
distinguishable ↵-particles.
Fig. 1 illustrates a typical evolution of Eq. (1) at con-

stant temperature and density. Putting helium on the
x-axis instead of time makes the evolution largely inde-
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FIG. 1 (Color online) Typical evolution of 12C and 16O mass
fractions as a function of the 4He mass fraction at constant
temperature and density. A mass fraction X

i

of isotope i is
related to the molar abundance Y

i

of Eq. 1 by X
i

=W
i

·Y
i

,
where W

i

the atomic weight. The oxygen mass fraction rises
above the carbon mass fraction only when the helium abun-
dance is relatively small.

pendent of the exact thermodynamic conditions. The
feeding of 12C, driven by the 3↵-process, occurs early
in the evolution when the abundance of carbon is low
and helium is high. Oxygen production occurs later by
↵ capture on the freshly produced 12C. This shows the
sensitivity of the 12C/16O ratio to the strengths of the
12C(↵,�)16O and 16O(↵, �)20Ne rates in addition to the
3↵-process that facilitates the feeding of these isotopes.
Both reactions are therefore critical for our understand-
ing of the emergence of 12C and the evolution of its abun-
dance.

In typical helium burning environments the reac-
tion rate �16O(↵,�)20Ne is considerably smaller than
�12C(↵,�)16O. Both the 3↵-process and the 12C(↵, �)16O
reaction burn with high e�ciency through pronounced
resonance mechanisms. In contrast, the 16O(↵, �)20Ne
reaction lacks any such resonance enhancement in the
stellar energy range making its rate comparatively much
lower (Costantini et al., 2010). This essentially prohibits
further helium burning beyond 16O and maintains the
12C/16O balance as we observe it today. This e↵ect of
a sensitive balance between these three reactions is fre-
quently discussed as an example for the anthropic prin-
ciple, a prerequisite for the evolution of biological life as
we know it in our universe (Carr and Rees, 1979). These
deliberations dominated the discussion of the importance
of the interplay between these three reactions in the early
second half of the 20th century (Kragh, 2010).

With the emergence of more sophisticated stellar mod-
eling and nucleosynthesis simulation techniques, a num-
ber of more intricate questions emerged that underlined

the importance of the 12C(↵, �)16O reaction. It plays a
crucial role for stellar evolution and the associated nu-
cleosynthesis during later stages. The aspects and conse-
quences of the 12C(↵, �)16O rate have been investigated
in detail by performing extensive modeling of the evolu-
tion and nucleosynthesis patterns in stars over a wide
range of stellar masses. These simulations have been
performed using tabulated reaction rates (Caughlan and
Fowler, 1988), (Angulo et al., 1999), or later (Buchmann
and Barnes, 2006) as reference, with variations based on
the predicted uncertainty ranges. There are pronounced
di↵erences with respect to the role of the reaction rate
for nucleosynthesis in low- and intermediate-mass stars,
M  8 M

�

, that develop into Asymptotic Giant Branch
(AGB) stars with subsequent mass loss, ending as white
dwarfs and massive stars, M � 8 M

�

, that develop to-
wards their final fate as core-collapse supernova. The
outcome of these studies is discussed in the following sec-
tions.

A. Helium Burning in Low- and Intermediate Mass Stars

When a single star on the main sequence exhausts the
supply of hydrogen in its core, the core contracts and
its temperature increases, while the outer layers of the
star expand and cool. The star becomes a red giant
(e.g., Iben, 1991; Karakas and Lattanzio, 2014; Stancli↵e
et al., 2009). The subsequent onset of helium burning
in the core, for stars with initial masses M & 0.5 M

�

,
causes the star to populate the horizontal branch in the
Hertzsprung-Russell diagram for more metal-poor stars
or the red clump for more metal-rich stars (Cannon, 1970;
Castellani et al., 1992; Faulkner and Cannon, 1973; Gi-
rardi, 1999; Seidel et al., 1987). After the star depletes
the supply of helium in its core, the carbon-oxygen (CO)
core contracts while the envelope once again expands
and cools along a path that is aligned with its previous
red-giant track. The star becomes an asymptotic giant
branch (AGB) star (e.g., Fishlock et al., 2014; Hansen
et al., 2004; Herwig, 2005a; Kippenhahn et al., 2012;
Salaris et al., 2014).
A variation of the 12C(↵, �)16O rate a↵ects the core

helium burning lifetime which in turn impacts the mass
of the resulting He-exhausted core at the onset of the
AGB phase. This mass is an important quantity that
a↵ects many of the star’s properties during the AGB
phase. Low-mass and intermediate-mass stars enter the
AGB phase with hydrogen and helium fusion continuing
in shells around a hot core composed primarily of car-
bon and oxygen and a trace amount of the neutron-rich
isotope 22Ne. The precise influence of the 12C(↵, �)16O
rate on the nucleosynthesis in AGB stars is challenging
to evaluate accurately in the framework of present mod-
els due to multiple uncertainties (e.g., mixing processes).
Yet, the reaction does play a key role for the nucleosyn-
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thesis during the AGB phase a↵ecting the ejected abun-
dances as well as the 12C/16O ratio in the white dwarf
remnant.

During the AGB phase helium ignites in the He-shell
under electron degenerate conditions, whose energy re-
lease triggers a sequence of convective thermal pulses,
often called He-shell flashes. Depending on mass and
composition, there may be a few to several hundred ther-
mal pulses. During a He-shell flash the 3↵-process is the
dominant source of energy and a producer of 12C. The
12C(↵, �)16O reaction creates 16O, whose mass fraction
increases with depth. However, the duration of a He-
shell flash is relatively short. Simulations suggest the
16O mass fraction in the intershell rises to '0.2, the 12C
mass fraction to 0.2�0.45, and the remaining material
is mainly 4He (Battino et al., 2016; Werner and Herwig,
2006).

The energy release from the thermal pulses also tem-
porarily reduces or extinguishes H-burning in the layers
beneath the stellar envelope, and causes convection to
pull material from the central regions of the star towards
its surface (e.g., Herwig, 2005b; Karakas and Lattanzio,
2014; Straniero et al., 2006). This dredged up material is
enriched in carbon, oxygen and s-process elements from
the helium intershell, modifying the surface composition
(e.g., Gallino et al., 1998). This phenomenon is con-
firmed by spectroscopic analysis of AGB stars (e.g., Abia
et al., 2001; Zamora et al., 2009), post-AGB stars (e.g.,
Delgado-Inglada et al., 2015), measurements of presolar
grains (e.g., Lugaro et al., 2003), and planetary nebula
as the dredged-up material is blown into the interstellar
medium by stellar winds (e.g., VanWinckel and Reyniers,
2000).

For stars with an initial mass less than '6 M
�

the
temperature in the stellar core is too low to ignite 12C fu-
sion, and the post-AGB evolution leads to a white dwarf.
The 12C(↵, �)16O reaction rate has a large influence on
the mass fraction profiles of 12C and 16O in the white
dwarf remnant (e.g., Fields et al., 2016; Herwig et al.,
2006). For example, properties of white dwarf models
derived from Monte Carlo stellar evolution surveys sug-
gest variation of 12C(↵, �)16O within the experimental
uncertainties causes a '50% spread in the central carbon
and oxygen mass fractions. Surveys of planetary nebulae
find cases of oxygen enrichment by nearly a factor of two
relative to carbon (Delgado-Inglada et al., 2015), which
may be due to an enhanced 12C(↵, �)16O rate or mix-
ing processes (Pignatari et al., 2016). Asteroseismology
studies of white dwarfs seek to determine the 12C/16O
profile and infer the reaction rate from the transition of
the white dwarfs inner oxygen-rich region to the carbon-
rich region in the outer layers (e.g., Metcalfe, 2003).

For stars with an initial mass above '7 M
�

the tem-
peratures in the stellar core are high enough to ignite car-
bon, and the minimum mass for neon ignition is '10M

�

.
Stars with initial masses between '7 M

�

and '10 M
�

are designated as super-AGB stars. Depending primar-
ily on the initial mass, 12C/16O profile, and composi-
tion mixing model, the ignition of carbon may not occur
at all (for stars . 7 M

�

), occur at the center of the
star (for stars & 10 M

�

), or occur somewhere o↵-center
(Doherty et al., 2015; Farmer et al., 2015; Jones et al.,
2013; Poelarends et al., 2008; Siess, 2007, 2009) In the
o↵-center case, ignition is followed by the inward propa-
gation of a subsonic burning front (Garćıa-Berro et al.,
1997; Lecoanet et al., 2016; Nomoto and Iben, 1985;
Timmes et al., 1994). The ignition conditions depend on
the 12C/16O ratio determined by the 12C(↵, �)16O rate,
and may vary by a factor of '13 at ignition Straniero
et al. (2003).
The 12C/16O profile in the remnant white dwarf im-

pacts the ignition of Type Ia supernovae, one of the pre-
mier probes for measuring the cosmological properties of
the Universe (e.g., Perlmutter et al., 1999; Riess et al.,
1998). The carbon mass fraction impacts the overall en-
ergy release, expansion velocity, silicon-group and iron-
group ejecta profiles (Calder et al., 2007; Höflich et al.,
1998; Miles et al., 2016; Raskin et al., 2012; Röpke et al.,
2006; Seitenzahl et al., 2016) in progenitor systems in-
volving either one white dwarf (single degenerate chan-
nel) or two white dwarfs (double degenerate channel).

B. Helium Burning in Massive Stars

Most of a main sequence star’s initial metallicity comes
from the CNO and 56Fe nuclei inherited from its am-
bient interstellar medium. The slowest step in the
hydrogen-burning CNO cycle is proton capture onto 14N.
This results in all the CNO catalysts piling up into
14N when hydrogen burning is completed. During the
early onset of core helium burning, the reaction sequence
14N(↵,�)18F(�+⌫

e

)18O(↵,�)22Ne converts all of the 14N
into 22Ne. For the first time, the stellar core has a net
neutron excess. As detailed below, this neutronization is
important for the the slow neutron capture (s-)process
in massive stars.
Helium burning in massive stars with initial masses

M & 8 M
�

has a lifetime of '106 years. Typical core tem-
peratures and densities in solar metallicity stellar models
are '2⇥108 K and '1⇥103 g cm�3, respectively (Iben,
1966; Limongi and Chie�, 2003; Nomoto et al., 2013;
Woosley et al., 2002). As the convective helium core
evolves the temperature and density rise significantly,
and thus so does the energy generation due to the 3↵-
process and 12C(↵, �)16O reactions. Carbon production
is favored by larger densities and smaller �12C(↵,�)16O,
while oxygen production is favored for smaller densities
(see Eq. (1)) and larger �12C(↵,�)16O. Fig. 1 shows that
the last remnants of helium fuel are the most important
in setting the final 12C/16O ratio.

In addition, during the final stages of helium burn-
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ing, when the temperature and density are larger,
the three reactions 12C(↵, �)16O, 22Ne(↵,n)25Mg, and
16O(↵, �)20Ne compete for those last few ↵-particles.
The 22Ne(↵,n)25Mg reaction is the dominant neutron
source the s-process in massive stars (e.g., Käppeler
et al., 1994; Pignatari et al., 2010; Raiteri et al., 1991;
The et al., 2007; Tur et al., 2009), producing about 8 neu-
trons per iron seed nuclei. Therefore, the 12C(↵, �)16O
reaction has an impact on s-process nucleosynthesis,
where a larger rate translates into a smaller production of
neutrons. For temperatures larger than '4⇥108 K, the
16O(↵, �)20Ne rate becomes larger than the 12C(↵, �)16O
rate, converting some of the abundant 16O into 20Ne.

The neutronization, entropy profile, and 12C/16O ra-
tio that emerges from core helium-burning influences the
subsequent evolution of a massive star. The uncertainty
of the 12C(↵, �)16O rate propagates to the subsequent
carbon, neon, oxygen, and silicon burning stages (e.g.,
El Eid et al., 2004; Imbriani et al., 2001). For exam-
ple, upon helium depletion the core again contracts and
heats to conditions conducive to carbon burning by the
12C + 12C reaction. Ignition of carbon depends on the
fusion cross section of this heavy-ion reaction and on the
square of the carbon fuel abundance that is chiefly set
by the 12C(↵, �)16O reaction. Tur et al. (2007, 2010)
considered the influence of uncertainties in the 3↵ and
12C(↵, �)16O reactions on the evolution and nucleosyn-
thesis of massive stars. Using a reference 12C(↵, �)16O
rate of 1.2 times that of (Buchmann et al., 1996), they
concluded that variations of this rate induced variations
in the final abundances ejected by the supernova explo-
sion including 12C, the key radionuclides 26Al, 44Ti, and
60Fe, and the final mass of the remnant.

These later evolutionary phases are a rich site of fas-
cinating challenges that include the interplay between
nuclear burning (Couch et al., 2015; Farmer et al.,
2016; Jones et al., 2017; Müller et al., 2016), convection
(Meakin and Arnett, 2007; Viallet et al., 2013), rotation
(Chatzopoulos et al., 2016; Heger et al., 2000; Rogers,
2015), radiation transport (Jiang et al., 2015, 2016), in-
stabilities (Garaud et al., 2015; Wheeler et al., 2015),
mixing (Maeder and Meynet, 2012; Martins et al., 2016),
waves (Aerts and Rogers, 2015; Fuller et al., 2015; Rogers
et al., 2013), eruptions (Humphreys and Davidson, 1994;
Kashi et al., 2016; Quataert et al., 2016), and binary
partners (Justham et al., 2014; Marchant et al., 2016;
Pavlovskii et al., 2017). This bonanza of physical puzzles
is closely linked with compact object formation by core-
collapse supernovae (e.g., Eldridge and Tout, 2004; Özel
et al., 2010; Perego et al., 2015; Sukhbold et al., 2016;
Suwa et al., 2015; Timmes et al., 1996) and the diver-
sity of observed massive star transients (e.g., Ofek et al.,
2014; Smith et al., 2016; Van Dyk et al., 2000). Recent
observational clues that challenge conventional wisdom
(Boggs et al., 2015; Jerkstrand et al., 2015; Strotjohann
et al., 2015; Vreeswijk et al., 2014; Zavagno et al., 2010),

coupled with the expectation of large quantities of data
from upcoming surveys (e.g., Creevey et al., 2015; Pa-
padopoulos et al., 2015; Sacco et al., 2015; Yuan et al.,
2015), new measurements of key nuclear reaction rates
and techniques for assessing reaction rate uncertainties
(Iliadis et al., 2016; Sallaska et al., 2013; Wiescher et al.,
2012), and advances in 3D pre-SN modeling (Couch et al.,
2015; Jones et al., 2017; Müller et al., 2016), o↵er signif-
icant improvements in our quantitative understanding of
the end states of massive stars.

C. Helium Burning in First Stars

After the photons of the cosmic microwave background
were released, the Universe exhibited a uniform structure
with no point sources of light. As gravitational perturba-
tions grew, dark matter and gas aggregated. No metals
existed to facilitate the cooling and further condensation
of gas into stars, as in later generations. Primordial star
formation was instead driven by cooling through molec-
ular hydrogen line emission (e.g., Palla et al., 1983). The
first stars – referred to as H-He, pregalactic, population
III, or zero metallicity stars – are thought to have ini-
tially formed at redshifts z ' 20 in small dark matter
haloes of mass '106 M

�

(e.g., Abel et al., 2002; McKee
and Tan, 2008; Turk et al., 2009). Simulations suggest
that fragmentation of the central gas configuration allow
for a range of stellar masses, 1 M

�

. M . 1000 M
�

,
depending on the dimensionality, spatial resolution, and
local physics used in the simulations (e.g., Fuller et al.,
1986; Hosokawa et al., 2016; Stacy et al., 2016; Truran
and Cameron, 1971).
The 12C(↵,�)16O reaction impacts the early nucleosyn-

thesis steps of the first generation of stars. In su�-
ciently massive first generation stars, M & 10 M

�

, the pp-
chains have too weak a temperature dependence to pro-
vide enough energy generation to halt gravitational con-
traction. Such stars continue to get denser and hotter un-
til the central temperature reaches '108 K, where the 3↵
reaction synthesizes 12C (Ezer and Cameron, 1971). This
self-production of carbon is followed by the 12C(↵,�)16O
reaction to produce oxygen. The zero metallicity star
thus makes enough of its own CNO elements to power
the catalytic, hydrogen burning CNO cycles, halt gravita-
tional contraction, and proceed onto the main sequence.
The evolution of the first stars from the main sequence
to their final fate continues to be investigated across
the entire initial mass spectrum (e.g., Bond et al., 1984;
D’Antona, 1982; El Eid et al., 1983; Guenther and De-
marque, 1983; Heger and Woosley, 2002, 2010; Marigo
et al., 2001; Ritter et al., 2016; Umeda et al., 2000; Weiss
et al., 2000). In stars su�ciently massive to burn helium,
the 12C(↵,�)16O reaction establishes the 12C/16O profile
which impacts the subsequent evolution.
Indeed, the most metal poor stars that we observe



8

today carry signatures of the first core-collapse super-
novae, characterized by enhancements of carbon and oxy-
gen relative to iron, [C/Fe] ⇠ [O/Fe] ⇠ + 3.0 (e.g., Beers
et al., 1985, 1992; Bessell and Norris, 1984; Bond, 1981;
Christlieb, 2008; Frebel et al., 2005; Frebel et al., 2015;
Hansen et al., 2016; Keller et al., 2014; Yoon et al., 2016).
A large fraction of these stars show [C/Fe] and [O/Fe] ra-
tios larger than those in the Sun (e.g., Bonifacio et al.,
2015; Hansen et al., 2015). The full potential of stellar ar-
chaeology can likely be reached in ultrafaint dwarf galax-
ies, where the simple formation history may allow for
straightforward identification of second-generation stars.
(e.g., Ji et al., 2015). These observations confirm the im-
portant role of the 12C(↵,�)16O reaction for interpreting
the onset of nucleosynthesis in the first stars.

D. Uncertainty considerations

The reliability of nucleosynthesis predictions depends
on the quality of the stellar models and the nuclear reac-
tion input parameters. The interplay between these two
components defines the overall uncertainty in the model
predictions. The quality of stellar model simulations has
seen a rapid improvement over the last two decades due
to the enormous increase in computational power. This
has e↵ectively reduced the traditional uncertainties as-
sociated with the model parameters, putting larger de-
mands on the uncertainties associated with the reaction
cross section.

An unprecedented e↵ort has also been invested into im-
proved experimental data and extrapolation techniques.
While there have been significant advances, cross section
measurements towards lower energies represent a stag-
gering experimental challenge. The exponential decline
of the cross section can translate a few 10’s of keV step
towards lower energies into an order of magnitude reduc-
tion in reaction yield. This needs to be compensated by
either a significant increase in beam current, a signifi-
cant increase in detection e�ciency and/or a significant
decrease in the experimental background. Past experi-
ments have pushed the measurements to the limit of the
practical amount of time and e↵ort that is achievable
with current resources. However, advances in detector
technology and high current, low background accelerator
facilities o↵er renewed chances to move forward.

Improvements in the extrapolation technique are also
possible. One major step forward can be made be making
a more complete and consistent treatment of all reaction
parameters and data using R-matrix theory. The overall
uncertainty in the cross section evaluations, however, is
di�cult to assess. In addition, the propagation of the
rate through the stellar models is also open to interpre-
tation. An attempt based on statistical means has been
suggested by Iliadis et al. (2015) (and references therein).
This has been adopted by Fields et al. (2016) to provide

uncertainty ranges for di↵erent quantities predicted by a
stellar model (e.g. density or mass fraction of 12C) as
they are sensitive to the uncertainty in the rate of the
12C(↵, �)16O reaction given by (Kunz et al., 2002).
The long-standing large uncertainties associated with

the 12C(↵, �)16O reaction rate and the di�culties in pro-
viding a reliable extrapolation of laboratory data to the
stellar energy range triggered initiatives to deduce the re-
action rate from nucleosynthesis simulations for massive
stars and the comparison with observational abundance
distributions. The first attempt utilized a set of massive
star models ranging from 12 to 40 M

�

, following nu-
clear burning through all phases of stellar evolution up
to the point of iron core collapse (Weaver and Woosley,
1993). Within the uncertainties of the model simula-
tions, the results indicated a reaction rate that is in good
agreement with that suggested later by Buchmann and
Barnes (2006) on the basis of an R-matrix analysis. A
similar approach was taken by Garnett (1997), who used
the C/O abundance ratio in the ionized interstellar gas
of galaxies, with very low heavy element abundances, to
constrain the 12C(↵, �)16O rate. This study confirmed
the results of the former analysis by Weaver and Woosley
(1993).
A similar analysis on the impact of the 12C(↵, �)16O

reaction rate on the nucleosynthesis of heavier element
yields during pre-supernova evolution and supernova ex-
plosions was performed by Tur et al. (2007). They con-
sidered the nucleosynthesis in stars with initial masses
ranging from 13 to 27 M

�

calculated from the implicit,
one-dimensional, hydrodynamical stellar evolution code
KEPLER (e.g., Woosley et al., 2002). They varied the
12C(↵, �)16O reaction rate by scaling the S-factor of
S(300 keV) = 146 keV barn as suggested by (Buchmann
and Barnes, 2006) by a factor of 0.6 to 1.9, probing the
impact on the production factors of light elements and
in particular the carbon/oxygen mass fraction at carbon
ignition at the center of these massive stars. The results
again suggested good agreement with the prediction by
Buchmann and Barnes (2006), confirming the earlier re-
sults of Garnett (1997) and Weaver and Woosley (1993).
The study concluded that for a reliable nucleosynthesis
simulation for massive stars, the 12C(↵, �)16O reaction
rate needs to be known to an uncertainty of 10%.
This work was followed more recently by a more ex-

panded study (West et al., 2013) where the sensitivity
of presupernova evolution and supernova nucleosynthesis
yields of massive stars was considered in dependence of
variations in the 3↵ and the 12C(↵, �)16O rates. These
variations were kept within an uncertainty range of ±2�.
A grid of twelve initial stellar masses between 12 and 30
M

�

, using 176 models per stellar mass, were computed
to explore the e↵ects of the two independently varying
rates on the production of intermediate mass elements
A = 16-40 and the s-only isotopes produced e�ciently
by the weak s-process (70Ge, 76Se, 80Kr, 82Kr, 86Sr, and
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87Sr) in comparison to the solar abundance distribution.
The study found a close correlation between the two rates
for an optimal fit of the abundances, as to be expected by
Eq. (1), indicating that an increase of the 12C(↵, �)16O
rate requires an increase in the 3↵ rate.

E. The Nuclear Reaction Rate

While these model based studies are certainly of great
interest, they depend on the reliability of the stellar mod-
els, the model parameters, and the numerical treatment
of the hydrodynamic aspects of stellar evolution. De-
pending on the internal burning conditions in the spe-
cific environments the stellar reaction rate needs to be
well known over a wide energy range.

The nuclear reaction rate can be calculated from the
total reaction cross section �(E) by integration over the
Maxwell-Boltzmann distributions of the interacting par-
ticles in a stellar environment of temperature T . The
reaction rate per particle pair is given by

N
A

h�vi =
✓

8

⇡µ

◆1/2 N
A

(k
B

T )3/2

Z
1

0

�(E)Ee�E/kBT dE,

(2)
where µ is the reduced mass, E = µv2/2 is the center-of-
mass energy, N

A

is Avogadro’s number, and k
B

is Boltz-
mann’s constant. The energy-dependent cross section is
the key input for determining the reaction rate. This is
determined by various reaction contributions and mech-
anisms.

Traditionally, the charged-particle reaction cross sec-
tion is expressed in terms of the astrophysical S factor

S(E) = �(E)E e2⇡⌘. (3)

The exponential term e2⇡⌘ approximately accounts for
the influence of the Coulomb barrier on the cross section,
where ⌘ is the Sommerfeld parameter (

p
µ

2EZ1Z2
e

2

~2 ).
Therefore S(E) essentially describes the nuclear and cen-
trifugal barrier components of the reaction mechanism
and is also more convenient for plotting and extrapola-
tion. The reaction rate scales with the S factor at the
stellar energy range, and the literature therefore often
quotes the S factor at a typical stellar energy. For the
12C(↵, �)16O reaction this is at Ec.m. = 300 keV. Thus
the value of S(300 keV) is often given for ease of com-
parison of the impact of the nuclear reaction data on the
extrapolation.

Equation (2) can be approximated when either of two
extreme cases dominate the S factor. First, some S fac-
tors are dominated by non-resonant processes (e.g., direct
capture) and are often characterized by a nearly energy-
independent S factor. In this case, the energy range of
interest for a specific burning temperature T is tradi-
tionally defined in terms of the Gamow window, which

is defined by the integrand in Eq. (2). For a constant S-
factor, the integrand can be approximated by a Gaussian
distribution around the mean center-of-mass energy E0

(in units of MeV) of

E0 = 0.122 · (Z2
1Z

2
2 µ̂T

2
9 )

1/3, (4)

with Z1 and Z2 being the charges of the interacting par-
ticles, µ̂ the reduced mass in atomic mass units, and T9

the temperature in GK. Using the same notation, the
width �E of the Gamow range is given by

�E = 0.236 · (Z2
1Z

2
2 µ̂T

5
9 )

1/6. (5)

The reader is cautioned that this Gaussian distribution
concept may break down in the case of resonances or
as one moves above the Coulomb barrier (i.e., at higher
temperatures); see Fig. 28 below.
This simple formalism facilitates the quick identifica-

tion of the energy range over which the reaction cross
section needs to be determined to provide a reaction rate
for stellar burning simulations. Table I summarizes the
energy ranges corresponding to the characteristic tem-
peratures of the various stellar environments discussed
above in Sec. II. A purely experimentally determined
reaction rate would require experimental cross section
data covering the full range of these energies (0.15 <
Ec.m. < 3.4 MeV). Since this has not been achieved for
the lower energies, the reaction rate for 12C(↵, �)16O has
to rely on the extrapolation of experimental data ob-
tained at higher energies.
The second case is when the S-factor is dominated by

narrow isolated resonances (i.e., such that the resonance
width is small compared to the resonance energy and
interference e↵ects can be neglected). Ignoring all en-
ergy dependences except the Lorentzian approximation
of the Breit-Wigner cross section, Eq. (2) can then be
integrated analytically. This yields an expression for the
reaction rate in terms of resonance strengths !�

i

N
A

h�vi = 1.5394⇥ 1011(µ̂T9)
�3/2

⇥
X

i

!�
i

exp

✓�11.605 · E
Ri

T9

◆
cm3

sec ·mol

�
, (6)

where !�
i

and E
Ri are the resonance strength and reso-

nance energy of the ith resonance in MeV, respectively.
The resonance strengths are proportional to the pro-

duction and decay widths, �in and �out:

!� =
(2J + 1)

(2J1 + 1)(2J2 + 1)

�in�out
�

, (7)

where J is the spin of the resonance, J1 and J2 are the
spins of the nuclei in the entrance channel, and � is the
total width of the resonance. In case of radiative ↵ cap-
ture reactions, �in and �out correspond to the ↵ and �
partial widths �

↵

and �
�

, respectively.
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TABLE I Astrophysical environments and burning stages where the 12C(↵, �)16O reaction plays an important role. The
temperatures of these environments dictate the energy ranges where the 12C(↵, �)16O cross section must well known for an
accurate calculation of the reaction rate.

Burning Stages Astro. Sites Temp. Range (GK) Gamow Energy Range (MeV)
Core Helium Burning AGB stars and Massive Stars 0.1-0.4 0.15-0.65

Core Carbon and Oxygen Burning Massive Stars 0.6-2.7 0.44-2.5
Core Silicon Burning Massive Stars 2.8-4.1 1.1-3.4

Explosive Helium Burning Supernovae and X-Ray Bursts ⇡1 0.6-1.25
Explosive Oxygen and Silicon Burning Supernovae >5 >1.45

Complicating matters, the energy dependence of the
12C(↵, �)16O reaction does not fall into either of these
two specialized categories. Instead, the S-factor is dom-
inated by broad resonances which interfere with one an-
other, a regime in between the two extreme cases dis-
cussed above. Therefore the reaction rate must be de-
termined through numerical integration of Eq. (2). How-
ever, in addition to these broad resonances there are also
a few narrow resonances that are superimposed upon
them. Because of practical experimental considerations
(i.e. target thickness and accelerator energy resolution),
the strengths of these narrow resonances are much eas-
ier quantities to measure accurately than the individual
widths or actual cross sections over them. Therefore,
in practice, numerical integration of Eq. (2) is used in
conjunction with the narrow resonance specific form of
Eq. (6) to calculate the total rate of the 12C(↵, �)16O
reaction. This process is described in more detail in
Sec. IX.

The following section is dedicated to outlining our
present knowledge of the reaction mechanisms and the
underlying nuclear structure and reaction phenomena
that are needed for an accurate calculation of the reac-
tion rate. For an informed extrapolation it is important
to treat and determine the 12C(↵, �)16O cross section as
a nuclear physics problem that can only be solved by un-
derstanding the complex quantum mechanics of the reac-
tion mechanism. Further, nuclear theory, as discussed in
Secs. III and IV, calculates the di↵erent multipolarities
of the reaction independently. Thus for the extrapolation
to be made, it is necessary to not only measure the total
cross section as a function of energy �(E), but also to
understand its composition in terms of photon multipo-
larities and 16O final states.

III. NUCLEAR PHYSICS ASPECTS

The reaction mechanism of 12C(↵, �)16O, and therefore
its cross section or S-factor, is characterized by strong
resonant and non-resonant contributions and the inter-
ference e↵ects between these components. The strength
of these components is directly associated with the nu-
clear structure of the 16O nucleus. Being doubly magic it
has been the subject of numerous studies and its unique

level structure has provided a long standing challenge for
theoretical descriptions.

The 16O compound nucleus is represented schemati-
cally in Fig. 2. It has four particle bound excited states at
excitation energies: E

x

= 6.05, 6.13, 6.92, and 7.12 MeV.
As an even-even nucleus, the spin of the ground state is
J⇡ = 0+ and the four excited states are 0+, 3�, 2+, and
1� respectively. The two odd parity states are considered
to be single particle configurations that can be described
well in the framework of the shell model, while the two
of even parity have been characterized as cluster config-
urations that require a microscopic potential or cluster
model approach (Langanke and Friedrich, 1986). From
the following cluster model discussions in Sec. III.B, one
might expect that the separation energy S

↵0 of the 16O
CN into an ↵ particle and the ground state configuration
of 12C is at E

x

= 7.16 MeV. It will become of utmost rele-
vance for the reaction rate that S

↵0 is only a few hundred
keV above the 2+ and 1� bound states. It is useful to
note that all of the excited bound states that � decay,
do so to the ground state with nearly 100% probability.
Angular momentum and spin selection rules dictate that
if the 16O compound nucleus is formed by a 12C+↵0 re-
action (intrinsic spins both equal to 0), then only states
with J = l and ⇡ = (-1)l (natural parity states), where
J is the total spin and l is the relative orbital angular
momentum, can be populated. With the limitation to
only natural parity states, the �-ray decay selection rules
give that only electric transitions to the 0+ ground state
can occur. Further, �-ray decays from 0+ to 0+ states
are strictly forbidden.

The 12C(↵, �)16O cross section is greatly influenced
by the isospin of the states in 16O. The two 1� levels
that most influence the low energy cross section, those
at E

x

= 7.12 MeV (bound) and 9.59 MeV (unbound)
are T = 0, for which E1 �-ray decays would be strictly
forbidden to the ground state if the states were isospin
pure. However, the Coulomb interaction breaks isospin
symmetry, causing the states to become isospin mixed,
allowing for such transitions to take place, albeit at a re-
duced strength. This is the primary reason that the E1
and E2 multipolarity components of the 12C(↵, �0)16O
cross section are of nearly equal strength. In fact, the
earliest studies of the 12C(↵, �)16O reaction were made
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FIG. 2 (Color online) Level diagram of the 16O compound nucleus. Levels that are irrelevant to the analysis are omitted. For
example, unnatural parity states below the proton separation energy. Several reactions that populate the CN are shown where
their energy axis has been converted to excitation energy. At low energy only 12C+↵0,

16O+� and 16N(�↵) partitions are
considered. At higher energies, the 15N+p and 12C+↵1 partitions are also included. Representative experimental cross section
measurements that populate the CN are shown on the right. The total cross section data for the 12C(↵, �)16O reaction are those
of Schürmann et al. (2005), the 15N(p, �0)

16O those of LeBlanc et al. (2010), the 16N(�↵)12C spectrum is from Buchmann et al.
(1993), and the 12C(↵,↵0)

12C data are from Tischhauser et al. (2002). The solid red curve represents the phenomenological
R-matrix fit described in this work.

primarily to study the e↵ects of isospin symmetry break-
ing. At higher energies, the next T = 0 state is at
E

x

= 12.45 MeV and the first T = 1 state is that at
E

x

= 13.09 MeV. Reproducing the properties of these
states, especially the �-ray decay widths, has proven very
challenging for nuclear models as will be discussed fur-
ther in Sec. III.B.

The level structure of 16O results in very di↵erent re-
action mechanisms favored by the �-ray de-excitations
to the ground state versus those to higher-lying excited
states. As will be discussed in more detail in Sec. IV.D,
E1 direct capture to the ground state is greatly sup-
pressed. On the other hand, the large Q-value for the

ground state transition favors resonance decays. This
results in resonances, including those of the subthresh-
old states, dominating over the direct capture. It should
also be noted that while the E1 direct capture strength
is negligible, there is the possibility that E2 direct cap-
ture could be a significant component to the cross sec-
tion in o↵-resonance regions. In contrast, resonant de-
excitations to the high-lying excited states in 16O are sup-
pressed because of their smaller Q-values. This then puts
the strength of resonance decays on par with that of the
direct capture, with direct capture even dominating in
several cases (see Sec. VI.C). Therefore, the cascade tran-
sition cross sections are expected to be small compared
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with that of the ground state. This then makes the de-
termination of asymptotic normalization coe�cients for
the corresponding final states critical for modeling the
external capture component of the capture cross sections
for these transitions (see Secs. IV.D and VI.C).

The essential goal is to obtain an accurate value of the
cross section over the energy range that contributes sig-
nificantly to the reaction rate calculation (see Sec. IX).
Ideally the cross section could simply be measured di-
rectly in the laboratory, but this not a viable option since
the Coulomb repulsion between the two charged particles
makes the cross sections over the Gamow energy region
extremely small. For the 12C(↵, �)16O reaction, the cross
section at E

c.m.

= 300 keV is estimated to be about
2⇥10�17 barns. This is still about 5 orders of magni-
tude below the sensitivity, a few picobarns, achieved by
the most state of the art measurements. For this rea-
son, nuclear reaction theories must be used to aid in the
extrapolation of the cross section to the astrophysically
relevant region. This is the crux of the problem.

Several di↵erent approaches have been investigated.
The cluster model approach provides guidance for inter-
preting the level structure of the 16O compound nucleus,
but so far they are not a su�ciently reliable method for
predicting reaction cross sections or for extrapolating ex-
isting experimental data from laboratory studies into the
stellar energy range. Phenomenological models, fit to ex-
perimental data and extrapolated to low energy, are more
accurate and have been the mainstay for many years.
The remainder of this section is devoted to an introduc-
tion to the experimental data and the status of the cluster
and phenomenological models used to interpret it.

A. The Experimental Situation

A host of experimental measurements have been made
to study the 12C(↵, �)16O reaction over the years. Be-
cause of its incredible importance to the field of nuclear
astrophysics and the extreme challenge of its measure-
ment, nearly every kind of technique in the experimental
nuclear physicist’s tool box has been brought to bear.
Experiments have ranged from the most sophisticated,
brute force, high beam current, direct measurements, to
techniques as indirect as the study of the � delayed ↵
emission of 16N and Coulomb excitation. These exten-
sive and diverse e↵orts have aimed either at the direct
study of the low energy cross section or at the study of
the nuclear properties of the levels near the ↵ threshold
in the 16O compound nucleus.

Direct methods have evolved from measuring reaction
yields in close geometry where only faint signals were ob-
served, and are di�cult to interpret, to measuring high
statistics detailed angular distributions in far geometry
that approach direct observation of the di↵erential cross
sections. Most experiments have focused on a limited low

energy region from 1 MeV < Ec.m. < 3 MeV for two pri-
mary reasons. First, a broad 1� resonance (correspond-
ing to the level at E

x

= 9.59 MeV in Fig. 2) enhances the
cross section in this region making measurements more
viable. This state then serves as a touch stone for mea-
surements toward lower energies. Second, measurements
are greatly hindered by the increasing, and very high
cross section, 13C(↵, n)16O background reaction. The
large amount of neutrons it creates causes several serious
experimental di�culties. The neutrons themselves cause
damage to the delicate lattice structure of solid state de-
tectors. Further, secondary �-rays are created through
inelastic neutron scattering and neutron capture on both
surrounding material and the detectors themselves. They
create �-rays over a wide energy range that hinder the
measurements of all the transitions of the 12C(↵, �)16O
reaction (see, e.g., Makii et al. (2005)).
In recent years, the vast improvements in experimen-

tal techniques have expanded the accessible energy range,
both to lower and higher energies. This e↵ort, coupled
with substantial improvements in the phenomenological
description of the reaction contributions and the overall
reaction mechanism through R-matrix theory, lead to a
substantially improved confidence in the low energy ex-
trapolation of the cross section. Before entering into a
detailed discussion of the experimental data and its phe-
nomenological interpretation in Secs. V and VI, the fol-
lowing sections provide a summary of past utilization of
both cluster models and R-matrix theory for interpreting
the 12C(↵, �)16O cross sections.

B. Cluster Models

Since the pioneering work of Wheeler (1937a), it has
been argued that individual nucleons should often be
found in tightly bound ↵ particle cluster configurations
(see, e.g., (Beck, 2010, 2012, 2014) for a series of recent
reviews). It follows then that for nuclei that are integer
multiples of the ↵ particle, many of the nuclear exci-
tations in the compound nucleus can be interpreted as
the molecular configurations of ↵ particle clusters. This
then strongly influences the strength of the associated
resonance states and the strength of direct capture tran-
sitions, which usually dominate the reaction mechanism.
This idea is particularly interesting when played out us-
ing the theoretical framework of the Ikeda model (Ikeda
et al., 1968), which predicts pronounced ↵ clustering con-
figurations near the ↵ threshold. Thus the e↵ect of ↵
clustering is particularly critical for reactions in stellar
helium burning, where the 3↵-process and the subsequent
12C(↵, �)16O reaction dominate (Freer, 2007).
For modeling the radiative capture cross section of

the 12C(↵, �)16O reaction, a number of cluster models
of varying levels of sophistication have been applied to
investigate the impact of these e↵ects on the various tran-
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sition components. This is, in particular, important for
the E2 ground state transition due to the fact that the
subthreshold 2+ state at E

x

= 6.92 MeV represents a
high degree of ↵ clustering (Brown and Green, 1966). In
the E1 ground state component, the cluster contribution
of the E

x

= 7.12 MeV subthreshold state and its inter-
ference with the resonance corresponding to the broad
E

x

= 9.59 MeV cluster state, add significantly to the
reaction strength.

Most of the cluster models applied to the study of
this reaction have their roots in the Resonating Group
Method (RGM) originally proposed by Wheeler (1937b).
Microscopic potential models have been presented by
Langanke and Koonin (1983, 1985), and Funck et al.

(1985) and are summarized by Langanke and Friedrich
(1986). Single-channel and multi-channel Generator Co-
ordinate Method (which is equivalent to the RGM) calcu-
lations, have also been developed (Descouvemont, 1993;
Descouvemont and Baye, 1987; Descouvemont et al.,
1984; Dufour and Descouvemont, 2008). Many of these
works have also included calculations of the strengths of
the 12C(↵, �)16O cascade transitions (Descouvemont and
Baye, 1987; Descouvemont et al., 1984; Dufour and De-
scouvemont, 2008; Langanke and Koonin, 1985). Since
none of these models allow for all of the degrees of free-
dom associated with 16 nucleons, the use of e↵ective in-
teractions is required along with some phenomenological
adjustment of parameters to agree with experimental in-
puts such as separation thresholds and resonance ener-
gies.

Despite the longstanding theoretical development, pre-
cision ↵ cluster modeling is still very challenging. As a
recent example, the ↵ cluster configuration of the 16O
nucleus was studied using a modified shell model ap-
proach built on a cluster-nucleon configuration interac-
tion model with advanced realistic shell-model Hamil-
tonians. The model was constructed in order to in-
vestigate the strength of clustering phenomena in the
harmonic oscillator basis (Volya and Tchuvil’sky, 2015).
This study provides a comprehensive description of the
↵ cluster structure of the 16O nucleus up to a very
high excitation energy range based on the 12C ground
state configuration. The study demonstrates the pos-
sible existence of pronounced ↵ cluster configurations.
In particular for the energy range near the ↵ threshold
where large ↵ spectroscopic factors are predicted for nat-
ural parity resonance and subthreshold levels between
6.0 MeV < E

x

< 8.5 MeV. These theoretical results are
in general agreement with the tabulated values obtained
by ↵ transfer and capture reactions (Tilley et al., 1993).

In principle these models are highly constrained and
consequently have great predictive power. However, the
cluster models are challenged to describe all of the avail-
able experimental data with the precision required for
nuclear astrophysics applications. This is largely because
they only take certain cluster components in the reaction

mechanism into account. For example, there are di�-
culties in correctly describing the width of the narrow
2+ state at E

x

= 9.84 MeV with this approach, as it is
predominantly not an ↵-cluster state (Dufour and De-
scouvemont, 2008). The new approach of coupling the
cluster model with modern shell model techniques o↵ers
new opportunities for a more comprehensive theoretical
description of the level structure of the 16O compound
nucleus that is necessary for a reliable theoretical predic-
tion of the 12C(↵, �)16O reaction cross section (Volya and
Tchuvil’sky, 2015). Another state-of-the-art example is
the calculation of Epelbaum et al. (2014), where bind-
ing energies, charge radii, quadrupole moment (for the
2+ state), and electromagnetic transition strengths are
provided for the even-parity bound states of 16O. As the-
oretical approaches become truly ab initio, they will sig-
nificantly further our understanding of the 12C(↵, �)16O
reaction. Already cluster models can be very useful for
making theoretical calculation of Asymptotic Normaliza-
tion Coe�cients (ANCs) for the bound states of 16O and
this should see further attention. However, because of
the limitations described, phenomenological approaches
must still be employed.

C. Phenomenological Models

A strong point of phenomenological reaction models is
that, while remaining ignorant of more fundamental nu-
clear physics (i.e. internal nuclear wave functions), well-
established quantum-mechanical symmetries and conser-
vation laws, such as angular momentum conservation and
unitarity, can still be enforced. This allows the model to
remain flexible, while still providing many stringent con-
straints. On the other hand, phenomenological models
have little predictive power without data and the qual-
ity of their constraints or predictions are very much de-
pendent upon the quality of the supporting experimental
data.
The most long standing and pervasive phenomenolog-

ical model for the resolved resonances region is the R-
matrix theory of Wigner and Eisenbud (1947), which was
further developed by Lane and Thomas (1958) and Bloch
(1957). It has been used by many in the field for the anal-
ysis of the 12C(↵, �)16O reaction as well as many other
reactions. The R-matrix model, as described in more
detail in Sec. IV, o↵ers the best approach to phenomeno-
logical analysis of the 12C(↵, �)16O reaction at this time.
Some of the other alternatives, and justification for this
assertion, are discussed below.
One extension of the R-matrix method that has

been applied to the 12C(↵, �)16O reaction is the “hy-
brid” R-matrix-optical model (Johnson, 1973; Koonin
et al., 1974). In this approach, the broad 1� state at
E

x

= 9.85 MeV and higher energy background levels are
modeled using an optical potential, with the subthreshold
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1� state being introduced as a separate R-matrix level.
Refinements have been provided in subsequent publica-
tions (Langanke and Koonin, 1983, 1985). This method
has the attractive feature that the optical model should
reproduce many of the higher lying broad resonances. If
this can replace the need for additional background pole
terms, the number of free parameters could be greatly
reduced and an improved constraint on the extrapolated
S factor could be achieved. However, these models have
di�culties describing, over a broad energy range, the
high-precision 12C(↵,↵)12C elastic scattering data that
are now available (Plaga et al., 1987; Tischhauser et al.,
2009). These di�culties are not present in the standard
R-matrix approach due to the greater flexibility. Never-
theless, the hybrid model may still be interesting for in-
vestigating the e↵ects of the nuclear interaction beyond
the channel radius.

An alternative to the R-matrix is the K-matrix, as
developed by Jean Humblet (Humblet, 1990; Humblet
et al., 1976). K-matrix theory is based upon a pole ex-
pansion (Mittag-Le✏er series) of a meromorphic func-
tion, rather than the properties of eigenfunctions satis-
fying boundary conditions as in R-matrix theory. Some
advantages of the K-matrix approach are that there is no
channel radius and the computation of Coulomb wave-
functions is not needed. The fitting of experimental data
is in general quite similar to the R-matrix approach, with
equal numbers of free parameters leading to similar qual-
ity fits, S-factor extrapolations, and uncertainties. A de-
tailed comparison of the K- and R-matrix approaches for
12C(↵, �)16O has been given by Azuma et al. (1994). A
disadvantage of the K-matrix method is that the back-
ground remaining in addition to the explicitly-included
levels has a complicated and generally uncertain func-
tional form, including the possibility of sub-threshold
poles (echo poles) and complex-energy poles: see Barker
(1994b); Brune (1996); and Humblet et al. (1998). The
situation is much clearer in theR-matrix approach, where
the remaining background can only consist of real pole
terms at higher energies.

Recently, several researchers have investigated new
approaches for obtaining bound-state ANCs from elas-
tic scattering data (König et al., 2013; Safronov, 2009;
Sparenberg et al., 2010), but it is not clear if these meth-
ods o↵er any advantages over the phenomenological R-
matrix approach.

With the above considerations, a phenomenological R-
matrix approach will be used to interpret the experimen-
tal data and perform the interpolation and extrapolation
of the 12C(↵, �)16O cross section over the entire range of
astrophysical interest. The following section details the
critical aspects of this theoretical framework.

IV. R-MATRIX THEORY

Since the first analysis of the 12C(↵, �)16O reaction
by Barker (1971), R-matrix theory has been used to
model the experimental data. Over the intervening years
many di↵erent approaches have been used (see Table IV
below), but for the reasons discussed above, R-matrix
has been the most common method and is the choice
adopted for the present analysis. In many previous
works, the R-matrix formalism has been specialized to
the 12C(↵, �)16O case in order to simplify the formu-
las. In this more global analysis, that considers sev-
eral other reaction partitions in addition to 12C+↵ and
16O+�, the complete formalism is required. Subsections
IV.A�IV.E below cover R-matrix theory in a general
manner, keeping in mind that the R-matrix approach is a
useful tool for many applications besides the phenomeno-
logical analysis of nuclear reactions. Subsection IV.F dis-
cusses considerations that are specific to the phenomeno-
logical analysis of nuclear reaction data and finally Sub-
sec. IV.G covers our specific application to 12C(↵, �)16O.

A. General R-matrix Theory

R-matrix theory has been explained in detail in pre-
vious reviews (Azuma et al., 2010; Descouvemont and
Baye, 2010; Hale and Dodder, 1980; Lane and Thomas,
1958), and only certain details will be described here. For
the most part, we utilize the approach and notation of
(Lane and Thomas, 1958) (LT); an important alternative
is the Bloch operator formalism (Bloch, 1957; Lane and
Robson, 1966).
The most basic premise of R-matrix theory divides the

nuclear configuration space into two distinct regions: the
nuclear interior where the many-body nuclear interac-
tions are complicated, and the exterior where it is as-
sumed there are two clusters in each channel that can
be treated as separate and non-interacting (except for
the Coulomb potential). Channels are assumed to be or-
thogonal and are labeled by the indices ↵sl ⌘ c, where ↵
defines a particular pair of nuclei, s is the coupled spin
(channel spin) of the pair, and l is the relative orbital
angular momentum. We will work in the nuclear center-
of-mass system; the quantities µ

↵

, k
↵

, v
↵

, and r
↵

are the
reduced mass, wavenumber, relative velocity, and radial
separation for pair ↵. Channel spin wave functions are
defined by

| i
↵s⌫

= [| i
↵1 ⌦ | i

↵2]s⌫ (8)

where | i
↵1 and | i

↵2 are the internal wavefunctions of
the nuclei 1 and 2 making up pair ↵, and ⌫ is the channel
spin projection.

For each channel, the the dividing surface between the
regions is taken to be a sphere of radius r

↵

= a
c

. This
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radius is known as the channel radius and may be dif-
ferent for di↵erent channels. It is convenient to utilize
the “channel surface functions” introduced by Hale and
Dodder (1980) which have total angular momentum J
with component M :

|ScJMi =
✓

~2
2µ

↵

a
c

◆1/2
�(r

↵

� a
c

)

a
c

(9)

⇥ ⇥| i
↵s⌫

⌦ ilY
lm

(r̂
↵

)
⇤
JM

,

where Y
lm

are the spherical harmonics. These functions
can be used to project a total wavefunction into a well-
defined angular momentum state on a particular channel
surface.

In the internal region, we take the basis vectors |�JMi
to be the solutions to the nuclear Hamiltonian with en-
ergy eigenvalues E

�

that satisfy boundary conditions
(LT, Eq. V.2.1)

hScJM | @
@r

↵

r
↵

|�JMi = B
c

hScJM |�JMi (10)

where B
c

are real energy-independent boundary condi-
tion constants. They orthogonal and normalized over
the internal region such that

h�0J 0M 0|�JMi = �
�

0
�

, �
J

0
J

�
M

0
M

. (11)

They are also understood to be complete, provided that
all basis vectors satisfying the boundary condition (an
infinite number) are included. Under time reversal these
basis vectors transform according to (LT, Eq. III.3.4)

K|�JMi = (�1)J�M |�J �Mi, (12)

where K is the time-reversal operator. The real M -
independent reduced-width amplitudes are given by (LT,
Eq. III.4.8a)

�
�cJ

= hScJM |�JMi, (13)

i.e., by the amplitude of the eigenfunction at the nuclear
surface.

In the external region wavefunctions can be expressed
in terms of (LT, Eq. III.2.19)

|IcJMi = I
↵l

(r
↵

)

v1/2
↵

r
↵

⇥| i
↵s⌫

⌦ ilY
lm

(r̂
↵

)
⇤
JM

(14a)

|OcJMi = O
↵l

(r
↵

)

v1/2
↵

r
↵

⇥| i
↵s⌫

⌦ ilY
lm

(r̂
↵

)
⇤
JM

(14b)

where the incoming and outgoing Coulomb functions
I
↵l

and O
↵l

are defined by (LT, Eq. II.2.13). For
closed channels the outgoing solution O

↵l

is taken to
be the exponentially-decaying Whittaker function (LT,
Eq. II.2.17) and v

↵

for negative energies is a positive real
quantity as defined in (LT, Sec. III.1). In addition one
defines

L
c

=

✓
r
↵

O
↵l

@O
↵l

@r
↵

◆

ac

= S
c

+ iP
c

(15)

where the shift factor S
c

and and penetration factor
P
c

are real quantities. Other Coulomb surface quan-
tities are given by O

c

= O
↵l

(a
c

), I
c

= O
↵l

(a
c

), and
⌦

c

= (I
c

/O
c

)1/2. The relative Coulomb phase shift !
↵l

is
defined by (LT, Eq. III.2.13c). From this point forward,
we will suppress the angular momentum labels J and M
where it introduces no ambiguity and denote |ScJMi by
|ci in order to simplify the presentation.

By expanding an arbitrary wavefunction | i in the
internal region in terms of the basis |�i and applying
Green’s theorem, it can be shown (LT, Eq. V.2.7) that

hc| iint =
X

c

0

R
cc

0hc0| @

@r
↵

0
r
↵

0 �B
c

0 | iint, (16)

where R
cc

0 are elements of the R matrix. It is a function
of the energy E and can be expressed in terms of the
reduced-width amplitudes and energy eigenvalues as

R
c

0
c

=
X

�

�
�c

0�
�c

E
�

� E
. (17)

Essentially, R defines the logarithmic derivative of the
radial wavefunction at the channel surface(s) as a func-
tion of energy.
The general wavefunction | i may be expanded in the

external region (i.e., outside the channel radii) via

| iext =
X

cJM

z
cJM

"
|IcJMi �

X

c

0

UJ

c

0
c

|Oc0JMi
#
, (18)

where the expansion coe�cients z
cJM

specify the incom-
ing flux which can only be non-zero for open channels
and U

cc

0 are elements of the scattering matrix U (also
called the collision matrix). By evaluating hc| iext and
hc| @

@r↵
r
↵

| iext and comparing the results to Eq. (16) con-
sidering the continuity of the logarithmic radial deriva-
tive at the channel radius, U can be related to R and
the external Coulomb functions evaluated at the channel
radii. The result is (LT, Eq. VII.1)

U = ⌦

h
1+ 2iP 1/2[1�R(L�B)]�1

RP

1/2
i
⌦, (19)

where ⌦, P , L, and B are are purely diagonal with el-
ements ⌦

c

, P
c

, L
c

, and B
c

, respectively; 1 is the unit
matrix. Alternatively, the elements of the scattering ma-
trix can be expressed as

U
c

0
c

= ⌦
c

0⌦
c

2

4�
c

0
c

+ 2i(P
c

0P
c

)1/2
X

�µ

A
�µ

�
�c

0�
µc

3

5 (20)

where A
�µ

are elements of the level matrix A that is
defined in level space by its inverse:

[A�1]
�µ

= (E
�

� E)�
�µ

�
X

c

�
�c

�
µc

(L
c

�B
c

). (21)
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We also define a matrix M that is closely related to the
scattering matrix U :

U = ⌦

h
1+ 2iP 1/2

MP

1/2
i
⌦ (22)

M
c

0
c

=
�
[1�R(L�B)]�1

R

 
c

0
c

(23)

=
X

�µ

A
�µ

�
�c

0�
µc

. (24)

The matrix M may be interpreted physically as the pro-
jection of the outgoing-wave Green’s function onto the
the channel surfaces (Lane and Robson, 1966, Eq. (65)).

If the scattering matrix is diagonal, the nuclear phase
shifts �

c

may be defined via

U
cc

= e2i�c . (25)

The ⌦
c

0⌦
c

�
c

0
c

term provides so-called hard-sphere con-
tribution to U

cc

0 ; it is only present for elastic scatter-
ing. While the phase shift corresponding to this term is
mathematically identical to that resulting from an infi-
nite repulsive core at the channel radius, one should avoid
placing too much physical significance on it since the to-
tal phase shift has contributions from both this term and
from the R-matrix. Note also that the hard-sphere term
is present even if the nuclear interactions vanish.

The solution corresponding to Eq. (18) in the internal
region can be found using (LT, Eq. IX.1.31):

| iint = �i
X

cJM

⌦
c

(2~P
c

)1/2z
cJM

X

�µ

A
�µ

�
µc

|�JMi.

(26)
With the particular choice

z
⇠JM

= i


⇡~(2l + 1)

µ
↵

k
↵

�1/2
(sl⌫0|JM) (27)

where ⇠ ⌘ ↵sl and z
cJM

= 0 for c 6= ⇠, | iext is asymp-
totically equal to exp[i(k

↵

z
↵

+ ⌘
↵

log k(r
↵

� z
↵

)]| i
↵s⌫

plus outgoing waves. In this case, noting that M = ⌫
only, | i becomes

|↵s⌫iext =
X

lJ

i


⇡~(2l + 1)

µ
↵

k
↵

�1/2
(28a)

⇥(sl⌫0|J⌫)
"
|I⇠J⌫i �

X

c

UJ

c⇠

|OcJ⌫i
#

|↵s⌫iint =
X

lJ

~⌦
⇠


2⇡P

⇠

(2l + 1)

µ
↵

k
↵

�1/2
(28b)

⇥(sl⌫0|J⌫)
X

�µ

A
�µ

�
µ⇠

|�J⌫i.

The wavefunction |↵s⌫i corresponds to an incident plane
wave in partition ↵ with channel spin s and projection ⌫;
the asymptotic form of Eq. (28a) may be used to define
scattering amplitudes. These equations are also useful

for calculating radiative capture in perturbation theory,
as described below. In addition, the plane wave states
can be expressed in terms of partial waves:

|↵s⌫i = i⇡1/2

k
↵

X

lJ

(2l + 1)1/2(sl⌫0|J⌫)|↵slJ⌫i, (29)

where the internal and external representations of
|↵slJ⌫i can be read o↵ by inspection of Eq. (28).
For the calculation of observables, formulas from gen-

eral reaction theory may be utilized. Defining the tran-
sition matrix to be

T
cc

0 = e2i!c�
cc

0 � U
cc

0 , (30)

the angle-integrated cross section can then be computed
via (LT, Eq. VIII.3.2b)

�
↵↵

0 =
⇡

k2
↵

X

Jll

0
ss

0

g
J

|T
cc

0 |2 , (31)

where the case of elastic scattering of charged particles
is excluded. The statistical factor is given by

g
J

=
2J + 1

(2J
↵1 + 1)(2J

↵2 + 1)
, (32)

where J
↵1 and J

↵2 are the individual particle spins for
the pair ↵.
While the angle integrated cross section is related in a

rather simple way to the transition matrix via Eq. (30),
the unpolarized di↵erential cross section takes on a more
complicated form because di↵erent partial waves may in-
terfere:

d�
↵,↵

0

d⌦
↵

0
=

1

(2J
↵1 + 1)(2J

↵2 + 1)

⇥
X

ss

0

(2s+ 1)
d�

↵s,↵

0
s

0

d⌦
↵

0

(33)

where

(2s+ 1)
k2
↵

⇡

d�
↵s,↵

0
s

0

d⌦
↵

0
= (2s+ 1)|C

↵

0(✓
↵

0)|2�
↵s,↵

0
s

0

+
1

⇡

X

L

B
L

(↵s,↵0s0)P
L

(cos ✓
↵

0) + �
↵s,↵

0
s

0(4⇡)�1/2

⇥
X

Jl

(2J + 1)2Re
⇥
i(T J

c

0
c

)⇤C
↵

0(✓0)P
l

(cos ✓
↵

0)
⇤
,

(34)

with

B
L

(↵s,↵0s0) =
(�1)s�s

0

4

X

J1J2l1l2l
0
1l

0
2

Z̄(l1J1l2J2, sL)

⇥ Z̄(l01J1l
0

2J2, s
0L)(T J1

↵

0
s

0
l

0
1,↵sl1

)(T J2

↵

0
s

0
l

0
2,↵sl2

)⇤
(35)
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and

Z̄(l1J1l2J2, sL) =

((2l1 + 1)(2l2 + 1)(2J1 + 1)(2J2 + 1))1/2

⇥ (l1l200|L0)W (l1J1l2J2; sL).

(36)

Here the P
L

(cos ✓
↵

) are the Legendre Polynomials andW
is the Racah coe�cient. The C

↵

(✓
↵

) are the Coulomb
amplitudes that are only present for charged-particle
elastic scattering. They are given by

C
↵

(✓
↵

) = (4⇡)�1/2⌘
↵

csc2
✓
✓
↵

2

◆

⇥ exp

⇢
�2i⌘

↵

ln


sin

✓
✓
↵

2

◆��
,

(37)

where ⌘
↵

is the Sommerfeld parameter for the partition
↵. The di↵erential cross section for polarized particles,
which is not utilized in this analysis, can be found in
Paetz gen. Schieck (2012), for example.

B. Physical Interpretation of the R-Matrix Parameters

Following Thomas (1951), it is instructive to make a
one level approximation to the level matrixA. This leads
(ignoring the hard-sphere contribution if c = c0) to

|T
cc

0 |2 =
�
�c

�
�c

0

(E
�

� E +�
�

)2 + 1
4 (
P

c

00 �
�c

00)2
, (38)

where �
�c

= 2P
c

�2
�c

is the formal partial width for chan-
nel c and �

�

is the energy-dependent level shift:

�
�

= �
X

c

�2
�c

[S
c

(E)�B
c

]. (39)

This form is functionally quite similar to the expression
of Breit and Wigner (1936) for a single resonance level,
with the exception of the level shift. Considering that
the boundary condition constants B

c

are arbitrary real
parameters, the correspondence to the Breit-Wigner for-
mula may be made closer by choosing

B
c

= S
c

(E
�

), (40)

i.e., such that the level shift vanishes at E
�

. In this
situation, we may associate E

�

with the resonance en-
ergy. When the boundary conditions satisfy Eq. (40), we
will denote the corresponding R-matrix parameters with
tildes, i.e., as Ẽ

�

and �̃
�c

.
Further following Thomas (1951), one may make a lin-

ear approximation to the level shift

�
�

⇡ (Ẽ
�

� E)
X

c

�̃2
�c

dS
c

dE
(Ẽ

�

) (41)

and Eq. (38) becomes (LT, Eq. VII.3.2)

|T
cc

0 |2 =
�̃
�c

�̃
�c

0

(Ẽ
�

� E)2 + 1
4

⇣P
c

00 �̃
�c

00

⌘2 , (42)

where (LT, Eqs. XII.3.5 and XII.3.6)

�̃
�c

=
2P

c

�̃2
c

1 +
P

c

0 �̃2
�c

0
dSc0
dE

(Ẽ
�

)
. (43)

With this definition, Eq. (42) is now formally identical to
the Breit-Wigner expression. One may expect the Breit-
Wigner formula to be a particularly good approximation
to R-matrix theory in the case of an isolated narrow reso-
nance, such that the importance of other resonances and
any non-linear energy dependence of S

c

(E) is minimal.
The partial width for decay into channels which are

closed (or bound) is zero. In this case, one defines instead
the ANC, which are real quantities that can be related to
the reduced width via (LT, Eqs. IV.7.1-IV.7.4), (Barker,
1995, Eqs. (8) and (16)), (Mukhamedzhanov and Tribble,
1999, Eqs. (60) and (63)):

C
�c

=
(2µ

↵

a
c

)1/2

~W
c

(a
c

)

⇥ �̃
�c

h
1 +

P
c

0 �̃2
�c

0
dSc0
dE

(Ẽ
�

)
i1/2 ,

(44)

where W
c

(a
c

) is the exponentially-decaying Whittaker
function evaluated at the channel radius. Note that the
square of this equation, C2

�c

, is very similar in structure
to Eq. (43) that describes the partial widths in unbound
channels. If the level in question is bound in all chan-
nels, it can be shown (LT, Eq. A.29) that the factor of

[1 +
P

c

0 �̃2
�c

0
dSc0
dE

(Ẽ
�

)]1/2 in the denominator of Eq. (44)
is exactly what is required to change the normalization
volume of the eigenfunction from the interior region (see
Eq. (11)) to all space.
Based on the the correspondence of Eq. (42) to the

Breit-Wigner formula, the quantities Ẽ
�

and �̃
�c

defined
above are often called the observed resonance energy and
partial widths corresponding to an R-matrix level; in ad-
dition, (Azuma et al., 2010) used the terminology “phys-
ical R-matrix parameters” for Ẽ

�

and �̃
�c

. The reader
is cautioned, however, that many conventions have been
used in the past to define “resonance energies” and “par-
tial widths”. Some workers also go on to define “ob-
served” reduced widths, which provides an additional op-
portunity for confusion (such parameters are not used in
this work). In addition, Ẽ

�

and �̃
�c

are somewhat depen-
dent upon the channel radius that is used. A more funda-
mental and unambiguous definition of resonance energies
and partial widths is provided by the poles and residues
of the scattering matrix which may be extracted from
an R-matrix parametrization (Hale et al., 1987). This
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approach brings with it complications, including the fact
that these poles and residues are generally complex quan-
tities. However, for the case of a bound state, the relation
is simple: Ẽ

�

is a pole of the scattering matrix and its
residues are proportional to C

�c

C
�c

0 .
In order to give a more intuitive measure of the

strength of the reduced width, it is often divided by the
Wigner limit (Wigner and Eisenbud, 1947) to give the
dimensionless reduced width

✓2
�c

=
�̃2
�c

�2W
, where (45)

�2W =
3

2

~2
µ
↵

a2
c

or
~2

µ
↵

a2
c

(46)

is the Wigner limit. Unfortunately di↵erent conventions
have been used for the Wigner limit that has led to some
confusion in the literature. The quantity �2W may be
thought of as a crude estimate for the reduced width cor-
responding to a “single-particle” assumption for channel
c. Consequently, ✓2

�c

is similar to the spectroscopic fac-
tor and can be interpreted physically as a dimensionless
measure of the strength of a level relative to the single-
particle case. We generally avoid the use of ✓2

�c

in this
work because of its ambiguous definition and dependence
on channel radius. We have, however, included some dis-
cussion in order to allow comparison with previous work.

C. Parameter Transformations

The tilde notation implies that the parameters are
relative to the choice of boundary condition given by
Eq. (40), i.e. that the level shift vanishes at the reso-
nance energy. It is only for this choice of B

c

that the
R-matrix parameters have a simple physical interpreta-
tion. Since the B

c

are energy independent, this implies
that only one level of a given spin and parity can sat-
isfy Eq. (40) and thus the parameters corresponding to
other levels will not have a simple physical interpretation.
Barker (1972) has shown that the scattering matrix is in-
variant with respect to changes in the B

c

, provided the
R-matrix parameters are adjusted using a transformation
that was also given. That this result holds even when the
number of levels is finite is rather remarkable and unex-
pected, and is the likely reason why it took nearly 30
years after the formulation of R-matrix theory for this to
be noticed. It is possible via iterative searching to find
the transformations which yield Eq. (40) for all channels
simultaneously and thus deduce a physical interpretation
for all of the levels.

Brune (2002) showed that the number of independent
transformations yielding Eq. (40) in all channels is equal
to the original number of R-matrix levels, provided that

dS
c

/dE > 0 (which appears to be true in practice, al-
though it remains in general unproven). This work fur-
ther showed that the R-matrix formalism could be cast
in a form such that the scattering matrix is given di-
rectly in terms of the Ẽ

�

and �̃
�c

for all of the levels. In
this approach, the B

c

do not appear and all of the pa-
rameters have a simple physical interpretation. We call
Ẽ

�

and �̃
�c

the alternative R-matrix parameters. The
alternative level matrix may be defined via

(Ã�1)
�µ

= (Ẽ
�

� E)�
�µ

�
X

c

�̃
�c

�̃
µc

(S
c

+ iP
c

)

+
X

c

(
�̃2
�c

S
�c

� = µ

�̃
�c

�̃
µc

S�c(E�Ẽµ)�Sµc(E�Ẽ�)

Ẽ��Ẽµ
� 6= µ

,

(47)

where S
�c

⌘ S
c

(Ẽ
�

). The M matrix, which via Eq. (22)
determines the scattering matrix and thus the observ-
ables, is then given by

M
c

0
c

=
X

�µ

Ã
�µ

�̃
�c

0 �̃
µc

. (48)

It is important to note that this formalism is mathemat-
ically equivalent to the original R-matrix theory. This
approach is used exclusively in the present analysis.

D. Radiative Capture

R-matrix theory as described above does not include
reactions involving photons and the channel label c used
in the previous equations do not include such channels.
As is the case for most theoretical treatments, we include
photon channels in R-matrix calculations via perturba-
tion theory, where the transition matrix is given by the
matrix element of the electromagnetic interaction Hamil-
tonian evaluated between initial and final nuclear states.
The interaction Hamiltonian is decomposed into a sum of
transition operators corresponding to particular multipo-
larities which are classified as electric (EL) or magnetic
(ML). The R-matrix formalism is then used to define
the nuclear states. We assume here that the final state
is bound in all nuclear decay channels, although an ex-
tension to unbound final states is possible. The matrix
elements can be evaluated in coordinate space by consid-
ering separately the contributions from inside and outside
the channel radii of the initial scattering state. In the in-
ternal region, the key quantities are the matrix elements
of the transition operators between the R-matrix basis
states |�i and the final state, which are defined to be the
(internal) reduced widths for photons. In the external
region, the Coulomb functions can be used for both the
initial and final state. Importantly, a bound final state
may be parametrized completely in the external region by
its ANCs. In the external region, we only consider elec-
tric transitions and utilize the simple Siegert form of the
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transition operators in the long-wavelength approxima-
tion. This contribution to the transition matrix has been
traditionally referred to as external capture, and depends
only on the R-matrix parameters for nuclear channels
and the final-state ANCs.

There are di↵erent nomenclatures that have been used
in the literature to describe the direct (one-step) process
that can occur for a capture reaction. Since this has
led to considerable confusion, a moment is taken here
to better define the terminology surrounding the direct
capture process. In this work “direct capture” always
refers to transitions from an initial state to a final state in
a non-resonant manner, where no obvious intermediate
compound nucleus resonance is populated. It does not

refer to any particular model, including the direct cap-
ture model developed by Rolfs (1973). In fact, it should
be noted that in Rolfs (1973) careful distinction is made
between the direct capture model that was being used
and the more general concept of a direct capture pro-
cess. From a quantum-mechanical point of view there
is no completely unambiguous way to separate resonant
and non-resonant processes, which implies that the con-
cept of “direct capture” is likewise somewhat ambiguous.
In the R-matrix approach, the physical process of direct
capture is described by a combination of external cap-
ture and background poles. From this point of view, the
ambiguity is related to the somewhat arbitrary choice of
channel radius, which a↵ects the strength of background
poles and the division between internal and external cap-
ture. Another point which has caused confusion is that
“direct capture” is not synonymous with external cap-

ture in the R-matrix approach where resonances also con-
tribute to external capture. However, the two concepts
do have considerable overlap and much of the important
early work in this area used “direct capture” models that
only included external capture (or extranuclear capture)
(Christy and Duck, 1961; Tombrello and Parker, 1963).

The importance of external radiative capture in the R-
matrix approach was first considered by Thomas (1952).
The general formalism has been presented by Azuma
et al. (2010), which is based upon the work of (Angulo
and Descouvemont, 2001; Barker and Kajino, 1991; Holt
et al., 1978; Lane and Lynn, 1960; Lane and Thomas,
1958; Lynn, 1968). We we largely follow Azuma et al.

(2010) which employs the general notation of Barker
and Kajino (1991) but utilizes ANCs to parametrize the
strength of the final states.

We will utilize the label p ⌘ ✏L�
f

for photon channels,
where ✏ indicates the transition type (✏ = 0 for mag-
netic, ✏ = 1 for electric), L is the multipolarity, and �

f

characterizes the final nuclear state by its total angular
momentum J

f

, parity, energy, and possibly its ANCs.
Note that �

f

is analogous to the label ↵ used for nuclear
partitions.

The di↵erential radiative capture cross section may be
calculated in first-order perturbation theory via (Knut-

son, 1999)

d�
↵!�f

d⌦
�

=
k
�

2⇡~v
↵

1

(2J
↵1 + 1)(2J

↵2 + 1)
X

s⌫qMf

���h�
f

M
f

|H
e

(~k
�

, q)|↵s⌫i
���
2

,
(49)

where |�
f

M
f

i is the final-state wavefunction with total

angular momentum projectionM
f

; ~k
�

is the photon wave
vector with magnitude k

�

= (E �E
f

)/~c with E
f

being

the final state energy; H
e

(~k
�

, q) is the photon emission
Hamiltonian, with q the photon circular polarization; and
|↵s⌫i are plane wave states with outgoing boundary con-
ditions, normalized to unit magnitude, and are described
within the R-matrix approach by Eq. (28). The final
state wavefunction is normalized over all space such that
h�

f

M
f

|�
f

M 0

f

i = �
MfM

0
f
and it behaves under time re-

versal according to

K|�
f

M
f

i = (�1)Jf�Mf |��M
f

i. (50)

The photon emission Hamiltonian is given byH
e

(~k
�

, q) =

[H
a

(~k
�

, q)]†, where H
a

(~k
�

, q) is the photon absorption
Hamiltonian (Dohet-Eraly and Baye, 2013; Knutson,
1999; Rose and Brink, 1967)

H
a

(~k
�

, q) = �
X

✏Lµ

q1�✏↵
✏L

M✏L

µ

DL

µq

(��
�

,�✓
�

, 0), (51)

with

↵
✏L

= �

2⇡(L+ 1)(2L+ 1)

L

�1/2 iL+1�✏kL
�

(2L+ 1)!!
. (52)

Here, DL

µq

is the Wigner rotation matrix, ✓
�

and �
�

de-
scribe the photon emission angles, M✏L

µ

are the multipole
operators, and µ is the projection of L.
The transition matrix connecting nuclear and photon

channels may be defined as

T J

c!p

=


8⇡(L+ 1)

~v
↵

L

�1/2 kL+1/2
�

(2L+ 1)!!
⇥

h↵slJ ||iL+1�✏M✏L||�
f

i⇤,
(53)

where the definition of the reduced matrix element is

h↵slJM |iL+1�✏M✏L

µ

|�
f

M
f

i ⌘
(LJ

f

µM
f

|JM)h↵slJ ||iL+1�✏M✏L||�
f

i, (54)

and |↵slJ⌫i are the partial-wave components of |↵s⌫i
defined by Eq. (29). With this definition of the transi-
tion matrix, the angle-integrated radiative capture cross
section corresponding to Eq. (49) can be written as

�
↵!�f =

⇡

k2
↵

X

JlsL✏

g
J

��T J

c!p

��2 , (55)
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which is analogous to Eq. (31) for the cross section con-
necting nuclear partitions. The expression for the di↵er-
ential cross section in terms of T J

c!p

is given by Eq. (36)
of Azuma et al. (2010).

We now specify our approach to R-matrix theory,
where the internal and external contributions to the ma-
trix element h↵slJ ||M✏L||�

f

i are considered separately
and we can define the total transition matrix to be the
sum of internal and external contributions:

T J

c!p

= T J

c!p

(int) + T J

c!p

(ext). (56)

Using Eqs. (28b) and (29) the internal contribution to
the matrix element is given by

h�
f

||iL+1�✏M✏L||↵slJi⇤int = �i⌦
c

(2~v
↵

P
c

)1/2

⇥
X

�µ

A
�µ

�
µc

h�||iL+1�✏M✏L||�
f

i⇤int, (57)

where the J index is suppressed in the r.h.s. and the
reduced matrix element is defined as in Eq. (54). We
thus have

T J

c!p

(int) = �2i⌦
c

(P
c

k2L+1
�

)1/2
X

�µ

A
�µ

�
µc

�
�p

, (58)

where the photon reduced-width amplitude is given by

�
�p

=


4⇡(L+ 1)

L

�1/2 h�||iL+1�✏M✏L||�
f

iint
(2L+ 1)!!

. (59)

Due to the time-reversal properties of |�i and |�
f

i given
by Eqs. (12) and (50), as well as of the multipole op-
erators, these reduced-width amplitudes are real quanti-
ties (Holt et al., 1978; Knutson, 1999; Lane and Thomas,
1958) and hence the complex conjugation symbol on the
reduced matrix element has been dropped. We assume
there is no residual photon-energy dependence of the mul-
tipole operators, as is the case for the long-wavelength
approximation, such that the �

�p

are constants. Note
also that the form of T J

c!p

(int) given by Eq. (58) has the
same structure as the transition matrix connecting nu-
clear channels, with the exception that photon channels
do not contribute to A

�µ

(or equivalently, to the reso-
nance denominators).

In the external region, explicit forms for the wavefunc-
tions and multipole operators will be utilized. Here, the
final-state wavefunction is assumed to consist of two clus-
ters in each channel and may be written as

|�
f

M
f

iext =
X

c

C
c

W
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(r
↵

)
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↵
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⌦ ilY
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)
⇤
JfMf

,

(60)

where the sum is over final-state channels c, W
c

(r
↵

) is
the Whittaker function which describes the radial depen-
dence of the final channel c, and C

c

is the ANC describing
the channel’s asymptotic strength.

Only the electric multipole operators will be consid-
ered in the external region. Assuming that each cluster
is represented by a point charge, using the Siegert form of
the operators, and making the long-wavelength approx-
imation, the electric multipole operators in partition ↵
become

M1L
µ

= ēL
↵

rL
↵

Y
Lµ

(r̂
↵

), (61)

where the e↵ective charge is
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(62)

with eZ
↵i

and M
↵i

the charges and masses of partition ↵
and M

↵

= M
↵1 +M

↵2. The e↵ective charge factor plays
a critical role in 12C(↵, �)16O E1 capture. Due to the
nearly equal charge-to-mass ratios of 4He and 12C nuclei,
ēL
↵

nearly vanishes for this case and external capture is
strongly surpressed.
The external contribution to the transition matrix can

now be calculated using Eqs. (28a) and (29) for the initial
state, Eq. (60) for the final state, Eqs. (19) and (22) for
the nuclear scattering matrix, Eq. (61) for the multipole
operators, and Eq. (53) for the transition matrix. Note
that matrix elements of these simple electric multipole
operators vanish unless ↵ = ↵

f

and s = s
f

. One thus
obtains
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(63)

where the real function V contains angular momentum
factors:
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When c is an open channel, the radial integrals J 0

clfL
and
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clfL
are given by
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where c
f

⌘ ↵sl
f

and F
c

(r
↵

) and G
c

(r
↵

) are the reg-
ular and irregular Coulomb wavefunctions, respectively.
If channel c is closed, we take J 0

ccfL
= 0 and

J 00
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=
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Our radial integrals are very similar to those introduced
by Barker and Kajino (1991), but use a di↵erent normal-
ization and a di↵erent convention for closed channels.

As expressed by Eq. (63), the external photon transi-
tion matrix consists of two types of terms. The first is
proportional to �

cc

0J 0

ccfL
and thus only receives contribu-

tions from the entrance channel. It is also non-resonant
and independent of the R-matrix parameters of the nu-
clear channels, except for the channel radii. In addi-
tion, the radial scattering wavefunction in the J 0

ccfL
in-

tegral corresponds to elastic scattering by a hard sphere.
For these reasons, this contribution has been called hard-
sphere capture. The second term is proportional to the
M matrix and consequently does depend on the nuclear
R-matrix parameters and exhibits resonances along with
the nuclear channels. This contribution has been called
channel capture in the literature. Note that the division
of capture strength between the internal contribution,
hard-sphere capture, and channel capture is dependent
upon the choice of channel radii.

It is possible to write the internal and external con-
tributions to T J

c!p

in a di↵erent form that emphasizes
another aspect of the underlying physics that they share.
Considering radiative captures to a particular photon
channel p from nuclear channels of total spin J , we can
write Eq. (58) as

T
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p

, (68)

where T J

p

(int) is a column vector in channel space with el-
ements T J

c!p

, � is a matrix (in general, rectangular) with
elements �

�c

, A is the level matrix defined by Eq. (21),
and �

p

is a column vector in level space with elements
�
�p

. Using the method described in the appendix of
Brune (2002), this equation can also be written as
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where R

p

is a column vector in channel space with com-
ponents
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]
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Considering now the external region, one can define
column vectors x and y in channel space with compo-
nents
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Equation (63) can then be written as
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.

We define P�1
c

x
c

⌘ 0 for closed channels, since from
Eq. (63) it is clear that these values only a↵ect T J

c!p

when
c is closed, which are channels we are not interested in.
Defining S to be a diagonal matrix in channel space with
elements consisting of the shift function S

c

, the quantity
in braces in Eq. (73) simplifies to

R

p

(ext) ⌘ [1�R(S �B)]P�1
x+Ry, (74)

which is a real quantity as the complex pieces have can-
celed.

The total transition matrix can now be written as

T
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=� 2i⌦P
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The important result is that both R

p

and R

p

(ext) are
real quantities, which implies the complex phases of the
T J

c!p

are determined entirely by Coulomb interactions
and the R-matrix parameters for nuclear channels – and
thus not by the photon emission Hamiltonian. Knut-
son (1999) has pointed out that results such as this are
a manifestation of Watson’s Theorem (Watson, 1954),
which is more general than R-matrix theory. The pri-
mary assumptions required for Watson’s Theorem are
first-order perturbation theory for photon emission and
time-reversal invariance. A derivation of the analogous
result for the single-channel R-matrix case has been given
by Barker and Kajino (1991), Eqs. (25-27), where the
complex phase of the capture matrix element is found to
be simply given by the sum of the Coulomb and nuclear
elastic-scattering phase shifts. As shown by Eq. (55),
complex phases do not a↵ect the total cross section. They
do, however, significantly impact angular distributions,
which has important implications for the 12C(↵, �)16O
reaction, as �-ray angular distributions are used to sep-
arate the E1 and E2 multipole transitions to the 16O
ground state. It has been found that elastic scattering
data, which can precisely fix the nuclear R-matrix pa-
rameters, are very helpful for improving the accuracy of
the extracted radiative capture multipoles. See Brune
(2001) and Gai (2013) for further discussion.

In the case of a narrow resonance or bound state, a
single-level approximation again provides for a physical
interpretation. We will assume the level shift vanishes
for level � and consequently describe it with Ẽ

�

, �̃
�c

,
and �̃

�p

. We make a single-level approximation to the
matrix M appearing in Eq. (63) and ignore the hard-
sphere capture term. The cross section can then be put
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into the Breit-Wigner form as shown before for nuclear
channels. It is also useful to define a channel contribution
to the �-ray reduced width amplitude:
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ēL
↵

~ (µ
↵

a
c

)1/2V (Ll
f

Js; lJ
f

)

⇥ �
�c

C
↵slf (J

00

clfL
+ iJ 0

clfL
).

(76)

The resulting partial �-ray width can then be written as
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Note that �̃
�p

and �̃
�p

(ch), which are the internal and
external contributions, are combined coherently and that
�̃
�p

(ch) is in general a complex quantity. We should also
emphasize here that photon channels do not contribute
to the total width in the denominator of the Breit-Wigner
formula in this approach.

The radiative capture formalism presented above is
easily adapted to the alternative R-matrix parametriza-
tion. The alternative photon reduced widths �̃

�p

are de-
fined by the replacements �

�p

! �̃
�p

and h�| ! h�̃| in
Eq. (59). The internal contribution to the transition ma-
trix is calculated using the replacement
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in Eq. (58) (Brune, 2002). For the external contribution,
one only needs the M matrix, which is already defined
in terms of the alternative parameters by Eq. (48).

E. �-Delayed Particle Emission

As in the case of radiative capture, �-delayed particle
spectra can be modeled in the R-matrix approach using
first-order perturbation theory. General formulas have
been given by Barker and Warburton (1988) and formu-
las specific to the �-delayed ↵-particle spectrum from
16N are given, for example, by Azuma et al. (1994). It
should be noted that only allowed transitions are consid-
ered, which is roughly analogous to only considering E1
transitions for radiative capture. In addition, we do not
consider any external contribution to the transition ma-
trix element. Such contributions are not thought to be
significant for the 16N � decays, although they have been
found to be important for understanding the �-delayed
deuteron spectrum from 6He decay (Barker, 1994a). The
reader should be aware that � decays into unbound states
has received considerably less theoretical attention, in the
R-matrix context or otherwise, than radiative capture.

The rate of �-delayed particle decay may be written as
(Barker and Warburton, 1988)

ln 2

t1/2
=

Z X

Jc

wJ

c

(E)dE (79)

where di↵erential decay rate wJ

c

is summed over the final-
state angular momenta J and channels c ⌘ ↵sl and t1/2
is the partial half life for �-delayed particle emission. For
example, the total half-life of 16N is 7.13(2) s (Tilley
et al., 1993), but the branching ratio for �-delayed ↵
emission is only 1.2⇥10�5. Therefore the �-delayed ↵
emission half-life is 5.9⇥105 s.

The wJ

c

(E) describe the �-delayed particle energy
spectrum (or possibly spectra) components that do not
interfere. These quantities may be written in the R-
matrix formalism as (Barker, 1967, 1969; Barker and
Warburton, 1988)

wJ

c

(E) = C2f
�

P
c

X

x

������
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�x
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A
�µ

������

2

, (80)

where C2 is a constant factor, f
�

is the integrated Fermi
function (the �-decay phase space factor), and the g

�x

are the �-decay feeding factors. Here, x is used to in-
dicate either Fermi or Gamow-Teller transitions. The
J-dependence of the R-matrix quantities g

�x

, P
c

, �
µc

,
and A

�µ

in the r.h.s. of Eq. (80) has been suppressed. It
should also be noted that the �-decay feeding factors are
assumed here to take only real values.
In practice it is often convenient to rewrite Eq. (80) as

nJ

c

(E) = f
�

P
c

X

x

������
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�µ

B
�x

�
µc
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�µ
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2

, (81)

where the feeding factor is now defined to be

B
�x

= C(Nt1/2/ ln 2)
1/2g

�x

, (82)

nJ

c

(E) is the number of counts per unity energy, and N
is the total number of counts in the spectrum. Further
variations of this formula exist in the literature, including
dividing Eq. (81) by N and redefining B

�x

so that it is
independent of N . In addition, some workers, such as
Azuma et al. (1994), absorb the reduced width �

µc

into
the definition of the feeding factor.
In the case of � decay to a narrow unbound level, the

single-level approximation may be used to relate the mea-
sured transition strength to the feeding factor for that
level. This approximation results in a Breit-Wigner en-
ergy spectrum for the particle decay. We will assume
the level shift vanishes for the level � and that its pa-
rameters are Ẽ

�

, �̃
�c

, and B̃
�x

. If one then ignores the
energy dependences of f

�

and P
c

and assumes S
c

is linear
in energy, the integral over the resulting Lorentzian en-
ergy distribution can be performed analytically to obtain
(Barker and Warburton, 1988)

(ft1/2)� =
N

�

t1/2[1 +
P

c

�̃2
�c

dSc
dE

(Ẽ
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2 , (83)



23

where N
�

is the total number of counts observed for
the transition. This formula may also be used to define
log(ft1/2)� values. Also note that this equation becomes
exact (in the sense of the R-matrix approach) if the final
state is bound. See also appendix A of Riisager (2014) for
further discussions of this topic. We utilize such calcula-
tions in this work to define the feeding factors for bound
states and to compare our results with previous studies
in the literature. It should also be noted that �-delayed
particle emission is easily implemented using the alter-
nate R-matrix parameterization – all that is required is
the replacement

X

�µ

B
�x

�
µc

A
�µ

!
X

�µ

B̃
�x

�̃
µc

Ã
�µ

, (84)

where the relation of the alternative feeding factors B̃
�x

to the B
�x

is given by Brune (2002). Finally, since only
Gamow-Teller transitions are allowed for 16N(�↵)12C, we
drop the x index from the labeling of the �-decay feeding
parameters for this case.

F. R-matrix Phenomenology

R-matrix theory can be used for the phenomenological
analysis of nuclear reaction data by adjusting the param-
eters to optimize the agreement with experimental data.
More specifically, this means adopting channel radii and
adjusting the parameters E

�

and �
�c

that determine the
scattering matrix in nuclear channels. These parameters
can also define the energies and ANCs of final states in
radiative capture. If radiative capture data and/or �-
delayed particle data are included in the analysis, then
the photon reduced widths �

�p

and/or the feeding factors
B

�x

would also be adjusted.
One significant approximation in phenomenological R-

matrix approach is that the sums over levels must be
truncated. Typically, the known levels up to a certain
excitation energy are included and the remainder of the
spectrum is modeled with one or more “background” pole
terms for each spin and parity. This has been the stan-
dard technique for some time (e.g., Breit (1940)), but the
exact implementation varies. This approach is utilized in
the present work and its e↵ect on the fit is discussed in
Sec. VII.C. In addition, it is also generally necessary to
truncate the sums over channels in a phenomenological
R-matrix analysis. Channels that are strongly closed en-
ergetically are typically neglected, as they are expected to
have very little influence (LT, subsection X.2). Channels
with large orbital angular momenta are likewise typically
excluded, as their influence is suppressed by the angular
momentum barrier.

The choice of channel radius warrants some discussion.
According to formal R-matrix theory, the channel radius
should be large enough so that at and beyond the channel

radius, nuclear forces are negligible and Coulomb wave-
functions are a good approximation. However, increasing
the channel radius increases the density of background
poles, as can be seen from (LT, IV.3.3b) for the case of
zero nuclear potential. In a phenomenological analysis,
choosing too large of a radius leads to problems with the
background poles becoming overly complicated. For ex-
ample, multiple background poles might be required to
cancel most of the large hard-sphere elastic scattering
phase shift (which increases along with with the channel
radius).
In practice, phenomenological R-matrix fits must use

channel radii which enclose most but not all of the nu-
clear interactions. As an example, the ab initio calcula-
tion of Nollett et al. (2007) using realistic nuclear forces
found that a radius of 9 fm was required for nuclear in-
teractions in the neutron+↵ system to become negligible.
However, a radius this large would be impractical for phe-
nomenological fitting; see, for example, Hale et al. (1987)
where 3 fm was used for this radius in a phenomenological
description. As a consequence of some nuclear interac-
tions beyond the channel radius, the phenomenological
reduced width amplitudes must be considered to be in
some sense to be re-normalized quantities. R-matrix fits
should, however, be fairly insensitive to the specific value
of the channel radius for a reasonable range of values.
As the radius increases, the penetrability factor becomes
larger and the reduced width amplitudes decrease to pre-
serve the physical width. It is thus good practice to ex-
plore the sensitivity of the phenomenological fit to the
channel radius (or radii). If a strong variation in the fit
quality exists, this can often indicate that background
poles have not been su�ciently considered.
The phenomenological R-matrix approach derives

much of its power from the fact that it automatically pro-
duces a scattering matrix that is unitary and symmetric,
even with the truncations mentioned above. Unitarity is
a particularly powerful constraint when data are available
from multiple reaction channels. A related statement is
that a single set of R-matrix parameters should be able
to simultaneously describe essentially all low-energy nu-
clear reaction and nuclear structure data relating to a
given compound nucleus. Our implementation of a phe-
nomenological R-matrix analysis of data relevant to the
12C(↵, �)16O reaction is discussed below.

G. R-matrix Strategy

As described in Sec. II, the energy range of the
12C(↵, �)16O cross section that is needed to calculate the
reaction rate for astrophysical environments is very low
(Ec.m. = 300 keV), well below the limits of current experi-
mental sensitivity (� ⇡ 2⇥10�17 barns). Therefore, while
there is a significant amount of data at higher energies, an
extrapolation to low energy must be made. This is the
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primary reason that the phenomenological model must
be employed. Further, from a more fundamental the-
ory stand point, the di↵erent contributions to the cross
section are calculated independently (see Secs. III.B and
IV.A). Therefore, it provides further constraint to the
phenomenological model if each of the individual contri-
butions, as well as their sum, are measured independently
as well. Further, as will be emphasized in Sec. VI, mea-
surements over a wide energy range, up to several MeV
above the ↵ threshold, are also very useful since they help
constrain both the interference patterns and the back-
ground contributions of the di↵erent components, both
of which can result in a large source of uncertainty in the
cross section extrapolation.

Because low energy measurements of the 12C(↵, �)16O
reaction are greatly hindered by the Coulomb barrier,
indirect techniques are extremely valuable. In particu-
lar these techniques can be used to deduce the level pa-
rameters (i.e. energies, ANCs, lifetimes) that can then
be used in R-matrix or other reaction models. These
types of measurements have proven the most useful in
constraining the contributions to the cross section from
the subthreshold states. In particular, it is the 1� level at
E

x

= 7.12 MeV (Ec.m. = -45 keV) and the E
x

= 2+ level
at 6.92 MeV (Ec.m. = -245 keV) that have the greatest
contribution to the total cross section at Ec.m. = 300 keV.
The energies and lifetimes (or �-widths) are well known
for these states, but the ANCs (or reduced widths) have
proven di�cult to determine accurately until recently
(see Sec. VI.F).

So far, the most successful indirect methods include
measurements of the ↵-spectrum from 16N(�↵)12C de-
cay, the di↵erential cross section of 12C(↵,↵0)12C elastic
scattering, and ↵-transfer reactions. All can be used to
determine or constrain one or both of the ANCs of the
1� and 2+ subthreshold states. One limitation of elastic
scattering is that, as shown by Eq. (34), the Coulomb
amplitude dominates elastic scattering at low energies.
Thus for energies below Ec.m.

⇡ 2.0 MeV, the elastic scat-
tering cross section is essentially indistinguishable from
Rutherford scattering. In the case of 16N(�↵)12C, the
spectrum is surpessed at low ↵ + 12C relative energies
by the Coulomb barrier but the Coulomb amplitude is
not present. This spectrum has been measured to below
Ec.m.

= 1 MeV, i.e. closer to the subthreshold states.
As compound nucleus reactions, the data from the

16N(�↵)12C decay and 12C(↵,↵0)12C reaction can be fit
directly in the R-matrix analysis. These data have the
added benefit that they give constraints on other im-
portant level parameters as well. On the other hand,
as a direct reaction, the ↵-transfer data is analyzed us-
ing a distorted wave Born approximation analysis. The
ANCs are deduced from a DWBA analysis, then the val-
ues and associated uncertainties can be used in the R-
matrix model (see, e.g., (Mukhamedzhanov et al., 2001;
Mukhamedzhanov and Tribble, 1999)).

However, greatly complicating the issue, the sub-
threshold resonances interfere with other higher lying
broad resonances. These interferences are implemented
in the R-matrix by the relative signs of the reduced
width amplitudes in Eqs. (17) and (58); note the rela-
tion between the reduced width and the ANC is given
in Eq. (44). The relative signs determine if the ampli-
tudes of the cross section from the di↵erent resonances
will add or subtract, which can give drastically di↵erent
values for the cross section in o↵-resonance regions. This
is because when two components of the cross section (�1
and �2) interfere with one another the magnitude goes
as

�interference / 2
p
�1�2. (85)

Therefore even if one of the cross section components is
small, the interference term can still be significant com-
pared to the total. It is into just such an o↵-resonance
region where the extrapolation must be made to reach
the stellar energy range. Therefore a reliable and precise
extrapolation hinges on the determination of both the
magnitude of the level parameters and their relative signs
(see Sec. VII.B). This means that detailed measurements
of the 12C(↵, �)16O cross section over, experimentally ac-
cessible, o↵-resonance regions at higher energies are vary
valuable in constraining the extrapolation to low energy.
It should also be emphasized that there are two dif-

ferent general types of interference e↵ects seen in nu-
clear reactions. One type is when levels of the same
J⇡ combine to produce energy-dependent interference ef-
fects. Another type is when processes with di↵erent J⇡

values combine to produce angle-dependent e↵ects (see
Eq. (34)). Both types of interference are important for
understanding the 12C(↵, �)16O reaction. The former be-
ing particular critical for the low-energy extrapolation of
the cross section as just discussed. The latter are critical
in disentangling the E1 and E2 contributions to the cross
section (see Sec. VI.B). Practical experimental consider-
ations may allow for only an angle integrated and di↵er-
ential cross section measurement in a single setup. This
reemphasizes the need to combine many di↵erent kinds
of experimental results since di↵erent types of data are
critical to the R-matrix analysis and have di↵erent types
of uncertainties associated with them.
The general R-matrix strategy is then to utilize as

much experimental data as possible in order to provide
as much physical constraint as possible to the phono-
logical model. While low energy measurements of the
12C(↵, �)16O cross section are critical, so too are indi-
rect measurements and those at higher energies. It is
only by combining this wide array of experimental data
that the phenomenological model can be constrained to
the point that it can yield an extrapolated cross section
approaching the desired accuracy of nuclear astrophysics
applications. With this clearly in mind, a summary of
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these many and diverse experimental endeavors is in or-
der.

V. EXPERIMENTAL MEASUREMENTS

The study of the 12C(↵, �)16O reaction can be nat-
urally divided into three eras: first measurements, the
push to low energies, and a return to indirect methods.
The division of these eras is marked by some drastic im-
provement or new discovery in the experimental measure-
ments.

Early measurements sought to investigate the low en-
ergy cross section, not for nuclear astrophysics motiva-
tions, but to study the e↵ects of isospin breaking of T
= 0 transitions (as discussed in Sec. I). In these inves-
tigations many di↵erent experimental techniques, nearly
all of the indirect methods used today, were developed to
study the properties of the compound nucleus. Many of
these experiments simply su↵ered from the immaturity
of the field, both in experimental techniques and theo-
retical interpretation. The capstones for this first period
were the unprecedented measurement of the low energy
capture cross section around the 1� resonance at Ec.m. =
2.68 MeV by Dyer and Barnes (1974) and the multilevel-
multichannel R-matrix analysis of Barker (1971) that uti-
lized capture, scattering, and � delayed ↵ emission data.

Once the capture cross section was actually mea-
sured, a race began to push the measurements to lower
energies, closer to the range of astrophysical interest
(Ec.m. ⇡ 300 keV). A host of experimental improvements
and new techniques were developed, including highly 13C
depleted and stable targets, high purity target chambers,
recoil separators, inverse kinematic measurements with
pure helium gas targets, and high energy resolution de-
tectors. Despite the extraordinary e↵orts, the rapid drop
in the low energy cross section made lower energy mea-
surements hard won. The major discovery of this period
was that not only E1, but also E2 multipolarity, perhaps
even in almost equal amplitudes, make up the dominating
ground state transition cross section at stellar energies.
Further theoretical methods to interpret the higher pre-
cision data were also more thoroughly explored. As it
became more apparent that direct techniques would be
extremely di�cult to improve upon, there was a return
to indirect methods. While the transition to the next
period is not so clear cut, the works of Buchmann et al.

(1993) and Zhao et al. (1993) serve as a reasonable divi-
sion point, as they mark one of the early re-measurements
of the � delayed ↵ emission spectrum of 16N and Azuma
et al. (1994) made one of the most detailed global analy-
ses of the time. These measurements would dramatically
decrease the uncertainty in the E1 cross section.

While measurements of the low energy capture cross
section continued, attempting improved measurements as
new detectors or techniques were developed, many e↵orts

have been made to revive the original indirect methods
of transfer, scattering, and � delayed ↵ emission of 16N.
Transfer reaction studies have probably benefited the
most from theoretical and experimental developments,
allowing new measurements to achieve an unprecedented
level of consistency. New measurements of the � delayed
↵ emission spectra also continued in an e↵ort to reach
greater sensitivity and achieve improved accuracy. New
scattering and recoil separator measurements were made
that covered a wide energy range with high precision,
providing a strong underpinning for the R-matrix analy-
ses. Increases in computational power also brought about
improvements in the sophistication of analysis methods,
allowing large amounts of data to be utilized simultane-
ously to better constrain phenomenological fits and mak-
ing Monte Carlo uncertainty methods viable. Because of
its complexity, additional e↵orts are always underway to
tackle this di�cult problem. New indirect methods such
as photo-disintegration and Coulomb excitation are un-
derway. New theoretical models are under development,
with ab initio calculations on the horizon (e.g. Elhatisari
et al. (2015)).
To aid the following discussions, Fig. 3 compares all

the E1 and E2 12C(↵, �)16O ground state cross section
data reported over the low energy range. While the R-
matrix fit, described later in this work, represents one
of the more detailed phenomenological analyses to date,
its use in this section is to simply provide a standard
for comparison of the di↵erent data sets. This is most
helpful when the data are di�cult to compare on a one-
to-one basis. For example, when experimental e↵ects are
significant or the cross section data are presented using
di↵erent representations. Since this figure is intended to
illustrate an unbiased comparison between the di↵erent
data sets, no scaling factors have been applied to the
data.
Experimental techniques have improved significantly

over the years and several di↵erent techniques have been
explored. One of the most significant improvements has
been target quality and stability or the use of a helium
gas target for inverse kinematics. As a summery for the
reader, Table II collects this information for the capture
measurements.

A. First Measurements (’55-’74)

The first published attempt at a direct measurement
of the low energy 12C(↵, �)16O cross section was made by
Allan and Sarma (1955) at Imperial College in London
with the sole goal of simply detecting a signal from the
capture reaction. The experiment was performed with an
↵ beam of 1.6 MeV, a thick target (of unspecified thick-
ness) made of natural carbon (98.9% 12C, 1.1% 13C by
mole fraction), and a NaI detector. Like all subsequent
experiments using forward kinematics, it was greatly hin-



26

10-3

10-2

10-1

Jaszczak et al. (1970)
Jaszczak and Macklin (1970) Dyer and Barnes (1974) Kettner et al. (1982)

10-3

10-2

10-1

Redder et al. (1987) Kremer et al. (1988) Ouellet et al. (1992)

10-3

10-2

10-1

S 
fa

ct
or

 (M
eV

 b
)

Roters et al. (1999) Gialanella et al. (2001) Kunz et al. (2001)

0.5 1.0 1.5 2.0 2.5 3.0
10-3

10-2

10-1

Fey (2004) Assuncao et al. (2006)

0.5 1.0 1.5 2.0 2.5 3.0
Makii et al. (2009)

0.5 1.0 1.5 2.0 2.5 3.0
Center of Mass Energy (MeV)

Plag et al. (2012)

* *

FIG. 3 (Color online) Comparison of all E1 and E2 cross sections measured to date. The early works of Jaszczak et al.
(1970); Jaszczak and Macklin (1970); and Kettner et al. (1982) give only total cross sections. These are demarcated by an
(*). As a standard for comparison, the R-matrix fit described later in this work is also shown. The solid red line shows the
E1 contribution (except where only the total is given) while the red dashed line gives the E2 contribution. No normalization
factors have been applied to the data. It should be noted that the region of astrophysical interest is at roughly Ec.m. ⇡ 300 keV,
far below the lowest energy measurements at Ec.m. ⇡ 1 MeV.

dered by background produced from the high cross sec-
tion 13C(↵, n)16O reaction. Indeed several studies were
made simply to characterize this reaction (see e.g. Jones
and Wilkinson (1953)), which is a background for all ↵
induced reaction studies. A comparison of the cross sec-
tions is shown in Fig. 4 where it can be seen that that of
the 12C(↵, �)16O reaction, on top of the lowest energy 1�

resonance, is more than six orders of magnitude smaller
than that of the 13C(↵, n)16O reaction. Only upper lim-
its were determined by Allan and Sarma (1955), not sur-
prising in hindsight, as it is now known that the capture
cross section at E

↵

= 1.6 MeV is about 0.2 nbarns!

An estimate for the astrophysical 12C(↵, �)16O cross
section was given soon after by Burbidge et al. (1957),
using the most basic kind of resonance theory: a single-
level Breit-Wigner (Breit and Wigner, 1936). The analy-
sis was limited to only the contribution from the 1� sub-

threshold state at E
x

= 7.12 MeV with the �-ray width
measured by Swann and Metzger (1956) and assuming
✓2
↵

(7.12) = 0.1. This result was later updated by Fowler
et al. (1967) using an improved resonance energy, �-ray
width (Swann and Metzger, 1957), and a theoretical cal-
culation of ✓2

↵

(7.12) (Stephenson, 1966) that was in rea-
sonable agreement with the result of the first ↵-transfer
reaction experiment (Loebenstein et al., 1967).

Bloom et al. (1957) (at Brookhaven National Lab-
oratory) were the first to resolve a signal from the
12C(↵, �)16O reaction. This was done by subtracting out
the large background produced by the 13C(↵, n)16O re-
action. A thick target (450 µg/cm2) technique was used
and measurements were made over an ↵ energy range
from 3.00 to 3.45 MeV. These measurements were asso-
ciated with decays of � rays from the E

x

= 9.59 MeV
state, whose � decay width was of great interest at the
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TABLE II Summary of target details for di↵erent 12C(↵, �)16O experiments.

Ref. Target Backing Thickness 13C depletion or gas purity
Larson and Spear (1964) cracking acetylene Ta (0.025 cm) 96 µg/cm2 and thinner factor of 10 13C depletion
Jaszczak et al. (1970) cracking of acetylene Ta (0.025 cm) 98-178 µg/cm2 99.94% 12C

Dyer and Barnes (1974) cracking of methyl alcohol Ta (0.008 cm) 150-200 µg/cm2 99.945% 12C
Kettner et al. (1982) He gas target 10 Torr <1 ppm
Redder et al. (1987) ion implantation Au 80 keV at 2.68 MeV 13C/12C⇡10�4

Kremer et al. (1988) He gas target 3.6(2) µg/cm2 recoil separator
Ouellet et al. (1996, 1992) ion implantation Au 3-5⇥1018 atoms/cm2 factor of 103 13C depletion

Roters et al. (1999) He gas target 9.1 Torr 0.0001%
Gialanella et al. (2001) He gas target 20 Torr 0.0001%

Kunz et al. (2001) ion implantation Au 2-3⇥1018 atoms/cm2 factor of 103 13C depletion
Fey (2004) ion deposition Au ⇡2⇥1018 atoms/cm2

Schürmann et al. (2005) He gas target 4.21(14)⇥1017 atoms/cm2 recoil separator
Assunção et al. (2006) ion implantation Au 0.5-11⇥1018 atoms/cm2 factor of 103 13C depletion
Matei et al. (2006) He gas target 4-8 Torr recoil separator
Makii et al. (2009) cracking of methane gas Au 250-400 µg/cm2 99.95% 12C

Schürmann et al. (2011) He gas target 4⇥1017 atoms/cm2 recoil separator
Plag et al. (2012) ion deposition Au 30-120 µg/cm2 13C/12C<10�4
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FIG. 4 (Color online) Comparison of the cross section of the
12C(↵, �)16O reaction (this work) to that of the 13C(↵, n)16O
reaction. Because of the large di↵erence in cross sections,
even trace amounts of 13C in target materials and beam line
elements can create large backgrounds in the �-ray spectra of
12C(↵, �)16O measurements. These backgrounds are chiefly
the result of (n, n0�) and (n, �) reactions on the detector ma-
terials themselves and nearby beam line components. Level
parameters used to calculate the 13C(↵, n)16O cross section
have been taken from Sayer et al. (2002) and Leal et al. (2016).

time to test theoretical predictions of isospin mixing of
T = 1 contributions into the predominately T = 0 state.
The main result was the measurement of the ground state
� width of the state as �

�0 ⇡ 6 meV, about a factor of
2-3 smaller than the accepted value today.

Measurements were then extended to higher energies
by Meads and McIldowie (1960) (at the Atomic Energy
Research Establishment in Harwell, UK) who were the

first to study the ground state � decay widths of the
2+ levels at E

x

= 9.85 and 11.50 MeV, comparing their
Weisskopf widths to that of the E

x

= 6.92 MeV state
measured by Swann and Metzger (1957). The experiment
was also the first to use targets depleted in 13C in order to
suppress the neutron induced background. Great e↵ort
was also made to limit additional carbon build up on the
target, resulting from contamination in the beam line, by
both target heating and the use of a cold trap. Angular
distribution measurements were made for the first time
to verify the multipolarities of the transitions.

A very ambitious measurement campaign was then car-
ried out by Larson and Spear (1964) at the California
Institute of Technology (Cal Tech) who measured the
12C(↵, �)16O excitation function over an unprecedented
energy range from E

↵

= 2.8 to 8.3 MeV. While this ex-
periment was motivated by further structure studies, for
the first time it also sought to investigate the cross section
for nuclear astrophysics purposes. Building on the expe-
rience of the previous studies, the experiment utilized a
depleted 13C target, a cold trap, and oil free pumps to
limit background. While very successful at higher ener-
gies, even measuring � ray angular distributions, yields at
low energies were still insu�cient to map the resonance
corresponding to the 1� state at E

x

= 9.59 MeV. The
state’s properties were still investigated but a thicker tar-
get (96 µg/cm2) was necessary. A new larger value for the
� width of �

�

= 22(5) meV was found, in good agreement
with current measurements! A more detailed account of
the experiment can be found in James Larson’s thesis
(Larson, 1965). It is interesting to note the acknowledg-
ment section, which reads like a who’s who of nuclear as-
trophysics at the time. The thesis project was suggested
by Willie Fowler, with advising from Charles Lauritsen,
Ward Whaling, Charlie Barnes, and Ralph Kavanagh,
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and with additional discussions with Tom Tombrello and
Fred Barker.

A rather unique measurement testing time reversal in-
variance was made by Wimmersperg et al. (1970) us-
ing measurements of the 12C(↵, �0)16O reaction and its
inverse 16O(�,↵0)12C over a E1/E2 mixed region at
E

x

⇡ 13.1 MeV. Detailed balance was used to test the
consistency of the forward/backward asymmetry of the
angular distribution at this energy. No significant devia-
tion was observed.

The first excitation curve measurement of the lowest
energy 1� resonance in the 12C(↵, �)16O reaction was
reported by Jaszczak et al. (1970) at Oak Ridge Na-
tional Laboratory ORNL (although preliminary measure-
ments had also been reported at Cal Tech (Adams et al.,
1968)). Highly 13C depleted targets, for the time, were
utilized (99.94% 12C) with thicknesses ranging from 98
to 178 µg/cm2. The now typical precautions were taken
to avoid carbon build up on the target and limit back-
ground. The experiment was further notable in that it
was one of the first to use a bunched helium beam for
time-of-flight (Adams et al. (1968) had also used this
technique) to separate the � rays from the neutron back-
ground signals. The measurements were limited to the
low energy side of the resonance ranging from E

↵

= 1.86
to 3.20 MeV but were extended up to E

↵

= 4.2 MeV in
Jaszczak and Macklin (1970). No attempt was made to
extrapolate the cross section to stellar energies.

With the extreme di�culty of measuring the capture
cross section directly, indirect studies pursued the deter-
mination of the reduced ↵ widths. Loebenstein et al.

(1967), also at Cal Tech, made ↵ transfer measurements
covering the ground state and first five excited states of
16O using the 6Li(12C,d)16O reaction. While the experi-
ments were performed at relatively low energies of Ec.m.

= 7 MeV, they were still not low enough to avoid the ef-
fects of compound nucleus contributions to the cross sec-
tion. Because the cross sections were known to be a mix-
ture of direct and compound nucleus formation processes,
the data were di�cult to interpret with theory, and the
uncertainties of the extracted ✓2

↵

values were di�cult to
quantify. A range of values were given for many of the
low lying states in 16O including the E

x

= 6.05 MeV 0+

(0.14 < ✓2
↵

< 0.30), the E
x

= 6.92 MeV 2+ (0.15 < ✓2
↵

<
0.27) and the E

x

= 7.12 MeV 1� states (0.06 < ✓2
↵

<
0.14), but this did not include any contributions to the
uncertainties from theory. Pühlhofer et al. (1970) made
similar measurements except using the 12C(7Li, t)16O re-
action, but encountered similar complications in the in-
terpretation of the data.

Just as in the capture data, the E
x

= 7.12 MeV state
appears as a subthreshold state in ↵ scattering on 12C.
While the Rutherford cross section masks the low energy
subthreshold compound nucleus contributions, it was re-
alized that there should be a measurable e↵ect even at
higher energies if ✓2

↵

was large enough. A detailed scat-

tering measurement was performed at Australia National
University by Clark et al. (1968) and the e↵ect of the
subthrehold state was subsequently analyzed by Clark
(1969) using a multilevel R-matrix analysis. While, the
e↵ect of the subthreshold state was shown to contribute
significantly to the scattering cross section, the uncer-
tainty in the extracted phase shifts, and the need for a
large background pole in the R-matrix analysis, resulted
in a large uncertainty in ✓2

↵

(7.12 MeV) of 0.71+0.37
�0.18. Fur-

ther, the results di↵ered greatly from those of the transfer
measurements.
Another compound nucleus reaction that can popu-

late the E
x

= 7.12 and E
x

= 9.59 MeV states is � de-
layed ↵ emission from 16N. This decay almost exclusively
populates the E

x

= 9.59 MeV state through an allowed
Gamow-Teller transition, but should also weakly popu-
late the high energy tail of the E

x

= 7.12 MeV subthresh-
old state just as in the E1 component of the capture
reaction. This reaction had already been investigated
carefully in order to observe the weak parity forbidden
decay to the 2� state in 16O at E

x

= 8.87 MeV by Hättig
et al. (1969) and Hättig et al. (1970) at the Max-Plank-
Institute in Mainz. Werntz (1971) subsequently analyzed
the spectrum using an R-matrix fit and showed that the
data were sensitive to contributions from the subthresh-
old state constraining ✓2

↵

(7.12 MeV). In a similar manner
as the scattering data, it was found that unconstrained
contributions from background states resulted in a large
uncertainty. However, the range of 0.013 < ✓2

↵

< 0.105
was found to be in good agreement with values deter-
mined from the transfer reaction data, but in disagree-
ment with those of the scattering. The data sets resulting
from these measurements were never published and only
a subset of the data have survived, they are commonly
referred to in the literature as the “Wä✏er data”.
As a culmination of these early measurements, Barker

(1971) performed the first comprehensive R-matrix anal-
ysis by fitting iteratively the scattering phase shifts of
Clark et al. (1968), Jones et al. (1962) and Morris et al.
(1968), the � delayed ↵ data of Hättig et al. (1970), and
the capture cross section data of Jaszczak and Mack-
lin (1970). The main goal was to re-analyze all of the
data within a self consistent analysis in an e↵ort to re-
solve the inconsistent determinations of ✓2

↵

(7.12 MeV).
Barker (1971) found that the large value deduced by
Clark (1969) was in error because of the invalid ap-
proximation of using a single level R-matrix and an
improper treatment of the boundary conditions. The
analysis found that in fact a general consistency could
be obtained for the value of ✓2

↵

(7.12 MeV) (see Ta-
ble III). The uncertainty estimate resulted in a range of
the extrapolated capture S-factor at E

c.m.

= 300 keV of
50 keV b < S(300 keV) < 330 keV b, with a best fit value
of S(300 keV) = 150 keV b. It should be noted that this
uncertainty band includes both interference solutions for
the low energy E1 capture cross section, which the data



29

could not di↵erentiate between. A similar analysis was
soon performed by Weisser et al. (1974), which included
the much more accurate capture data of Dyer and Barnes
(1974). A similar best fit value of S(300 keV) = 170 keV b
was obtained. Although model uncertainties were investi-
gated throughly, no over all uncertainty range was given.

At long last, the first accurate low energies measure-
ment of the 12C(↵, �)16O ground state cross section was
made by Dyer and Barnes (1974) at Cal Tech. The exper-
iment was also notable because it was the first observa-
tion of interference between a subthreshold and unbound
1� state, a phenomenon predicted several years before
by Marion and Fowler (1957). The experiment utilized a
target very similar to that of Jaszczak et al. (1970), and
a clean target chamber setup. Only E1 and E2 multi-
polarities are allowed from the decays of the 1� and 2+

excited states to the 0+ ground state of 16O, therefore
these multipolarities are expected to dominate the cross
section. To simplify the interpretation of the data, mea-
surements were made primarily at 90� to the beam axis
because the E1 and E2 angular distributions are such
that the E1 cross section is both maximum and the E2
cross section is zero at this angle as shown by Fig. 5.
The E1 cross section can be written in the simple form
as (Dyer and Barnes, 1974)

�
E1 = 4⇡

✓
2

3

◆✓
d�

d⌦

◆

90�
. (86)

Angular distributions were also measured for the first
time over this low energy region. The angular distribu-
tion data are critical in extracting the E2 cross section
(as described in Sec. VI.B) since, as shown in Fig. 5, there
is no angle where the E2 cross section can be isolated. A
detailed discussion of the di↵erent contributions to the
E1 cross section is given, noting in particular the large
uncertainty that is found from the interferences of higher
energy states, modeled using a single background pole,
with two explicitly defined E

x

= 7.12 MeV subthreshold
state and the E

x

= 9.59 MeV unbound state.
It was found that ✓2

↵

(7.12 MeV) was not well con-
strained by the capture data, strongly reinforcing the
motivation for indirect studies. The technique of a three
level R-matrix calculation to model the E1 capture used
by Dyer and Barnes (1974) would become the standard
for many years to follow. The direct capture contribution
(dominated by E2 multipolarity) was modeled using the
formalism found in e.g. Tombrello and Phillips (1961)
and Tombrello and Parker (1963), which would later be
expanded by Barker and Kajino (1991) into the external
capture model. In addition, a hybrid R-matrix model
was also investigated following the work of Koonin et al.

(1974). In this case, the potential model gives the con-
tribution from single particle states, including those at
higher energies, which could drastically decrease the un-
certainty in the extrapolation of the cross section, but
this depends again on the reliability of the potential
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FIG. 5 (Color online) Theoretical calculation comparing the
E1 and E2 angular distributions for the ground state transi-
tion of the 12C(↵, �0)

16O reaction.

model and its likewise phenomenologically determined
parameters. With limited angular distribution data, it
was incorrectly assumed that the small E2 component
observed in the angular distributions came from direct
capture. No contribution from the 2+ subthreshold state
at E

x

= 6.92 MeV was considered.

The significant progress in studying the level structure
and compound nucleus cross sections of 16O was not lim-
ited to these very low energies. Continuing the work
of Larson and Spear (1964), the 12C(↵, �)16O cross sec-
tion was investigated above the proton separation energy
S
p

= 12.13 MeV by Mitchell and Ophel (1964), Kernel
et al. (1971), and Brochard et al. (1973). These studies
were complemented by other 12C+↵ reaction measure-
ments by Mitchell and Ophel (1965) and Morris et al.

(1968). The motivation for most of these studies was to
understand the increasingly complicated level structure
of 16O at these higher energies. However, it was also re-
alized that these measurements provided an indirect way
of studying the 15N(p, �)16O and 15N(p,↵)12C reactions,
which (Bethe, 1939) had pointed out as being of great in-
terest for nucleosynthesis as they form the branch point
of the CNO cycle. A study of the 15N(p, �)16O reaction
had been made by Hebbard (1960) and several measure-
ments of the 15N(p,↵0)12C and 15N(p,↵1)12C reactions
by Barnes et al. (1952), Schardt et al. (1952), Cohen and
French (1953), Neilson et al. (1953), Hagedorn and Mar-
ion (1957) and Bashkin et al. (1959). Hagedorn (1957)
and Bashkin et al. (1959) had also studied the proton
scattering cross section. These measurements confirmed
that the 12C(↵, �)16O cross section over the energy range
just above S

p

is dominated by two broad 1� resonances
(E

x

= 12.45 and 13.09 MeV) and angular distributions
hinted at a weak contribution from a broad 2+ state
(E

x

= 12.95 MeV). While these resonances are a few
MeV above the astrophysical energy range of interest for
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TABLE III Summary of subthreshold state reduced ↵ widths (prior to the convention of using asymptotic normalization
coe�cients). Here E1 and E2 refer to the ground state transition. Note that the reduced widths are radius dependent, which
has caused some confusion in the past. Values of r

↵

⇡ 5.5 fm are typical.

Ref. ✓2
↵,6.92 ✓2

↵,7.12 ✓2
↵,7.12/✓

2
↵,9.59 data considered

Loebenstein et al. (1967) 0.15 - 0.27 0.06 - 0.14 0.07 - 0.16b 6Li(12C, d)16O
Clark (1969) 0.71a 12C(↵,↵)12C

Pühlhofer et al. (1970) 0.18 0.025 7Li(12C, t)16O
Werntz (1971) 0.013 - 0.105 16N(�↵)12C
Barker (1971) 0.047 - 0.176 12C(↵, �)16O (E1), 12C(↵,↵)12C, 16N(�↵)12C

Weisser et al. (1974) 0.11 12C(↵, �)16O (E1), 12C(↵,↵)12C
Koonin et al. (1974) 0.18+0.14

�0.10 0.19+0.16
�0.11

12C(↵, �)16O (E1), 12C(↵,↵)12C
Cobern et al. (1976) 0.1-0.2b 12C(7Li, t)16O

Becchetti et al. (1978a) 0.35(13) 12C(7Li, t)16O
Becchetti et al. (1978b) ⇠0.4b 12C(6Li, d)16O
Becchetti et al. (1980) 0.3-0.6 12C(6Li, d)16O
Kettner et al. (1982) 1.0+0.4

�0.3 0.19+0.14
�0.08

12C(↵, �)16O (E1&E2 & 6.92), 12C(↵,↵)12C
Descouvemont et al. (1984) 0.10(2) 0.09(2) 12C(↵, �)16O (E1, E2 & 6.92)
Langanke and Koonin (1985) ⇡0.17 12C(↵, �)16O (E1, Total, �

E2/�E1, 6.92)

Barker and Kajino (1991) 0.730 0.114 0.14
12C(↵, �)16O (E1, E2, 6.92, 7.12)

12C(↵,↵)12C, 16N(�↵)12C

a Corrected by Barker (1971) to 0.11.
b Recalculated by Barnes et al. (1982).

the 12C(↵, �)16O reaction, their large widths can pro-
duce significant interference e↵ects that impact the cross
section even at low energies.

B. The Push to Lower Energies (’74-’93)

Despite the very successful work by Dyer and Barnes
(1974), their hard won success marks the beginning of
a gap in capture cross section measurements of nearly a
decade. When they were finally picked up again in the
early 1980’s, a more focused set of experiments would
emerge, with the primary goal of pushing the cross sec-
tion data to ever lower energies.

In an attempt to avoid the large background prob-
lems from the 13C(↵, n)16O reaction that plagued earlier
measurements, the experiment of Kettner et al. (1982)
(Claus Rolfs’ Münster group, experiment performed at
Bochum) was performed for the first time in inverse kine-
matics using a high intensity 12C beam (50 µA) on a
windowless extended helium gas target. The gas tar-
get allowed for the use of higher beam intensities, since
the destruction of the target was no longer an issue, and
avoided the issue of carbon build up on the target. How-
ever, a new set of complications presented themselves
that were largely related to interpretation of the yield
from the extended geometry gas target. The end result
was a measurement of the low energy total ground state
capture cross section down to E

c.m.

= 1.34 MeV, about
0.1 MeV below the measurements of Dyer and Barnes
(1974) but not as low as Jaszczak et al. (1970). It was
found that the cross section at low energies was in better
agreement with that of Jaszczak et al. (1970) than that

of Dyer and Barnes (1974), but the comparison was not
straightforward since the data of Dyer and Barnes (1974)
only represents the E1 component while that of Kettner
et al. (1982) represented an angle integrated cross sec-
tion. The most notable result of the experiment was the
realization that the ground state E2 cross section could
make a sizable contribution to the low energy cross sec-
tion through the high energy tale of the 2+ subthreshold
state at E

x

= 6.92 MeV. Perhaps even with an amplitude
equal to that of the E1 cross section at Ec.m. = 300 keV.

Because of the successful suppression of the back-
ground from the 13C(↵, n)16O reaction, Kettner et al.

(1982) achieved another first, measurements of the cas-
cade transitions at low energies. An excitation curve of
the E

x

= 6.92 MeV transition is given, where it is as-
sumed that the E

x

= 6.92 MeV transition dominates over
the E

x

= 7.12 MeV transition (the two individual � lines
could not be resolved in the NaI detectors used). It was
found later that this was not a good assumption as both
transitions have comparable cross sections over the re-
ported energy range Redder et al. (1987). This highlights
a continued issue with the observation of the individual
cascade transitions. The E

x

= 6.05 and 6.13 MeV first
and second excited states in 16O are only 80 keV apart
and the E

x

= 6.92 and 7.12 MeV third and fourth ex-
cited states are only separated by 100 keV. Thus either a
detector with high �-ray energy resolution or a detailed
unfolding simulation is required in order to extract their
individual contributions.

Measurements were then made by Redder et al. (1987)
(again Rolfs’ Münster group, this time at Suttgart), but
now switching back to forward kinematics. Major experi-
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TABLE IV Extrapolations of the 12C(↵, �)16O S-factor to Ec.m. = 300 keV categorized by either cluster model calculations
are phenomenological fits. The abbreviations used below are for the generalized coordinate method (GCM) and potential
model (PM) for the theoretical works and Breit-Wigner (BW), R-matrix (R), and K-matrix (K) for the phenomenological
calculations. Hybrid R-matrix (HR) models have also been used in an e↵ort to connect the phenomenological calculations more
closely to more fundamental theory.

S(300 keV) keV b
Ref. E1 E2 Cascades Total Model

Cluster Models

Descouvemont et al. (1984) 300 90 GCM
Langanke and Koonin (1985) 160-280 70 <10c 230-350 HR&PM

Funck et al. (1985) 100 PM
Redder et al. (1987) 140+120

�80 80±25 7±3c 1.3+0.5
�1.0

d R&PM
Descouvemont and Baye (1987) 160 70 GCM

Ouellet et al. (1992) 1+6
�1 40±7 R&PM

Descouvemont (1993) 90 GCM
Ouellet et al. (1996) 79±16 36±6 120±40 R,K,PM

Dufour and Descouvemont (2008) 42±2 GCM
Katsuma (2012) ⇡ 3 150+41

�17 18.0±4.5e 171+46
�22 PM

Xu et al. (2013) (NACRE2) 80±18 61±19 6.5+4.7
�2.2

e 148±27 PM
Phenomenological Fits

Burbidge et al. (1957) 340 340 BW
Barker (1971) 50-330 50-330 R

Koonin et al. (1974) 80+50
�40 80+50

�40 HR
Dyer and Barnes (1974) 140+140

�40 140+140
�40 R&HR

Weisser et al. (1974) 170 170 R
Humblet et al. (1976) 80+140

�70 80+140
�70 K

Kettner et al. (1982) 250 180 12(2)c,d 420+160
�120 BW

Langanke and Koonin (1983) 150 or 340 <4% of E1 150 or 340 HR
Barker (1987) 150+140

�60 30+50
�30 R

Kremer et al. (1988) 0-140 R&HR
Filippone et al. (1989) 0-170 5-28 0-170 K

Barker and Kajino (1991) 150+170
�70 or 260+140

�160 120+60
�70 10c 1-2d 280+230

�140 or 390+200
�230 R

Humblet et al. (1991) 43+20
�16 7+24

�5 50+30
�20 K

Humblet et al. (1993) 45+5
�6 K

Azuma et al. (1994) 79±21 or 82±26 R&K
Buchmann et al. (1996) 79±21 70±70 16±16a,c,d 165±75 R&K

Hale (1997) 20 R
Trautvetter et al. (1997) 79 14.5 BW

Brune et al. (1999) 101±17 42+16
�23 R

Roters et al. (1999) 79±21 R
Angulo and Descouvemont (2000) 190-220 R

Gialanella et al. (2001) 82±16 or 2.4±1.0 R
Kunz et al. (2001) 76±20 85±30 4±4e 165±50 R

Tischhauser et al. (2002) 53+13
�18 R

Hammer et al. (2005b) 77±17 81±22 162±39 R
Buchmann and Barnes (2006) 5+7

�4.5
a 7+13

�4
c R

Matei et al. (2006) 25+16
�15

a R
Matei et al. (2008) 7.1±1.6c R
Tang et al. (2010) 86±22 R

Schürmann et al. (2011) <1a R
Schürmann et al. (2012) 83.4 73.4 4.4e 161±19(stat)

+8
�2(syst) R

Oulebsir et al. (2012) 100±28 50±19 175+63
�62 R

Sayre et al. (2012) 62+9
�6 R

Avila et al. (2015)
1.96±0.30 or 4.36±0.45a

R
0.12±0.04 or 1.44±0.12b

An et al. (2015) 98.0±7.0 56±4.1 8.7±1.8e 162.7±7.3 R
this work 86.3 45.3 7e 140±21(MC)

+18
�11(model) R

a 6.05 MeV transition
b 6.13 MeV transition
c 6.92 MeV transition
d 7.12 MeV transition
e sum of all cascade transitions
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mental improvements included implanted targets and the
first use of high energy resolution germanium detectors
Ge(Li). The targets were made by implanting 12C ions
into a gold backing, drastically decreasing the amount of
13C contamination. The gold backing was further sol-
dered onto a copper back plate that allowed for better
cooling, through its enhanced thermal conductivity. This
was combined with flowed water cooling. These targets
were estimated to now be depleted in 13C by two orders of
magnitude (earlier experiments were about one order of
magnitude). Up until this point all previous experiments
had been performed with NaI detectors, but the improved
low level of neutrons allowed for the use of Ge(Li) detec-
tors. The improved energy resolution over NaI detectors
allowed for better separation of background peaks and for
the � ray secondary peaks of the E

x

= 6.92 and 7.12 MeV
cascade transitions to be clearly distinguished. The mea-
surements were made over the course of three di↵erent
experimental campaigns using di↵erent accelerators and
di↵erent arrangements of NaI and Ge(Li) detectors. An-
gular distributions were measured at an unprecedented
eight angles from E

c.m.

= 1.7 to 2.84 MeV. The low-
est energy measurements were extended to E

c.m.

= 0.94
MeV, now the record for the lowest energy, with the cross
section at a minuscule 48 picobarns. Even at the lowest
energies, angular distributions were measured, but with
only three Ge(Li) detectors. Most significantly, the angu-
lar distribution measurements showed a substantial E2
component to the cross section, confirming that this mul-
tipolarity is quite significant at stellar energies. Again,
the energy dependence of the cross section at low ener-
gies was found to be higher than that of Dyer and Barnes
(1974).

The improved angular distribution measurements by
Redder et al. (1987) provided more sensitivity to the E2
ground state cross section triggered several theoretical
calculations to model this previously neglected compo-
nent of the cross section. For the first time Descouve-
mont et al. (1984) made use of a microscopic model using
the generator coordinate method. Langanke and Koonin
(1983) updated their hybrid R-matrix calculations tak-
ing into account the new capture data and then refining
the calculations again in Langanke and Koonin (1985),
correcting some previous errors. Now including the E2
cross section, Barker (1987) updated his calculations as
well, using purely R-matrix calculations for both the E1
and E2 cross sections. Further, several calculations were
made for the E

x

= 6.92 MeV cascade contribution. All
agreed that its contribution to the total capture S-factor
should be small (<15 keV b) at stellar energies. The
general result was that the 12C(↵, �)16O cross section at
stellar energies should be significantly larger, 2-5 times of
the value estimated by Dyer and Barnes (1974), but the
recommended values varied widely as summarized in Ta-
ble IV. History gives us a valuable lesson here. While sev-
eral experiments were in apparent contradiction to Dyer

and Barnes (1974), later measurements would find that
these measurements were in fact erroneously large, per-
haps the result of insu�cient background subtraction.
The Cal Tech (Kremer et al., 1988) group now looked

to re-investigate the 12C(↵, �)16O reaction but this time
using another novel technique for the first time: a recoil
separator. By detecting the � rays in coincidence with
the recoiling 16O, nearly background free spectra could
be obtained. Because of the acceptance of the CTAG
separator, the 90� placement of the NaI detectors, and
the much di↵erent angular distributions of E1 and E2
radiation (see Fig. 5), the e�ciency for detecting the E2
component was only 50%-65% of that for the E1 com-
ponent. Theoretical values of the E1/E2 cross section
ratio from Langanke and Koonin (1983) and Langanke
and Koonin (1985) were necessary to extract the E1 cross
section over the range from E

c.m.

= 1.29 to 3.00 MeV so
the results were somewhat theory dependent. The E1
cross section was found to be in good agreement with
that of Dyer and Barnes (1974), reinforcing the tension
between the di↵erent measurements.
To try to resolve these di↵erences, a new measurement

was then performed by the Queen’s University group.
The data was first reported in Ouellet et al. (1992) but
results were subsequently revised in Ouellet et al. (1996).
The experiment was performed in forward kinematics us-
ing water cooled implanted targets very similar to those
of Redder et al. (1987). The beam was also wobbled over
the target surface to insure even beam coverage lessening
the sensitivity of the experiment to any target inhomo-
geneity. With the low neutron background, six germa-
nium detectors were used to measure angular distribu-
tions over an energy range from Ec.m. = 1.37 to 2.98 MeV.
The data turned out to split the di↵erence between those
of Redder et al. (1987) and Kremer et al. (1988), provid-
ing no solution to the issue. In the analysis of Ouel-
let et al. (1996), the E1 data, along with that of Dyer
and Barnes (1974), Redder et al. (1987), and Kremer
et al. (1988) were fit simultaneously using a three level
R-matrix fit along with the newly measured 16N(�↵)12C
data of Azuma et al. (1994) and the elastic scattering
phase shift data of Plaga et al. (1987). The E2 data was
fit separately using a cluster model method. It should be
noted that in Ouellet et al. (1992), the destructive solu-
tion between the 1� subthreshold state (E

x

= 7.12 MeV)
and the broad resonance corresponding to the 1� level at
E

x

= 9.59 MeV was reported to produce the best �2 fit.
However, in the revised analysis of Ouellet et al. (1996),
the authors concluded that, considering all the capture
data, the constructive solution was in fact favored and
the destructive one was statistically ruled out.
While it has been neglected in all analyses, a high en-

ergy measurement of the ground state transition cross
section, from 12 < E

x

< 28 MeV, was made at this time
by Snover et al. (1974). The cross section data were
obtained in order to measure the E2 strength of the gi-
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ant dipole resonance and hence were decomposed into
E1 and E2 components. While the measurement was
made for purely structure motivations, this data could
provide valuable upper limits on the high energy back-
ground contributions of phenomenological R-matrix fits
at lower energies for the dominant ground state transi-
tion. This topic will be revised in Sec. VII.C.

Several measurements continued to study the prop-
erties of the 16O compound nucleus in the energy re-
gion just above S

p

. Several measurements were made to
continue in the investigation of the astrophysically im-
portant CNO branch point reactions 15N(p,↵)12C (Bray
et al., 1977; Pepper and Brown, 1976; Redder et al., 1982;
Zyskind and Parker, 1979) and 15N(p, �)16O (Rolfs and
Rodney, 1974). Improved measurements of 12C+↵ scat-
tering were also made by D’Agostino-Bruno et al. (1975).

C. Return to Indirect Techniques (’93-present)

The last 20 years has witnessed a continued, and even
increasingly, intense e↵ort to study the 12C(↵, �)16O re-
action. With the seeming impasse of a capture experi-
ment reaching the stellar energy range, there has been a
renewed interest in indirect techniques. While many di-
rect measurements continue to be made, the development
of improved theoretical and experimental methods for in-
terpreting transfer reaction data, continued development
of more accurate 16N(�↵)12C measurements, improved
recoil separators, and more sophisticated analyses have
arguably produced the greatest impact.

Plaga et al. (1987) (Rolfs’ group) measured the scat-
tering cross section at 35 angles covering a wide angular
range from ✓lab = 22� to 163� at 51 energies between
E

c.m

= 0.75 and 5.0 MeV. Phase shifts were extracted
for angular momentum l = 0 to 6 using a multilevel R-
matrix fit. One of the main findings was that the re-
duced ↵ widths were highly correlated with the back-
ground pole parameters, a problem observed before, re-
sulting in large model uncertainties. This issue seems to
be a limiting factor in the determination of subthreshold
reduced widths from scattering data in general.

A major step forward was the measurements of the ↵-
particle energy spectrum from 16N(�↵)12C in the 1990s.
The first results were reported from an experiment per-
formed at TRIUMF by Buchmann et al. (1993), with a
more complete description given in Azuma et al. (1994).
The 16N(�↵)12C spectrum was concurrently measured by
the Yale group, Zhao et al. (1993). These measurements
were subsequently extended by France III et al. (1997).
Another 16N(�↵)12C measurement was performed by the
Seattle group shortly after but the results were not pub-
lished. The spectrum can be found in the later work of
France III et al. (2007).

These measurements were highly motivated by the the-
oretical calculations of Baye and Descouvemont (1988),

Ji et al. (1990) and Humblet et al. (1991) that predicted
a characteristic interference pattern at low energies. This
is the result of the interference between the 1� levels at
E

x

= 7.12 and E
x

= 9.59 MeV. It is very sensitive to the
relative values of the reduced ↵ widths and the � decay
branching ratios of the two states. However, the inter-
pretation of the spectrum is complicated by the presence
of an l = 3 component coming from the 3� subthreshold
state at E

x

= 6.13 MeV. Never the less, the interference
pattern was in fact observed and would mark a drastic
improvement in the constraint of the E1 ground state
capture cross section.
The �-delayed ↵-particle spectrum provided for a high

level of constraint on the reduced ↵ width of the 1� sub-
threshold state. A detailed global analysis was presented
by Azuma et al. (1994) where the TRIUMF 16N(�↵)12C
data were fit simultaneously with the scattering phase
shifts of Plaga et al. (1987) and the E1 capture data
of Dyer and Barnes (1974), Redder et al. (1987), Kre-
mer et al. (1988), and Ouellet et al. (1992). It was found
that the 16N(�↵)12C data significantly improved the con-
straint on the E1 cross section, by way of the 1� sub-
threshold state’s ANC, over the capture data. It was
noted however that the general shape of the capture data
were still critical because only they can determine the in-
terference pattern between the two 1� resonances, which
greatly influences the low energy cross section.
A global analysis of the capture, scattering, and

16N(�↵)12C data was performed by Buchmann et al.

(1996) and several important conclusions were made.
One focus of the analysis was to look at biases that had
developed because of the historical convention of dividing
the ground state cross section into E1 and E2 cross sec-
tions. Two general techniques have been used. The first
is to measure the angular distributions and perform a fit
to a theoretically motivated angular distribution func-
tion. While this technique has been widely used, it also
has its pitfalls. One issue is that it can be di�cult to
measure di↵erential cross sections at several angles given
the very low yields. These low yields are often influenced
by systematic uncertainties that can be di�cult to quan-
tify and can be easily overlooked. Further, the fitting also
requires has a phase that can either be left free in the fit-
ting or can be constrained by scattering data. The second
method uses a large diameter detector also centered at
90� but placed in very close geometry to the target to
measure the angle integrated cross section over approx-
imately 2⇡, e↵ectively measuring �total/2. Then the E2
cross section can be deduced as �total��E1 = �

E2. Both
of these techniques require assumptions and simulations,
allowing more opportunities for errors to be made. For
these reasons, Buchmann et al. (1996) advocated that
global analysis should instead rely on “primary” data,
meaning either the actual di↵erential cross sections that
were measured or the total cross section for a close ge-
ometry setup. Unfortunately, many of the early mea-
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surements only reported the deduced E1 and E2 cross
sections, not the di↵erential data. Another important
conclusion was that while the E1 cross section seemed to
be fairly consistent over di↵erent measurements, the E2
cross section showed large fluctuations. This seems to be
because analyses are attempting to extract a small E2
contribution over most of the experimentally accessible
energy region, i.e., over the broad low energy 1� reso-
nance. The uncertainties of this process seem to have
often been underestimated.

Buchmann et al. (1996) also predicted through simu-
lation that high precision scattering measurements could
be used to improve the constraint of the fits. In direct
response, Tischhauser et al. (2002) performed a very de-
tailed measurement of the scattering cross section. Mea-
surements were made from Ec.m. = 2.0 to 6.1 MeV in en-
ergy steps of approximately 10 keV and at 32 angles rang-
ing from ✓lab = 24� go 166�. The measurement sought
to place stronger constraints on both the ↵ widths of
the unbound states and the reduced widths of the sub-
threshold states. In particular the goal was an improved
constraint on the reduced width of the 2+ subthreshold
state, which is not constrained by the 16N(�↵)12C reac-
tion. However, because of the issues of background pole
contributions in the R-matrix analysis, the constraint
was not as great as expected. Additionally, because of
issues with the target thickness varying due to carbon
build up on the target, the data were analyzed as ra-
tios of the yields instead of as absolute cross sections. It
was however demonstrated that this still provides signifi-
cant constraint on the R-matrix fit while greatly reducing
systematic uncertainties that are di�cult to quantify. A
more complete description of the experiment and analy-
sis, together with an extraction of the phase shifts, was
later given in Tischhauser et al. (2009). An R-matrix fit
including data above S

p

, which included 12C(↵,↵1)12C
and 12C(↵, p)15N data, was subsequently given in deBoer
et al. (2012a).

As noted already, transfer reactions can in provide in-
formation about reduced widths. In general, the inter-
pretation of these experiments is subject to uncertain-
ties in the optical potentials and the reaction mecha-
nism (direct transfer versus multi-step processes and/or
compound-nuclear fusion). Sub-Coulomb measurements,
where the energies in the entrance and exit channels are
below the Coulomb barrier, provide a powerful way to
minimize these uncertainties. For sub-Coulomb kinemat-
ics, other reaction mechanisms are supressed relative to
direct transfer and and the Coulomb potentials domi-
nate, leading to little dependence on the nuclear parts of
the optical potentials. Due to the poximity of the 6.92-
MeV 2+ state and 7.12-MeV 1� state to the ↵ thresh-
old, these states are ideal for application of the sub-
Coulomb ↵ transfer technique. While not quite as ideal,
the 6.05-MeV 0+ state and 6.13-MeV 3� state are still
well-suited for it. For the 16O ground state, it is unfor-

tunately impossible to realize the kinematics required for
sub-Coulomb transfer to be applicable, due to the large
positive Q value for ↵-transfer reactions to this state.
Brune et al. (1999) performed the first sub-Coulomb

12C(6Li, d)16O and 12C(7Li, t)16O experiments. Further,
it was realized that analyzing the transfer cross section to
determine the model-independent ANC, rather than the
spectroscopic factor, removed un-necessary model depen-
dence from the results. The ANC can be related to the
reduced width for a particular channel radius by Eq. (44).
The experiment determined the ANCs of the 1� and 2+

subtheshold states with greatly reduced uncertainties and
an R-matrix fit was used to deduce the impact on the
capture extrapolation. The result was a greatly reduced
uncertainty on the E2 cross section and a value for the
E1 cross section that was roughly consistent with that
deduced from the high-precision 16N(�↵)12C spectrum.
Another low energy cross section measurement was

made by Rolfs’ group at Bochum (Roters et al., 1999).
The experiment was performed again in inverse kinemat-
ics on a helium gas target similar to that used in Kettner
et al. (1982) but also used bismuth germanate detectors
for the first time. The BGO detectors were three times
as e�cient compared to NaI detectors of equal size, al-
lowing a farther geometry measurement with the same
statistics for a given beam time, reducing angular reso-
lution e↵ects. The setup was used to measured the E1
cross section in far geometry at ✓lab = 90� and the angle
integrated cross section by placing a larger BGO in close
geometry. An R-matrix fit was performed and the ex-
trapolation predicted about an equal contribution from
E1 and E2 multipolarities at Ec.m. = 300 keV.
Gialanella et al. (2001) performed a measurement sim-

ilar to that of (Roters et al., 1999). The main result of
these work was that a detailed Monte Carlo uncertainty
analysis was preformed for the R-matrix fit for the first
time. The analysis highlighted the systematic di↵erences
between the di↵erent E1 data sets. The main result was,
that depending on which low energy data were included
in the fit, the destructive E1 solution could not be sta-
tistically ruled out.
The first in a series of detailed angular distribu-

tion studies at Stuttgart was performed by Kunz et al.

(2001). The measurements covered an energy range from
Ec.m. = 0.95 to 2.8 MeV at 20 energies and was no-
table because measurements were made at up to nine
di↵erent angles and used high purity germanium detec-
tors HPGe for the first time. The experiment benefited
greatly from high background suppression provided by
a BGO array allowing for reasonable statics with less
beam time than similar previous setups. Subsequent ex-
periments were performed using the EUROGRAM and
GANDI arrays. The EUROGRAM measurements cov-
ered an energy range from Ec.m. = 1.3 to 2.78 MeV and
are published in Assunção et al. (2006). The “turntable
experiment” data is available in full only in the PhD the-
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sis of Michael Fey (Fey, 2004), but some details and data
are given in Hammer et al. (2005a,b). These measure-
ments represent the largest set of angular distribution
data currently available, but their limited peer-review
publication and apparently underestimated systematic
errors (Brune and Sayre, 2013) has brought their validity
into question.

Fleurot et al. (2005) are developing a new indirect
approach using Coulomb dissociation of the reaction
208Pb(16O,16O*)208Pb for the first time. A preliminary
experiment was performed at Kernfysisch Versneller In-
stituut KVI using the big bite spectrometer. The method
should be more sensitive to the E2 cross section, o↵er-
ing a complementary indirect approach to the � delayed
↵ emission measurements. Reminiscent of high energy
transfer reaction studies, the reaction mechanism is quite
complicated, requiring models for both the nuclear and
Coulomb amplitudes of the cross section. The 2+ states
at E

x

= 9.84 and 11.52 MeV were populated and angu-
lar distributions were extracted. However, some of the
angular distributions showed large systematic deviations
from their expected values at certain angles. The results
are encouraging but significant development in the tech-
nique and theory is likely required before reliable data
can be obtained.

A detailed recoil separator measurement was made at
DRAGON (Hutcheon et al., 2003) at the TRIUMF-ISAC
facility by Matei et al. (2008). The experiment covered a
wide energy range from Ec.m. = 2.22 to 5.42 MeV. This
measurement focused on the E

x

= 6.05 MeV cascade
transition and an R-matrix analysis of the data reported
that this contribution was much larger (25+15

�16 keV b) at
Ec.m. = 300 keV than previously estimated. However, the
interpretation of the data was later found to be in error
and the later measurements of Schürmann et al. (2011)
and Avila et al. (2015) have confirmed a smaller value (⇠
2-5 keV b). In addition to the E

x

= 6.05 MeV transition,
the total cross section was evaluated but is only available
in the thesis of Matei (2006). Other cascade transition
data were observed in the spectra but remain unanalyzed.

A re-measurement of the 16N(�↵)12C spectrum was
made by France III et al. (2007) (Yale group) in an at-
tempt to clarify the inconsistency issues in the di↵erent
data sets. By convoluting the R-matrix fits of the pre-
vious data with the experimental resolution functions,
it was reasserted that the TRIUMF data (Azuma et al.,
1994) were inconsistent with both their measurement and
that of the Seattle measurement. In addition, the data
from the previously unpublished experiments at Mainz
(Hättig et al., 1969; Hättig et al., 1970; Neubeck et al.,
1974) and Seattle were made available, a very valuable
service to the community.

Another measurement of the 16N(�↵)12C spectrum
was made soon after at Argonne National Laboratory by
Tang et al. (2010). This experiment attempted to lessen
the e↵ects of � background and contaminant reactions by

using the in-flight technique (Harss et al., 2000) to cre-
ate the 16N beam. To minimize the energy convolution of
the spectrum by the catcher, thin carbon foils were used
with thicknesses of only 17(2) µg/cm2. The resulting
spectrum is similar to that of Azuma et al. (1994), but
there are some very significant di↵erences as discussed
further in Sec. VI.D.
A low energy measurement of the 12C(↵, �)16O re-

action was made at the Research Laboratory for Nu-
clear Reactors at the Tokyo Institute of Technology by
Makii et al. (2009). The experiment concentrated on a
very low energy range, measuring at just two energies of
E

↵

= 2.000 and 2.270 MeV. However, the goal of the
experiment was a high accuracy measurement of the E1
and E2 cross sections at these energies where past exper-
iments had showed considerable disagreement, especially
in the E2 cross section. This was accomplished by mea-
suring at three critical angles, ✓lab = 40, 90, and 130�,
and in far geometry with small solid angles (as reflected
by the Q coe�cients) using time-of-flight. Compton sup-
pressed NaI detectors were utilized, targets were obtained
by cracking 13C depleted methane gas. Additionally, the
time-of-flight capability facilitated a very detailed study
of the di↵erent sources of background. These were pri-
marily found to be secondary (n, �) and (n, n0�) reactions
induced by neutrons from the 13C(↵, n)16O reaction (see
also (Makii et al., 2005)). The deduced �

E1 and �
E2

cross sections were found with the smallest uncertainties
to date in this region. They also showed significantly less
scatter than many previous measurements, and in gen-
eral are somewhat lower in overall cross section. Their
energy dependence, albeit with only two data points, is
in excellent agreement with previous R-matrix fits.
Sayre et al. (2012) used a novel method (Brune,

2001) of determining the E2 interferences by measuring
the energy integrated di↵erential yield over the narrow
low energy 2+ resonance, corresponding to the state at
E

x

= 9.85 MeV, in the 12C(↵, �)16O reaction. The re-
sult was that the number of possible interference solu-
tions with this resonance from the 2+ subthreshold and
the next higher energy state at E

x

= 11.51 MeV could
be reduced to two. These interference solutions will be
discussed further in Sec. VII.B.
The measurement of Plag et al. (2012) investigated the

low energy cross section of 12C(↵, �)16O using a standard
forward kinematics setup but using a nearly 4⇡ BaF2

detector array for the first time. The BaF2 detectors
have the advantage that they are less sensitive to neu-
trons than HPGe detectors and are more e�cient. Their
disadvantage is a decreased energy resolution compared
to HPGe’s. The array is segmented in such a way that
angular distributions at twelve angles can be extracted.
The angular information was used to separate the E1
and E2 components using the traditional procedure of
fitting to Legendre polynomials. In addition, the mea-
surement also reported the sum of the cascade transition
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and therefore could give the total capture cross section.
A dedicated experimental campaign is ongoing at the

Kyushu University Tandem Laboratory (KUTL) (Ikeda
et al., 2003) to measure the 12C(↵, �)16O reaction. The
experiment aims at a direct measurement of the capture
cross section down to Ec.m. = 0.7 MeV using an inverse
kinematics setup, time-of-flight, and a recoil separator.
A windowless helium gas target is used with a pressure
of ⇡25 Torr and beam intensities in excess of 10 pµA.
The experimental development has steadily progressed
with an ever improving setup. Total cross section mea-
surements have been made at Ec.m. = 2.4 and 1.5 MeV,
and measurements are ongoing for Ec.m. = 1.2 MeV (Ya-
maguchi et al., 2014).

Significantly improved measurements have not been
limited to the 12C(↵, �)16O reaction. The 15N(p, �)16O
reaction has been the subject of several recent measure-
ments at the LUNA facility and the University of Notre
Dame’s nuclear science laboratory (Bemmerer et al.,
2009; Caciolli, A. et al., 2011; Imbriani et al., 2012;
LeBlanc et al., 2010). This was highly motivated by new
measurements of the bound state proton ANCs in 16O
(Mukhamedzhanov et al., 2008), which gave strong evi-
dence that the measurement of Rolfs and Rodney (1974)
over estimated the low energy cross section, a common
theme. These complementary measurements resulted in
a significant improvement in the uncertainty of this re-
action at stellar energies (now at the ⇡5% level). The
15N(p,↵)12C reaction has also been re-investigated using
the Trojan Horse method (La Cognata et al., 2007). Ad-
ditional proton scattering data have been measured by
deBoer et al. (2012b). The work of deBoer et al. (2013)
combined the vast majority of the data above S

p

and ob-
tained a combined fit for all open reaction channels up to
E

x

⇡14 MeV. Preliminary fits were also made to a very
limited set of 12C(↵, �)16O data.

The sub-Coulomb transfer reaction experiment of
Avila et al. (2015) has reconfirmed the earlier measure-
ments of the ↵ ANCs for the levels at E

x

= 6.92 (2+)
and 7.12 (1�) MeV and has additionally measured those
of the E

x

= 6.05 (0+) and 6.13 (3�) MeV states for the
first time. These measurements reconfirmed the asser-
tion of Schürmann et al. (2011) that the large value for
the low energy S-factor of the E

x

= 6.05 MeV transition
given in Matei et al. (2006) was incorrect. However, the
value found in Avila et al. (2015) is also in disagreement
with that of Schürmann et al. (2011) since their assumed
ANC was significantly smaller than that measured by
Avila et al. (2015). These issues are discussed in detail
in Sec. VI.C.

Another study has been recently performed at KVI
where the goal was to determine the total �↵ branch-
ing ratio (Refsgaard et al., 2016) for 16N(�↵)12C de-
cay. A value of (1.49 ± 0.05(stat)+0.0

�0.10(sys))⇥10�5 was
obtained, a 24% increase over the literature value of
1.20(5)⇥10�5. If correct, this could have an e↵ect on the

analysis of the 16N(�↵)12C spectrum. The implications
have not yet been fully explored.
Four recent comprehensive analysis of the 12C(↵, �)16O

reaction are conspicuously absent from this section, those
of Schürmann et al. (2012), Oulebsir et al. (2012), Xu
et al. (2013) (NACRE2), and An et al. (2015). A review
of each of these analyses has been reserved for later in
this work, Sec. VIII, so that more detailed comparisons
can be made with the present global analysis presented
in Sec. VI.

D. Up Coming Experiments

An experiment long under development is the mea-
surement of the inverse photo-disintegration reaction
16O(�0,↵)12C. While this method has the limitation of
only being sensitive to the ground state transition, this is
the most important transition for the 12C(↵, �)16O reac-
tion at stellar energies. Two independent groups have at-
tempted to tackle the measurement using quite di↵erent
measurement apparatuses but so far at the same beam
facility, the High-Intensity �-ray Source (HI�S) (Weller
et al., 2009). One setup uses a bubble chamber to detect
the recoiling ↵ particles (DiGiovine et al., 2015). The
super-heated liquid used in the chamber acts as both tar-
get and detection medium. A successful proof of princi-
ple experiment has been performed using a C4F10 liquid
by (Ugalde et al., 2013) for the 19F(�0,↵)15N reaction.
Continued measurements are now taking place at Je↵er-
son laboratory.
Another experiment has been proposed using an op-

tical time projection chamber as described by Gai and
the UConn-Yale-Duke-Weizmann-PTB-UCL Collabora-
tion (2012). A successful experiment has been performed
to extract cross section data for the 12C(�0,↵)8Be reac-
tion as reported in Zimmerman et al. (2013). One great
advantage of this setup is that it allows for the extrac-
tion of very detailed angular distributions. Both types
of experiments are limited in their energy resolution by
available � ray beams (resolution at HI�S ⇠200 keV at
these energies for example). If the experimental tech-
niques can be further developed, inverse measurements
may be the best way to probe the low energy cross sec-
tion since the photo-disintegration cross section is about
50 times larger than the capture cross section. Plans are
also underway to perform these kinds of experiments at
the upcoming ELI-NP facility (Balabanski and the ELI-
NP Science Team, 2015) where a significantly higher �
flux will be available.
Several recoil separator measurements are also planned

for the 12C(↵, �)16O reaction. Further measurements
have already begun at TRIUMF’s DRAGON facility
(Hutcheon et al., 2003). The European recoil sepa-
rator for nuclear astrophysics ERNA recoil separator
has also been recommissioned at the center for iso-
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topic research on the cultural and environmental her-
itage CIRCE laboratory in Caserta, Italy. A reinvesti-
gation of the 12C(↵, �)16O reaction is planned in order
to improve upon the previously successful experimental
campaigns (Schürmann et al., 2011, 2005) in Bochum,
Germany. In addition, the St. George recoil separator
(Couder et al., 2008) is currently in the commissioning
phase and 12C(↵, �)16O is a reaction of primary interest.

Underground experimental facilities have also yet to
weigh in. At LUNA (Costantini et al., 2009), ↵ particle
beams have been prohibited in the past due to the risk
of creating background signals in other nearby experi-
ments. This ban has been lifted however and measure-
ments of the 12C(↵, �)16O reaction are in the planning
phase. However, the current LUNA facility can only cre-
ate helium beams of up to E

↵

= 400 keV, a very di�cult
point at which to start the measurements. Therefore the
first measurements may have to wait until the instillation
of the new higher-energy LUNA MV facility is completed
(scheduled for operation in 2019).

The compact accelerator system for performing astro-
physical research CASPAR (Robertson et al., 2016) is
also nearing completion. This new underground facility
located at the Sanford underground research facility in
Lead, South Dakota will be the first underground nuclear
astrophysics facility in the United States. At present a
1 MV KN accelerator has been installed and commission-
ing is underway. While the neutron producing reactions
13C(↵, n)16O and 22Ne(↵, n)25Mg are the planned flag-
ship experiments, the 12C(↵, �)16O reaction will certainly
be investigated in the future.

The Jinping underground laboratory is also currently
under construction in Sichuan, China. The facility will
have a high current (pmA) 400 kV accelerator with
an ECR source able to accelerate 4He++ beams up to
E

↵

= 800 keV. One of the flagship experiments for the
facility is to measure the 12C(↵, �)16O reaction at this
energy (Ec.m. = 600 keV). The current goal is to per-
form this measurement by the end of 2019 (Liu and the
JUNA Collaboration, 2016).

As a final point, as experimental data are obtained
with greater precision and at higher energies, experi-
ments may soon become sensitive to less probable second
order reaction channels. Some candidate decay channels
are forbidden �, (e�e+) ⇡, internal conversion, and simul-
taneous multiple � emission. While it is likely that most
of these processes remain below current experimental de-
tection thresholds, care should be taken to not forget they
are possible. Some of these reactions could be used to fur-
ther indirectly constrain the capture cross section. For
example, detection of the ⇡ decay of the E

x

= 6.05 MeV
transition is already being planned at the CIRCE lab-
oratory (Guerro et al., 2014; Tabassam and Mehboob,
2015).

E. World Data Set

The previous sections described the many experimen-
tal endeavors that have provided a wealth of data for the
understanding of the 12C(↵, �)16O reaction. Fig. 3 shows
how the capture data have evolved over time. Because
the E1 cross section dominates over much of the exper-
imentally accessible region, these measurements are in
reasonable agreement (barring some of the earliest mea-
surements). While the agreement between the di↵erent
E2 data sets have certainty improved, there are still large
disagreements both between di↵erent data sets and with
theory. There are two major trends, a large scatter in the
data in regions where the cross section should be smooth,
and an increase in the cross section at low energy. Both
of these phenomena are very common to measurements
that push the limits of the experimental techniques em-
ployed. What is encouraging to see is that both these
problems have lessened with more recent measurements.
The trend of the data shows that attention should be
made in determining accurate measurements of the E2
cross section, since the E1 is fairly well established. If
the E2 data can be improved to a level of consistency
similar to the E1, this could lead to a significant reduc-
tion in the overall uncertainty in the extrapolation to low
energy.
On reflecting back over the experimental data, two is-

sues stand out clearly. The first is that of the overall nor-
malization of the data. Future measurements will likely
attempt to push to lower energies, yet it is important to
remember that new measurements should not be limited
to the lowest energy ranges. In particular, it is always
useful to have at least one measurement near the maxi-
mum of the broad resonance at Ec.m. = 2.2 MeV. In this
way, so long as all the data can be considered to share
the same overall systematic uncertainties, the normaliza-
tion and shape of the data provide significantly better
constraint on the extrapolation. The second issue is the
splitting of the E1 and E2 data into separate cross sec-
tions. While this makes sense from a theory point of
view, it leads to further assumptions in the analysis of
the experimental data. This procedure may be responsi-
ble for the large scatter of the E2 data. It also emphasizes
the point that the di↵erential cross section measurements
(and even spectra) should be retained, since if this data
where available, it would likely provide a better under-
standing of what caused these problems.
For this review, a global R-matrix analysis has been

performed in order to facilitate a better comparison of
the di↵erent capture data sets and combine several recent
results that have not yet been considered relative to other
data. The method provides a standard framework to
interpret the impact and gauge the level of agreement
between all the types of measurements, both direct and
indirect, on the extrapolation of the capture cross section.
An attempt has been made to consider as much of the
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relevant experimental data as possible. However there
are a few cases in which the experimental data are clearly
in very poor agreement, and are therefore excluded from
the analysis.

Most of the past data sets are found to be in reasonable
agreement. The few that are excluded are the ground
state capture data of Jaszczak et al. (1970) and Jaszczak
and Macklin (1970), both the ground state and cascade
capture data of Kettner et al. (1982), the E2 data of Red-
der et al. (1987), and the E

x

= 6.05 MeV transition data
of Matei et al. (2006). Further, the � delayed ↵ data sets
of France III et al. (2007) and Neubeck et al. (1974), that
is the Yale, Mainz, and Seattle data, are also excluded
because not enough information regarding the target ef-
fect corrections have been given to perform a reanalysis
of these data sets. This is discussed in more detail in
Sec. VI.D. There have been several ↵ scattering exper-
iments that have all been largely consistent only with
improved uncertainties. For this reason only the most
comprehensive data set of Tischhauser et al. (2009) is
considered here. Further, the data reported in Assunção
et al. (2006) are replaced by the corrected data presented
in Brune and Sayre (2013).

Table V summarizes the data considered in the energy
region below S

p

in 16O, but the higher energy data given
in Table I of deBoer et al. (2013) are also included. The
table also summarizes where the actual numerical values
of the data for each of the measurements were obtained.
It is fortuitous that most of the E1 and E2 data, below
S
p

, have been made available in tabular form and there-
fore few had to be digitized from figures. It should be
noted that this was not true for the data from Jaszczak
et al. (1970) and Jaszczak and Macklin (1970), but this
data have been excluded from the analysis as mentioned
above. Unfortunately much of the angular distribution
data did have to be digitized. The figures were these
data were obtained are listed in Table V. For ease of ref-
erence, Table II also summarizes the di↵erent kinds of
targets that have been used in the various capture mea-
surements.

VI. R-MATRIX ANALYSIS OF 12C(↵, �)16O

As described in Sec. IV, the phenomenological R-
matrix method is currently the preferred method for the
analysis of the 12C(↵, �)16O reaction. This method has
been used to simultaneously fit the experimental mea-
surements that populate the 16O compound nucleus at
energies below E

x

⇡ 14 MeV (see Fig. 2). A modified
version of the R-matrix code AZURE2 (Azuma et al., 2010;
Uberseder and deBoer, 2015) has been used. The code
implements the generalized mathematical formalism that
has been described in Sec. IV.A including the alternate
R-matrix formalism of Brune (2002) in order to more con-
veniently utilize level parameters from the literature. An-

other convince of this alternate parameterization is that
boundary conditions are eliminated. However, the chan-
nel radii still need to be specified. In principle a di↵erent
radius can be chosen for each channel, but it is common
practice to only choose di↵erent radii for di↵erent par-
titions. For the best fit, values of a

↵0 = a
↵1 = 5.43 fm

and a
p0 = 5.03 fm were found. Discussions of the sensi-

tivity of the fit to the choice of channel radii is given in
Sec. VII.C.
Several physical quantities have uncertainties much

smaller than those from other sources and are treated
as constants in the analysis. These are summarized in
Table VI. Entrance channel angular momenta were con-
sidered up to l = 8. Unless specifically labeled otherwise,
all quantities are given in the center-of-mass reference
frame.
The present work is an extension of the R-matrix anal-

ysis given in deBoer et al. (2013). In that work, a global
R-matrix fit was achieved for data belonging to all the
open channels above the first excited state ↵ particle
(S

↵1 = 11.60 MeV) and proton (S
p

= 12.13 MeV) sep-
aration energies and below E

x

⇡ 14.0 MeV in 16O (see
Fig. 2). In the present analysis, all the previous chan-
nels and data are again considered, but, in addition, the
lower energy data for the ↵ capture reaction and the
16N(�↵)12C spectra are included. This global, simul-
taneous, analysis considers over 15,000 data points, the
majority of the data available in the literature. In ad-
dition to the primary aim of facilitating a comparison
between the di↵erent data sets, this global analysis has
the potential to place more stringent constraints on the
extrapolation of the 12C(↵, �)16O reaction to stellar en-
ergies. This is mainly the result of the inclusion of the
higher energy data and the extension of the phenomi-
nological model to those energies. While the resonances
at higher energy do not have a strong impact on the low
energy cross section, an explicit fitting to these higher en-
ergies places much more stringent limits on possible low
energy tail contributions of even higher lying resonances.
As will be described, this has been, and remains, one of
the largest uncertainties in the extrapolation of the cross
section to stellar energies.

A. “Best Fit” Procedure

One of the main reasons that the 12C(↵, �)16O cross
section has such large uncertainties in the extrapolation is
that there are di↵erent possible fit solutions, correspond-
ing to the di↵erent relative interference patterns of the
di↵erent resonances, depending on di↵erent assumptions
and interpretations of the data. However, as more and
more measurements have been undertaken, these ambi-
guities have steadily decreased. Here the assumptions of
this analysis are described and a large amount of the re-
mainder of this work details what happens when these
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TABLE V Summary of experimental data considered in the present analysis. The data included are in addition to that already
presented in Table I of deBoer et al. (2013). The reaction, the multipolarity of the � rays measured, the source of the data,
and the systematic uncertainty for each data set is noted. For several of the data sets, the absolute cross section was found by
normalizing to previous data, so these entries are left blank.

Ref. Reaction(s) Source �syst (%)
Dyer and Barnes (1974) 12C(↵, �0)

16O, E1 Table 2, Fig. 6 10
Redder et al. (1987) 12C(↵, �0,6.92,7.12)

16O, E1 and E2 Tables 1,2,3, Fig. 5 6
Kremer et al. (1988) 12C(↵, �0)

16O, E1 Private Communicationa 15
Buchmann et al. (1993) 16N(�↵)12C Table 1 6
& Azuma et al. (1994)

Ouellet et al. (1996, 1992) 12C(↵, �0)
16O, E1 and E2 Table 3,4 �

Roters et al. (1999) 12C(↵, �0)
16O, E1 and E2 Table 1 �

Gialanella et al. (2001) 12C(↵, �0)
16O, E1 Table 2 9

Kunz et al. (2001) 12C(↵, �0)
16O, E1 and E2 Table 1, Fig. 3 �

Fey (2004) 12C(↵, �0)
16O, E1 and E2 Tables E1,E2, Figs. D1 to D13 �

Schürmann et al. (2005) 12C(↵, �)16O Table 1 6.5
Assunção et al. (2006), 12C(↵, �0)

16O,E1 and E2 Table 1 (3 params.),Fig. 10 �
& Brune and Sayre (2013)

Makii et al. (2009) 12C(↵, �0)
16O, E1 and E2 Table 7 �b

Tischhauser et al. (2009) 12C(↵,↵)12C EXFORc �
Tang et al. (2010) 16N(�↵)12C Table 1 2

Schürmann et al. (2011) 12C(↵, �
all

)16O Table 1 6.5
Plag et al. (2012) 12C(↵, �

all

)16O Table III <10

a Data available in Supplemental Material.
b Statistical and systematic uncertainties combined.
c Data available as both yields (C1461002) and cross sections (C1461014).

TABLE VI Masses and particle separation energies used in
the R-matrix calculation. The quantities S

↵

, S
p

, and S
↵1 rep-

resent the separation energies of an ↵ particle, a proton, and
an ↵ particle with 12C in its first excited state respectively.
Masses are in atomic mass units. All values are taken from
Audi et al. (2003).

Parameter Value
S
↵

7.16192(1) MeV
S
p

12.12741(1) MeV
S
↵1 11.60083(31) MeV
m

p

1.00782503207(10)
m

↵

4.00260325415(6)
m(12C) 12
m(15N) 15.00010889823(15)
m(16N) 16.006101658(2815)
m(16O) 15.99491461956(16)

assumptions are bent or broken in order to more fully
gauge the uncertainties.

As with most analyses of this kind, the path to the
final solution was not a straight forward procedure but
was an iterative process. In this section the details of the
“best fit” are given. This was not the fit with the lowest
over all �2, nor was it the fit that allowed all possible pa-
rameters to vary freely, but it is believed to be the most
physically reasonable one. In principle a �2 minimiza-
tion should lead to the best solution, but this assumes
that all of the uncertainties have been correctly quanti-

fied in the data, and this is certainly not the case. While
the �2 minimization also includes a term for a constant
systematic uncertainty, and often this is a dominant con-
tribution, energy and angular dependent systematic un-
certainties are also present, which may or may not have
been quantified. These usually have a smaller e↵ect, but
in some cases, especially when the statistical uncertain-
ties become very small, it is very likely that these are the
cause of poorer quality fits.
The assumptions that brought about the “best fit”

were

• The ANCs, as determined from modern transfer
reactions, are reliable and their values are fixed in
the fit

• � ray widths of the subthreshold states are reliable
and are fixed in the fit

• Fits are unacceptable if the normalization factors
of all data sets in a given channel systematically
deviate (the exception to this rule is the E2 ground
state transition data)

and important conclusions brought about by a thorough
review of the data and the R-matrix fits were

• The 12C(↵, �)16O E2 ground state transition cross
section data show large deviations between one an-
other
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• Background pole contributions are negligible for
the 12C(↵, �)16O capture data for all transitions

• For the ground state 12C(↵, �)16O data, the low
energy measurements yielding larger cross sections
are more likely to be a↵ected by un-reported sys-
tematic uncertainties.

These assumptions and conclusions were in most cases
not assumed a priori, but came about through the itera-
tion of many test calculations. Of course these assump-
tions, although logically motivated, are still somewhat
subjective and may have (in fact have greatly) varied
from one evaluator to the next over the years. Therefore
it is of the utmost importance that these assumptions
are tested rigorously and the sensitivity of the fit must
be gauged for each one. This is what much of Sec. VII
is devoted to, a quantification of these assumptions into
uncertainties on the extrapolation of the cross section to
stellar energies. Throughout this work there are discus-
sions of these di↵erent assumptions but a brief discussion
of all of them is first given here.

While ANCs can be determined, in theory, through
compound nucleus reactions like scattering, capture, and
� delayed particle emission, there are nearly always com-
plications. These analyses are usually performed using a
phenomenological R-matrix analysis but are often com-
plicated by the presence of broad resonances contribu-
tions and the need for background contributions. It is
the experience of the authors that unless a capture cross
section can be described well using only the external cap-
ture model (i.e. no broad resonances are present) it can
be di�cult to extract a reliable value for ANCs from this
type of data. For scattering it is nearly always the case
that many background poles are needed to compensate
for the potential phase shift that is only approximately
reproduced by the hard sphere phase shifts. The situ-
ation is similar for 16N(�↵)12C data were again back-
ground contributions are often required. Further, even
small errors in the corrections of the data for experimen-
tal e↵ects can e↵ect the ANC determinations.

Transfer reactions have their own issues, namely that
their are theoretical uncertainties that can be di�cult to
quantify, but recent Sub-Coulomb measurements seem to
have succeed in limiting these e↵ects so that ANCs can
be extracted reliably to about the 10% uncertainty level.
This has been confirmed by measurements by di↵erent
groups using di↵erent experimental setups that yield con-
sistent results. Certainly more experiments need to be
performed to better verify this claim, but at this time
they seem to be the most reliable and accurate method.

The only � ray widths of subthreshold states that have
a large impact on the cross section determination are
the ground state widths of the E

x

= 6.92 and 7.12 MeV
states which make strong subthreshold contributions to
the ground state E2 and E1 cross sections respectively.

These widths are known to better than 5% total uncer-
tainty and have been verified by several di↵erent mea-
surements, although they have not been studied recently.
Unless there is some reason to suspect that all data for

a specific reaction su↵er from a shared systematic uncer-
tainty, it seems reasonable to assume that the weighted
average of di↵erent measurements should be very close
to one. This has been found to be true for all of the reac-
tion channels studied here except for the 12C(↵, �)16O E2
ground state data. This data shows both large scatter,
that is not reflected by the experimental error bars, and
has been found to by systematically too large in value.
These issues have lessened with more recent measure-
ments. The issue here has always been the attempt to de-
termine a small E2 component from a cross section that
is dominated by the broad E1 resonance at E

x

= 9.59
MeV.
With the addition of the higher energy states in this

analysis, a reasonable fit can be achieved for both the E1
and E2 ground state capture transition data without any
background contributions. This does not mean that the
present R-matrix analysis does not have any background
poles, several are still required to fit the 12C(↵,↵0)12,
15N(p, p0)15N, and 16N(�↵)12C reaction data. The phys-
ical justification for this is clearly seen in the higher en-
ergy 12C(↵, �)16O data of Snover et al. (1974) where it
has been shown that the cross section, for both E1 and
E2 multipolarities, becomes weak at high energies and
does not show any resonances that compare in strength
to those that correspond to the 1� levels E

x

= 12.45 and
13.09 MeV. Since these two strong higher energy states
are now included explicitly, they should account for the
majority of the higher energy background contributions.
For the E2 ground state transition data, more recent

measurements have achieved significantly more consis-
tent measurements (e.g. (Makii et al., 2009; Plag et al.,
2012)). This is also true for the E1 ground state tran-
sition data, but to a lesser extreme. This can be seen
clearly in Fig. 3. From Jaszczak et al. (1970) to Plag
et al. (2012), there has been a general decrease in the
values given for the cross sections on the low energy side
of the 1� resonance. In general, background contamina-
tions are often underestimated for the yield extraction
in low statistics measurements and this trend is quite
prevalent in the literature.

1. Systematic Uncertainty �2
Term

Every data set has some systematic uncertainty, which
represents the experimentalist’s best estimate of contri-
butions to the uncertainty that come from sources that
are not statistical. In many cases these uncertainties are
approximated by a constant factor (e.g. target thick-
ness, beam intensity, e�ciency, etc.) that a↵ects the en-
tire data set. However, as measurements become more
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precise, the quantification of the systematic uncertainties
often become increasingly complicated.

As a first step, it is critical to separate the uncertain-
ties into contributions from point-to-point and over all
systematic uncertainties in order to perform the �2 min-
imization accurately. For analyses that consider multi-
ple data sets, each with independent systematic uncer-
tainties, this becomes even more crucial. This has been
shown some time ago, e.g. by Dodder et al. (1977), yet
has been neglected even in some relatively recent and
comprehensive analyses (e.g. Hammer et al. (2005b)).
Further, it has been shown that the method of introduc-
ing the systematic uncertainty term into the �2 fitting
solves Peelle’s pertinent puzzle, or at least makes the ef-
fect negligible (Carlson et al., 2009; Hale, 2004).

For the approximation that the systematic uncertainty
of an individual data set can be treated as constant, it is
included in the �2 fit using the method described in, e.g.,
D’Agostini (1994); Dodder et al. (1977); and Schürmann
et al. (2012) and is given by
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where n
i

is the normalization factor of an individual data
set, f(x

i,j

) is the value of the cross section from the R-
matrix fit, y

i,j

is the experimental cross section of a given
data point, �

i,j

is the (hopefully mostly) statistical un-
certainty of the data point, and �2

syst,i is the over all
fractional systematic uncertainty of the data set. A sum-
mary of the systematic uncertainties of the di↵erent ex-
periments is listed in Table V. Since several of the capture
measurements were normalized to earlier measurements,
several lack independent normalizations (indicated by the
� in Table V). In these cases, the normalizations of the
data are allowed to vary freely in the fitting. Table VII
lists the normalization factors for the excitation curve
data resulting from the R-matrix fit and compares them
to the experimental systematic uncertainties.

Ideally all parameters of the R-matrix fit could be var-
ied simultaneously to achieve the best fit, but this situ-
ation could not be realized. The current analysis has 64
fit parameters not including the normalization parame-
ters. These parameters correspond to the partial widths
and energies of the 12 particle unbound states in 16O
that were used to describe the broad energy structure of
the reaction cross sections. An additional 7 background
poles were necessary, primarily to reproduce the scat-
tering reaction data. However, the best fit contains no
background poles for the 12C(↵, �)16O reaction, for any
of the transitions. Five subthreshold states and five levels
corresponding to narrow resonances were also included,

with their ANCs or partial particle widths and � decay
widths fixed to values from the literature. Tables A and
XXII give the R-matrix parameters necessary to repro-
duce the best fit of this analysis. The parameters in bold
indicate those actually used for the fitting. Other pa-
rameters were fixed at values taken from the literature.
Additionally, Table XXIV gives the reduced width ampli-
tudes associated with the �-ray widths, subdivided into
their internal end channel contributions. Note that these
are not additional fitting parameters.
It should be highlighted here that many di↵erent fit-

ting combinations where investigated and are discussed,
but for clarity and practicality only the details of the
best fit are given in Tables A and XXII. For example, in
the subsequent sections that investigate the uncertain-
ties in the fitting, background poles for the 12C(↵, �)16O
reaction are introduced, but these are absent from the
parameter tables since they are not included in the best
fit.
With such a complicated fitting, it is reasonable to

question whether the fit is unique. That is, can a similar
quality fit be obtained but with a vary di↵erent param-
eter set? For levels in the R-matrix that correspond to
physical levels, it is believed that these values are in fact
unique and well defined, at least to within their uncer-
tainties. This can be said with some confidence because
of the unitarity condition of the R-matrix theory, but
this does only apply for the particle channels. Further, it
is often the case that only the partial width that corre-
sponds to the lowest orbital angular momentum channel
is used in the fitting. Higher orbital angular momentum
channels have been investigated but had values consis-
tent with zero for the present experimental data. When
more precise data are obtained, this assumption should
be re-investigated.
For the �-ray channels, unitarity is not enforced, as

this reaction mechanism is introduced into the theory
as a perturbation. This is well satisfied in the current
case because the capture cross sections are always much
smaller than the nuclear ones. However, because the par-
ticle width(s) of a given level are always much larger than
the �-ray widths, they determine the resonance’s total
width while the �-ray widths e↵ectively only determine
the height of the resonance. In this way the capture data
uniquely constrain the total �-ray widths. However, it
is sometimes possible that more than one �-ray multi-
polarity can contribute and may be of similar intensity.
This is especially true for the well known case when E2
and M1 decays are both possible and it is often true
that the data may not uniquely determine the multipo-
larity. Therefore the value of the total �-ray widths are
likely unique, but their multipolarities should be viewed
as tentative assignments. Additionally, like the particle
channels, higher order multipolarities may also be pos-
sible. The fit was tested for sensitivities to these higher
order terms but again they were found to not be signifi-
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TABLE VII Normalization factors (n
i

), �2, and number of data points (N) for excitation curve data resulting from the R-
matrix fit. Note the reasonable scattering in the normalizations of the E1 data compared to the much larger scatter present in
the E2 data. Additionally, it should be noted that the reduced �2 values for the 16N(�↵)12C and 12C(↵,↵0)

12C data sets are
significantly greater than one. The e↵ect of this on the uncertainty estimate of the extrapolated cross section will be discussed
in Sec. VII.F.

Reaction Ref. �syst,i % Norm. (n
i

) �2 L�1 N
12C(↵, �0)

16O Brune and Sayre (2013) 9 1.12 20.3 14.0 16
12C(↵, �0)

16O (28�) (Ouellet et al., 1996) - 1.200 18.4 14.9 15
(60�) Ouellet et al. (1996) - 0.970 91.7 20.7 16
(90�) Ouellet et al. (1996) - 1.046 78.6 18.0 16
(90�) Ouellet et al. (1996) - 0.957 86.7 18.7 16
(120�) Ouellet et al. (1996) - 1.068 45.3 14.5 15
(143�) Ouellet et al. (1996) - 1.117 28.7 15.6 15
(40�) Makii et al. (2009) - 1.085 1.55 2.23 2
(90�) Makii et al. (2009) - 0.926 0.527 1.81 2
(130�) Makii et al. (2009) - 0.842 1.982 2.50 2

12C(↵, �0)
16O (E1) Dyer and Barnes (1974) 10 1.031 55.9 25.2 24

Redder et al. (1987) 6 1.006 72.8 29.3 26
Kremer et al. (1988) 15 1.110 18.4 13.1 12
Ouellet et al. (1996) - 0.957 44.8 11.6 9
Roters et al. (1999) - 1.092 15.4 12.0 13

Gialanella et al. (2001) 9 0.913 27.3 18.5 20
Kunz et al. (2001) - 1.011 12.4 15.6 19

Fey (2004) - 1.000 16.9 8.3 11
Makii et al. (2009) - 0.959 0.43 1.47 2

Schürmann et al. (2011) 6.5 0.994 0.605 0.95 1
Plag et al. (2012) 12-21 1.017 2.01 3.25 4

12C(↵, �0)
16O (E2) Ouellet et al. (1996) - 0.883 3.42 5.70 5

Roters et al. (1999) - 1.698 0.246 1.54 2
Kunz et al. (2001) - 1.065 23.2 13.6 11

Fey (2004) - 1.364 15.1 12.8 12
Makii et al. (2009) - 1.095 0.46 1.63 2

Schürmann et al. (2011) 6.5 0.958 29.4 8.0 7
Plag et al. (2012) 30-61 1.016 0.342 2.93 5

12C(↵, �6.05)
16O (E1) Schürmann et al. (2011) 6.5 1.00 1.71 1.08 1

(E2) Schürmann et al. (2011) 6.5 1.19 16.5 9.4 6
12C(↵, �6.13)

16O Schürmann et al. (2011) 6.5 1.03 8.9 5.2 7
12C(↵, �6.92)

16O Redder et al. (1987) - 0.261 26.4 42.8 25
Kunz (2002) - 0.644 9.0 21.0 12

Schürmann et al. (2011) 6.5 0.993 18.1 12.7 7
12C(↵, �7.12)

16O Redder et al. (1987) - 0.265 52.4 29.5 24
Kunz (2002) - 0.469 8.3 16.7 12

Schürmann et al. (2011) 6.5 1.00 3.64 6.6 7
12C(↵, �total)

16O Schürmann et al. (2005) 6.5 0.926 301 136 76
Plag et al. (2012) 8-21 1.08 4.90 4.18 4

Yamaguchi et al. (2014) - 0.972 0.982 6.2 3
16N(�↵)12C Azuma et al. (1994) 5 0.91 496 122 87

Tang et al. (2010) 2 1.13 545 135 88
12C(↵,↵)12C Tischhauser et al. (2009) - - 56021 11775 9728

cant considering the uncertainties of the current data.

What are more ambiguous are the interference com-
binations that are possible for the capture data. The
ground state inferences patterns appear to now be well
known as discussed in Sec. VII.B, but some of these as-
signments are based on only a single measurement or only
a few data points. The ambiguity is much greater for the
cascade transitions. Very few data exist for these transi-
tions and often the interference signs have been deduced

based on a few number of data points and the constraint
imposed by the total capture cross section measurements.
The situation is even worse above S

p

, here the interfer-
ence signs are only constrained by their e↵ects on the
lower energy data. However, since the cascade transi-
tions are dominated by external capture at low energies,
these di↵erent solutions have a negligible e↵ect on the
low energy extrapolation.

Finally, the values of the background poles are cer-
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tainly not unique. This is perfectly acceptable since
their energies are rather arbitrary. The only condition
is that these energies should be significantly larger than
the highest energy data points so that they can provide
an approximately energy-independent underlying back-
ground that represents the sum of the low energy tails
of all higher lying resonances. What is unique is the
magnitude of the underlying background provided by the
background poles, and this contribution can be produced
many di↵erent equivalent ways. For example, the back-
ground poles are often placed at E

x

= 20 MeV for the
best fit, but an investigation of the extension of the cap-
ture cross section to higher energies necessitates moving
the background poles up to E

x

= 40 MeV. While the
values of the partial widths for these poles are of course
much di↵erent than those at lower energy, the cross sec-
tion that they produce at low energy is relatively un-
changed.

2. Corrections for Experimental E↵ects

It is a simple fact that measurements made in the labo-
ratory are never actually the true cross sections, statisti-
cal variations aside. Even for arguably the simplest of ex-
perimental data, for example 12C(↵,↵0)12C, the reported
quantities are often expressed as yields instead of actual
cross sections. Even quantities labeled as cross sections
in the literature are often only normalized yields, which
may or may not have been subjected to any number of
di↵erent deconvolution techniques and other corrections
for experimental e↵ects. A general formula relating the
experimental yield Y (E

b

) at mean beam-particle energy
E

b

to true cross section �(E) is

Y (E
b

) =

Z
Eb

Eb��

Z
1

0

�(E)
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b

)
g(E � E0

b

)dEdE0

b
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Here, the function g(E � E
b

) describes the spreading of
the beam particle energy around the mean energy, ✏(E

b

)
is the stopping power that describes the energy loss of
the beam particles as they passes through the target ma-
terial, and � is the total energy loss in the target. Other
e↵ects, such as energy straggling, may also be important
depending on the experimental conditions, but Eq. (89)
serves as a general enough example. As is commonly
implemented in the case of charged particle beams, the
spreading function is approximated by a Gaussian func-
tion

g(E � E
b

) =
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2⇡�2

b
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2�2
b

�
, (90)

where �
b

defines the energy width of the beam.
In this analysis, Eq. (89) is used to approximately cor-

rect for the resolution of the experimental measurements,
as most of the data under analysis assumes this sort of
convolution function. It should be kept in mind that this

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Center of Mass Energy (MeV)

10-2

10-1

100

S 
fa

ct
or

 (M
eV

 b
)

Total
Ground State

300 keV

FIG. 6 (Color online) Illustration of the total 12C(↵, �)16O
S-factor (black dashed line) compared to the ground state
transition (red line) based on the R-matrix analysis of this
work. The ground state transition dominates at stellar ener-
gies. Ec.m. = 300 keV is indicated by the vertical black line.
Experimental measurements of the ground state transition
have reached as low as Ec.m. ⇡ 1 MeV.

is an approximate method and that for data with very
small uncertainties this simple method may not prove ac-
curate enough. In this analysis a good example are the �
delayed ↵ emission data. Possible failings of the decon-
volution method have been discussed recently by Buch-
mann et al. (2009) and are described further in Sec. VI.D.

B. Ground State Transition

The largest contribution to the 12C(↵, �)16O cross sec-
tion at low energy (Ec.m. ⇡ 300 keV) is the ground state
transition. This is illustrated in Fig. 61. The E1 and E2
multipolarites dominate the low energy cross section in
nearly equal amplitudes as discussed in Sec. III. At higher
energies, high order multipolarities could become signif-
icant, although this has not yet been observed. A prime
candidate is the ground state E3 decay of the broad 3�

level at E
x

= 11.49 MeV.
The separation of the ground state capture cross sec-

tion into E1 and E2 multipolarities (�
E1 and �

E2) dates
back to Dyer and Barnes (1974). As discussed in Sec. V,
at that time �

E1 was thought to dominate the low energy
cross section, which was determined by decay through
the 1� subthreshold state and its interference with the

1 While the E1 constructive solution is shown here, this statement
is true even for a destructive E1 solution, since the E2 cross
section still dominates over the cascade transition contributions.
There is no E2 interference pattern that has been considered
viable that makes its contribution of similar magnitude or smaller
than the cascade contributions.
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FIG. 7 (Color online) Comparison of predicted E1 (dashed
black line), E2 (solid red line), and the sum of the cascade
transitions (dot-dot-dashed blue line) cross sections. Over
much of the low energy range covered by most measurements,
the broad resonance corresponding to the E1 decay of the 1�

level at E
x

= 9.59 MeV dominates over the E2 contribution.
This has made the experimental determination of the E2 cross
section extremely challenging.

unbound level at E
x

= 9.59 MeV. The E1 cross section
was also easily isolated experimentally by measuring at
90� where �

E2 and the interference terms are zero (see
Sec. V.A). This then also greatly simplifies the math-
ematics of the analysis, which at the time was usually
a three level R-matrix fit. Complications arose when it
was found that �

E2 was also significant (see Sec. V.B).
From an experimental standpoint, the immediate di�-
culty was that there is no angle where �

E1 is zero and
�
E2 is not, therefore �E2 must be deduced indirectly. The

traditional technique is to measure the di↵erential cross
section at several angles, spanning a wide angular range,
and then perform a fit to a theory motivated function
representing the angular distribution. If only E1 and E2
multipolarities contribute to the cross section, the di↵er-
ential cross section can be written as (Dyer and Barnes,
1974)

4⇡

✓
d�

d⌦

◆
(E, ✓

�

) =

�
E1(E)[1�Q2P2(cos ✓�)]
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7
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7
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�

+ 6 cos�(E)

r
�
E1(E)�

E2(E)

5
[Q1P1(cos ✓�)

�Q3P3(cos ✓�)]
(91)

where P
n

cos(✓
�

) are the Legendre polynomials, Q
n

are
the geometric correction factors (Rose, 1953), and � is
the di↵erence in phase between the E1 and E2 transition

matrix elements. The phase di↵erence can be written as

cos� = cos[�
↵1 � �

↵2 � tan�1(⌘/2)] (92)

where �
↵1,2 are the angular momentum l = 1 and 2 ↵

scattering phase shifts (see Eq. (25)) and ⌘ is the Som-
merfeld parameter. As discussed above in Sec. IV.D,
Eq. (92) is very general and is a consequence of Watson’s
theorem. It is also fully consistent with the R-matrix
formalism used here. This simply illustrates the connec-
tion between the scattering cross section, from which the
phase shifts can be extracted, and the capture cross sec-
tion. Since the scattering cross section is large, the phase
shifts can be easily and accurately measured and used to
constrain cos� up to an overall sign (Brune, 2001). If �

E1

is then determined from measurements at 90�, then �
E2

is essentially the only undetermined quantity. In princi-
ple this provides a straightforward way of obtaining �

E2

but there are complications. The main issue is that �
E1

is much larger than �
E2 over much of the experimen-

tally accessed low energy range because the cross section
is dominated by the broad resonance corresponding to
the 1� level at E

x

= 9.59 MeV as illustrated in Fig. 7.
The fact that the interference term is proportional top
�
E1�E2 increases the sensitivity to the small E2 com-

ponent, but in practice this approach has yielded a large
scatter in the �

E2 data as shown in Figs. 3 and 9. The
scatter is far outside the acceptable statistical range and
suggests that systematic errors in the radiative capture
measurements have been underestimated.
One way to understand the sign ambiguity in cos� is

that the nuclear phase shifts and arctangent function in
Eq. (92) are ambiguous by multiples of ⇡. However, in
our R-matrix formalism, the sign of cos� is determined
by the phases of the transition matrix elements which
are ultimately determined by the signs of the reduced
width amplitudes (phase shifts are inherently ambiguous
and are not used in the calculations). Note also that a
generalization of Watson’s theorem still applies when in-
elastic scattering and reaction channels are open, such
as is the case shown below in Fig. 22. In this situation,
the phases of the radiative capture transition matrix el-
ements are determined by the R-matrix parameters for
the nuclear channels, as shown by Eq. (75), which can be
constrained if su�cient data in the nuclear channels are
available.
For the E1 data, only decays from 1� levels can con-

tribute because the spins of the entrance channel par-
ticles and the final state are all zero. The di↵erent
levels that are considered are the subthreshold state at
E

x

= 7.12 MeV and the unbound states at E
x

= 9.59,
12.45, and 13.10 MeV. While the two higher lying states
are 3 to 4 MeV above the lowest energy resonance, their
large total widths and ground state �-ray decay widths
make their contributions significant even at low energies.
The di↵erent contributions used to reproduce the cross
section data are shown in Fig. 8. This E1 ground state
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cross section is unique in that it has a very weak exter-
nal capture contribution (see Sec. IV.D, Eq. 62). It does
however have a strong subthreshold contribution from
the E

x

= 7.12 MeV state. The ANC
↵

together with the
energy and the �

�0 of this state characterize the strength
of the subthreshold contribution. A discussion of the
subthreshold state parameters is deferred to Sec. VI.F.
It is also of note that the magnitude of the contributions
from the subthreshold state and all three unbound states
are similar at Ec.m. ⇡ 1.2 MeV. The cross section that is
shown in the figures of this work is the result of the choice
of the constructive E1 interference solution. A discussion
of why this particular solution has been chosen is given
in Sec. VII.B.

The situation is similar for the E2 data where only
2+ states can contribute. The states that are considered
explicitly are the subthreshold at E

x

= 6.92 MeV and
two unbound ones at E

x

= 11.51 and 12.96 MeV. The
narrow state at E

x

= 9.84 MeV is also included but its
energy and partial widths are all fixed to the values in
the literature (Tilley et al., 1993). Further, as suggested
in Sayre et al. (2012), experimental data in the vicin-
ity of this state (2 MeV < Ec.m. < 3 MeV) have been
excluded because of the deconvolution of this data from
yield to cross sections is unreliable (see Figs. 3 and 9).
The interference sign is also fixed to the one determined
in Sayre et al. (2012). The di↵erent reaction components
used for the fit are shown in Fig. 8. The subthrehold
state completely dominates at low energy and is a slowly
varying function of energy. Note that it is dominant all
the way up to Ec.m. ⇡ 3.5 MeV. Only one experimen-
tal measurement has been made at these higher energies,
that of Schürmann et al. (2011). There is a small E2 ex-
ternal capture contribution that is present but because
of interference terms it can have a significant e↵ect on
the E2 cross section in certain isolated regions. In fact
it is just in the region near Ec.m. ⇡ 3.5 MeV that the
e↵ect is maximal since the other resonances make their
smallest relative contributions here (see Fig. 8). There-
fore the lowest energy E2 ground state transition data of
Schürmann et al. (2011) have the somewhat unexpected
ability to constrain the ground state external capture
contribution. However, it is only the two lowest energy
data points that have any significant sensitivity. Fur-
ther discussions of the subthreshold state parameters are
given in Sec. VI.F.

Ideally, the R-matrix fit would be made directly to pri-
mary data2. This is done when the data are available,
but in several instances only the derived E1 and E2 cross
sections are given, and the original angular distributions
are not reported. Di↵erential cross section measurements

2 That is, the data that are most closely related to the yields that
are measured.
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FIG. 8 (Color online) S-factors of the di↵erent transitions
that make up the total 12C(↵, �)16O cross section. The
ground state is further divided into E1 and E2 multipolar-
ities. Red dashed lines indicate individual resonance contri-
butions (single level calculation), blue dashed-dot lines are
the hard-sphere contributions to the external capture, green
dashed-dot-dot lines are subthreshold contributions, and the
solid black lines represent the total with interferences included
(i.e. individual contributions summed coherently).

below S
p

are available only for the ground state transi-
tion and only in the limited energy range around the
broad lowest energy 1� resonance that corresponds to
the level at E

x

= 9.59 MeV (Assunção et al., 2006; Dyer
and Barnes, 1974; Fey, 2004; Makii et al., 2009; Ouellet
et al., 1996; Redder et al., 1987). These data are used
to determine the relative interference between the E1
and E2 components of the cross section, but it is pos-
sible that measurements over other regions, where the
two components are closer in magnitude, would provide
better constraint. Above S

p

, measurements are avail-
able in Kernel et al. (1971) and Larson and Spear (1964)
over the broad states at E

x

= 12.45 (1�), 12.96 (2+),
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FIG. 9 (Color online) Fit to the 12C(↵, �0)
16O cross section.

The E1 contribution from Assunção et al. (2006); Dyer and
Barnes (1974); Fey (2004); Gialanella et al. (2001); Kremer
et al. (1988); Kunz et al. (2001); Makii et al. (2009); Ouellet
et al. (1996); Plag et al. (2012); Redder et al. (1987); Roters
et al. (1999); and Schürmann et al. (2011) is shown in Fig.9
a), and the E2 contribution from Assunção et al. (2006); Fey
(2004); Kunz et al. (2001); Makii et al. (2009); Ouellet et al.
(1996); Plag et al. (2012); Redder et al. (1987); Roters et al.
(1999); and Schürmann et al. (2011) is shown in Fig.9 b). In
Fig.9 a), the angle integrated cross section data of Brochard
et al. (1973) are also shown at high energy for comparison as
they are dominated by E1 capture. Note that the data have
been subjected to overall normalizations as determined by the
fitting procedure.

and 13.10 (1�) MeV. The Q coe�cients (Longland et al.,
2006; Rose, 1953) used to correct for the extended geom-
etry of the � ray detectors are listed in Table VIII.

The best fit to the 12C(↵, �0)16O angle integrated data
of Assunção et al. (2006); Brochard et al. (1973); Dyer
and Barnes (1974); Fey (2004); Gialanella et al. (2001);
Kettner et al. (1982); Kremer et al. (1988); Kunz et al.

(2001); Makii et al. (2009); Ouellet et al. (1996); Plag
et al. (2012); Redder et al. (1987); Roters et al. (1999);
and Schürmann et al. (2011) is shown in Fig. 9. The
simultaneous fit to the ground state angular distribu-
tion di↵erential cross section data (Assunção et al., 2006;
Dyer and Barnes, 1974; Fey, 2004; Redder et al., 1987) is
shown in Fig. 10 and the di↵erential excitation curves of
Makii et al. (2009) and Ouellet et al. (1996) are shown
in Fig. 11.

C. Cascade Transitions

While the cascade cross sections make a small con-
tribution to the total low energy cross section (⇡5% at
Ec.m. = 300 keV), at higher energies they can dominate
as shown in Figs. 6 and 7. However, another compelling
reason for their accurate measurement would be to con-

strain the ANCs of the subtheshold states, in particular
those of the E

x

= 6.92 and 7.12 MeV states, through
their external capture contributions. The E

x

= 6.13 MeV
transition capture cross section, which is external capture
dominated, is also connected to the � delayed ↵ emis-
sion spectrum through its ANC as discussed further in
Sec. VI.D.
Cascade transition excitation curves for the

12C(↵, �)16O reaction have been measured by Ket-
tner et al. (1982); Matei et al. (2006); Redder et al.

(1987); and Schürmann et al. (2011). The measurement
of these transitions are complicated experimentally
by the close energy spacing of the bound states at
E

x

= 6.05 (0+) and 6.13 (3�) MeV and those at
E

x

= 6.92 (2+) and 7.12 (1�) MeV. This can make
separating the individual contributions di�cult when
using Sodium Iodide, Barium Fluoride, or Lanthanum
Bromide detectors, which have poorer energy resolution
than a Germanium detector. For example, Kettner et al.
(1982) first reported measurements of the transition to
the E

x

= 6.92 MeV state but in Redder et al. (1987),
where Ge(Li) detectors were used, it was clarified
that the measurement was actually the sum of the de-
excitations through the E

x

= 6.92 and 7.12 MeV states.
The combined cross section, E

x

= 6.92 + 7.12 MeV
transition, of Kettner et al. (1982) is shown in Fig. 12
compared to the sum of the cross sections for each
transition from the R-matrix fit. While the data is in
rough agreement, the shape is distorted in the vicinity
of the 4+ level at E

x

= 10.36 MeV. Further, while the
E

x

= 6.92 and 7.12 MeV data of Redder et al. (1987)
are in agreement as far as their energy dependence,
their absolute scale is about a factor of two larger than
recent measurements by Kunz (2002) (see Table VII and
Schürmann et al. (2012)). Note that the data of Kettner
et al. (1982) are excluded from the fitting. Further
measurements of these cascade transitions at low energy
are needed in order to understand these discrepancies.
There has been a great deal of interest and contradic-

tory results regarding the cascade cross section measure-
ments of the E

x

= 6.05 MeV transition. The measure-
ment of Matei et al. (2006) reports an excitation curve for
this transition over a wide energy range. Further, in that
work an R-matrix fit was made to this data that gave
a much larger low energy contribution than previously
estimated. A subsequent measurement by Schürmann
et al. (2011) over a more limited higher energy range
claimed that their data was inconsistent with that of
Matei et al. (2006) and their R-matrix fit predicted the
opposite extreme, that the transition’s contribution was
lower than previously estimated. A reanalysis of the data
of Schürmann et al. (2011) by deBoer et al. (2013) found
a value in between the two, which was closer to previ-
ous estimates. Finally, Avila et al. (2015) measured the
ANCs of the E

x

= 6.05 and 6.13 MeV transitions and
arrived at values very close to those deduced by deBoer
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TABLE VIII Summary of Q coe�cients for extended detector geometry corrections. In cases where the coe�cients were not
reported they have been approximated using a GEANT4 simulation and the details of the geometry presented in the reference;
the source for these cases is indicated as “this work.”.

Ref. Det. Q1 Q2 Q3 Q4 Source
Larson and Spear (1964) 0.897 0.719 0.509 0.311 this work

Kernel et al. (1971) 0.989 0.968 0.937 0.896 this work
Dyer and Barnes (1974) 0.955 0.869 0.750 0.610 Table 5.5 of Sayre (2011)

Ophel et al. (1976) 0.990 0.969 0.948 0.900 this work
Ouellet et al. (1996) 28� 0.9719 0.9173 0.8395 0.7431 Table 1

60� 0.9675 0.9047 0.8162 0.7061
90� 0.9541 0.8670 0.7474 0.6068
90� 0.9543 0.8675 0.7486 0.6091
120� 0.9762 0.9296 0.8672 0.7787
143� 0.9831 0.9500 0.9017 0.8400

Redder et al. (1987) 0.92 0.75 in text
Assunção et al. (2006) 0.989(2) 0.968(4) 0.936(8) 0.895(14) in text
Makii et al. (2009) 40� 0.980 0.947 0.898 0.837 Table VI

90� 0.980 0.946 0.897 0.835
130� 0.980 0.948 0.901 0.841

Plag et al. (2012) 0.948 0.927 0.862 0.775 Eq. 2

et al. (2013). Several details of the analysis of this tran-
sition have not been explained fully in the literature. For
this reason they are addressed here in some detail.

The first issue is that the R-matrix fit presented by
Matei et al. (2006) is erroneous. An error was made
in the code used for the fit that allowed for a larger E1
contribution. Proper calculations show that the large E1
component is impossible to reproduce.

Second, in Schürmann et al. (2011) it was shown that
their E

x

= 6.05 MeV cascade data is inconsistent with
that of Matei et al. (2006). This is true if the data are
taken at face value. However, the experiment of Matei
et al. (2006) measured not only the cascade transition to
the E

x

= 6.05 MeV state, but also the total cross section.
Unfortunately this data have never been published and
are available only in the thesis of Matei (2006). A com-
parison of the fit from this work with both the total and
the E

x

= 6.05 MeV transition cross section is shown in
Fig. 13. The total cross section data from Matei (2006) is
not in immediately good agreement with the fit, but be-
comes so if multiplied by a factor of ⇡1.2 (n1 in Fig. 13).
This normalization factor is well within the quoted exper-
imental systematic uncertainty of +31/-25%. The data
are in excellent agreement with the fit over the entire en-
ergy range except for three points at Ec.m. = 2.41, 4.29,
and 4.32 MeV. However, if the cross sections of these
three points are all multiplied by a factor of 3 (n2 in
Fig. 13), they are in excellent agreement with the total
cross section data of Schürmann et al. (2011).

Turning back to the E
x

= 6.05 MeV transition, it
was found that the data of Matei et al. (2006) devi-
ated from those of Schürmann et al. (2011) not only
in normalization but also in energy dependence. Al-
beit the comparison could only be made over the lim-
ited energy range of the data of Schürmann et al. (2011)

(3.5 < Ec.m. < 4.5 MeV, see Fig. 15). Further, the
R-matrix analysis of Schürmann et al. (2011) indicated
a di↵erence in energy dependence over an even wider
energy range. Both of these issues can now be ad-
dressed. As for the R-matrix fit, the energy depen-
dence does not match over the broad energy range be-
cause a value of �6.05 = 0.1+0.05

�0.01 (corresponding to an

ANC
↵,6.05 MeV = 44+270

�44 fm�1/2 ) was chosen, which has
subsequently been shown to be much too small by (Avila
et al., 2015) (ANC

↵,6.05 MeV = 1560±100 fm�1/2). Since
external capture dominates the E

x

= 6.05 MeV transition
cross section over much of the energy region (see Fig. 8),
this caused a significant di↵erence in the cross section.
In Schürmann et al. (2011), the large systematic uncer-
tainty of Matei et al. (2006) was not taken into account
and instead the di↵erence in the two data sets was at-
tributed to the data of Matei et al. (2006) being the sum
of the E

x

= 6.05 and 6.13 MeV transitions. However,
the experimental technique used in Matei et al. (2006)
uses a coincidence of � rays with recoils. Since the � ray
decay from the E

x

= 6.05 MeV state to the ground state
(0+ ! 0+) is strictly forbidden, this explanation seems
impossible. If instead the data of Matei et al. (2006) are
normalized to the data of Schürmann et al. (2011) in the
o↵-resonance region over the range from 3.25 < Ec.m. <
4.10 MeV (normalization factor of 0.8), the agreement
is much improved. The remaining deviation occurs for
just two points, which happen to fall at Ec.m. = 4.29 and
4.32 MeV, the vary same points that were found to be
too low in the total cross section data. If these points
are subjected to the same normalization factor as those
in the total cross section, the data are in much better
agreement as shown in Fig. 14. Regarding the low energy
point at Ec.m. = 2.41 MeV, its agreement is also much
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FIG. 10 (Color online) Comparison of the R-matrix fit to the angular distribution data of Dyer and Barnes (1974) (green
diamonds), (Redder et al., 1987) (brown stars), (Assunção et al., 2006) (black circles), and (Fey, 2004) (blue squares). Note that
the data at E

↵

= 2.28 and 3.677 MeV have been scaled for plotting convenience. The data from Fey (2004) show a systematic
deviation from the R-matrix fit and other data sets at backward angles. This is most clearly visible at E

↵

= 1.740 MeV where
the data from Assunção et al. (2006) and Fey (2004) were measured at the same energy.

improved with the energy dependence of the R-matrix fit
if subjected to this same normalization factor.

Summarizing the situation for the E
x

= 6.05 MeV
transition, the data of Matei et al. (2006) and Schürmann
et al. (2011) are in generally good agreement if the sys-
tematic uncertainties are considered. There are a few
points in the data of Matei et al. (2006) that appear to
have some unconsidered systematic shift in their absolute
scale compared to the rest of the data set. Attempts were
made to re-examine the log books of the experiment but
no correlation between these data points could be estab-
lished. It was found that no significant E1 contribution
was necessary to fit the data and that the low energy

cross section is dominated by E2 external capture

(see Fig. 8) in contradiction to the recent reassertion in

An et al. (2015) that this cross section is E1 dominated.
Finally, the ANCs measured in Avila et al. (2015) are
found to be in good agreement with the capture data.

The R-matrix fit and the cascade data included in the
global fit are shown in Fig. 15. It was found that the
cascade data of Kunz (2002) (E

x

= 6.92 and 7.12 MeV
transitions) require normalization factors of ⇡0.5 while
those of Redder et al. (1987) require values of ⇡0.25 (see
Table VII). The normalization is somewhat unexpected
since this was not required in the fit of Schürmann et al.

(2012). This may be the result of the di↵erent ANCs
used in this analysis. In addition, the value of the abso-
lute normalization for the cascade data is highly sensitive
to the normalization factor of the total cross section data.
If the normalization of the total cross section data are in-
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FIG. 11 (Color online) Fits to the di↵erential excitation curve
data of Ouellet et al. (1996) (solid black) and (Makii et al.,
2009) (green diamonds). At ✓lab = 90� two measurements
were made by Ouellet et al. (1996) but with di↵erent detec-
tors on opposite sides of the target. This second data set is
represented by open black points. This is also the only an-
gle where both experiments measured the cross section at the
same angle.

creased by a few percent, well with in their systematic
uncertainty of 6.5%, more consistent normalizations can
be obtained for the E

x

= 6.92 and 7.12 MeV transition
data of Kunz (2002). However, at low energies the exter-
nal capture dominates the cross section for both of these
transitions and the data are only over the resonance re-
gion corresponding to the E

x

= 9.59 MeV state. Hence
the fit to the data over this energy region have little e↵ect
on the extrapolation to stellar energies.

A detail that is only briefly mentioned in Schürmann
et al. (2012) is that their data gives the first evidence
for � ray decays from the 3� state at E

x

= 11.49
MeV. In this analysis evidence is found for decays to the
E

x

= 6.13 (M1/E2), 6.92 (E1), and 7.12 (E2) MeV final
states. The lowest order multipolarity has been assumed
except for the E

x

= 6.13 MeV transition. No evidence
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FIG. 12 (Color online) Data for the sum of the E
x

= 6.92
and 7.12 MeV transitions for the 12C(↵, �)16O data of Kettner
et al. (1982). The data have been normalized by a factor of 0.5
to match the R-matrix fit. The agreement is reasonably good
at low energies but above the narrow resonance corresponding
to the 2+ level at E

x

= 9.845 MeV the agreement worsens.
These data were not included in the global fit.
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FIG. 13 (Color online) Comparison of the 12C(↵, �total)
16O

and the 12C(↵, �6.05 MeV)
16O data of Matei (2006) and Matei

et al. (2006) (solid black points) and Schürmann et al. (2011,
2005) (brown stars) with the global R-matrix fit from this
work (solid red line). The data have been renormalized by
the factors n1 to match the fit. The blue square points rep-
resent the further renormalization of data points that are all
systematically low by the same amount as discussed in the
text.

for the E3 decay through the E
x

= 6.05 MeV transition
is observed in the data. The widths of these states can
be found in Table XXII.

D. � Delayed ↵ Emission

There have been several measurements of the � de-
layed ↵ emission spectrum of 16N as discussed in Sec. V.
However, the di↵erent spectra are can not be compared
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FIG. 14 (Color online) Comparison between the E
x

= 6.05
MeV transition data of Matei et al. (2006) and Schürmann
et al. (2011) over the smaller energy range of the Schürmann
et al. (2011) data. The data of Matei et al. (2006) have been
normalized to those of Schürmann et al. (2011) with a factor
of n1 = 0.8. The cross section of the two data points at Ec.m.

= 4.29 and 4.32 MeV have been scaled up by the same factor
of 3 used to normalized the corresponding points in the total
cross section as shown in Fig. 13. The original values are
indicated by the open black squares, the scaled values by the
open blue squares.

directly since all of them su↵er from experimental res-
olution e↵ects to di↵erent degrees. This point was the
subject of an analysis by Gai (1998) where it was de-
termined that the spectra of the Yale (France III et al.,
1997), Seattle (unpublished), and Mainz (Hättig et al.,
1970) groups were inconsistent with that of TRIUMF
(Azuma et al., 1994). This began a long debate regarding
the consistency between the data sets that still remains
unresolved.

More recently, Buchmann et al. (2009) performed an-
other comparison between the di↵erent data sets where
detailed GEANT simulations were created for several of the
past setups. The Monte Carlo simulations were used to
simulate the observed ↵ spectra. Many di↵erent deconvo-
lution e↵ects and background sources were investigated
for the Mainz, Seattle, Yale, Argonne and TRIUMF data
sets. In the end, the main conclusion was that the dif-
ferent spectra were very sensitive to the deconvolution
technique that was used. In particular, energy loss ef-
fects through the catcher foils were found to be a main
factor. The claim was also made that the deconvolution
technique used by France III et al. (2007) was incorrect
and that this data set may in fact be in agreement with
those of Azuma et al. (1994) and Hättig et al. (1970). Un-
fortunately another conclusion of the work was that not
enough experimental information is available to properly
analyze much of the data with the degree of confidence
that is desired. It remains a challenge for future measure-
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R → 6.13 MeV

R → 6.05 MeV (E2)

R → 6.92 MeV

R → 7.12 MeV

R → total

300 keV

FIG. 15 (Color online) Transitions for primary � rays to ex-
cited states in 16O for the 12C(↵, �)16O reaction are given in
Figs. 15 a) through d). The data include those from Plag
et al. (2012); Redder et al. (1987); Schürmann et al. (2012);
Schürmann et al. (2011, 2005); and Yamaguchi et al. (2014).
The total S factor is shown in Fig. 15 e).

TABLE IX Summary of convolution and energy shift cor-
rections for 16N(�↵)12C spectra for Azuma et al. (1994) and
Tang et al. (2010). For the other measurements, the convolu-
tion parameters are estimated from the best fits to the data
of Azuma et al. (1994) and Tang et al. (2010).

Ref. � (keV) �E (keV)
Azuma et al. (1994) (TRIUMF) 30 -5
Tang et al. (2010) (Argonne) 40 -3.75
France III et al. (2007) (Yale) 100 0
Hättig et al. (1970) (Mainz) 40 -10

unpublished (Seattle) 40 -5

ments to produce consistent results for the measurement
of the 16N(�,↵)12C spectrum.

For the current analysis, because of the above issues,
the data are limited to that of Azuma et al. (1994) and
Tang et al. (2010). These data sets have the most de-
tailed documentation of how to simulate their remaining
resolution e↵ects and claim that they can be accurately
done so using the simple method given by Eq. (90). In
addition to the usual convolution term, it has also been
recommended that each spectrum be shifted in energy
in order to agree with the more easily determined en-
ergy calibration of the scattering data. These correction
factors are summarized in Table IX.

A fit to both of these 16N(�,↵)12C data sets simultane-
ously, along with the rest of the data from other channels,
is shown in Fig. 16. The fit includes contributions from
the 1� levels at E

x

= 7.12 and 9.59 MeV, the 3� level at
E

x

= 6.13 MeV. Additionally, as in both Azuma et al.

(1994) and Tang et al. (2010), a 1� background pole (at
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FIG. 16 (Color online) Simultaneous fit including the
16N(�↵)12C data of both Azuma et al. (1994) a) and Tang
et al. (2010) b). In the fitting procedure the ANCs were fixed
to the values of the transfer measurements. The solid red line
represents the R-matrix cross section convoluted with the res-
olution function given by Eq. 89 and the specific parameters
given in Table IX.

E
x

= 20 MeV) is included. The di↵erent components for
the fit are shown in Fig. 17.

While the quality of the fit looks reasonable by eye,
the small error bars reveal significant di↵erences between
the two data sets even after the convolution correction to
the R-matrix curve. The resulting reduced �2 of the fit is
rather large as detailed in Table X. However the resulting
log(ft1/2) values are in reasonable agreement with those
given in the compilation, with the exception of the 3�

subthreshold state that is too large by about 3 standard
deviations.

To investigate the di↵erences further, the spectra were
fit independently (with the rest of the data). The �2

value of the Tang et al. (2010) data decreased substan-
tially, demonstrating the tension between the two data
sets. It is interesting to note that the �2 of the fit to
the data of Azuma et al. (1994) actually becomes larger.
This is caused by the tension between the data in the
other channels. The results are given in Table XI.

What is most interesting is the large di↵erence in the
log(ft1/2) values of the 3� state that result from the
individual fits. This is caused by the di↵erence in the
data in the vicinity of the interference region around
E

x

⇡ 8.5 MeV. With the ↵ ANC fixed, the fit attempts
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FIG. 17 (Color online) Components of the R-matrix fit to
the 16N(�↵)12C data of Azuma et al. (1994) and Tang et al.
(2010). The di↵erent red curves (except the dashed-dot-
dotted line) represent the 1� components of the fit, which
add coherently to give the interference pattern shown by the
red dashed-dot-dotted line. The individual 1� contributions
come from the E

x

= 7.12 MeV, 9.59 MeV, and background
pole (BGP) at 20 MeV. An additional 3� component adds
incoherently to give the total yield, which is given by the
solid black line. Note the similar energy dependence of the
subthreshold state and BGP contributions.

to compensate this di↵erence by changing the log(ft1/2)
value. Given the deconvolution methods used, it is clear
that the data of Azuma et al. (1994) are in the best agree-
ment with the ANCs of Avila et al. (2015).
A comparison is made using the best fit parameters

from the simultaneous fit to the data of Azuma et al.

(1994) and Tang et al. (2010) with the remaining data
sets from the Mainz, Seattle, and Yale experiments,
where the data have been taken from France III et al.

(2007). Since these three data sets retain significant ex-
perimental e↵ects, the convolution value of each data set
was varied while the R-matrix parameters where kept
constant. The resulting calculations are shown in Fig. 18
and the convolution parameters are given in the bottom
half of Table IX. The data are reasonably reproduced by
the convolution e↵ects except near the interference dip
around E

x

= 8.5 MeV. Here the fit under predicts the
data for all three data sets. This seems to indicate a
better agreement with the data of Tang et al. (2010).
These seeming contradictions in the data, that seem

to place the current data into two camps, are a criti-
cal puzzle that needs to be resolved. It seems that this
can only be done through future measurements consid-
ering the number of re-analysis that have been unable to
resolve the issues. The 16N(�↵)12C spectrum could pro-
vide one of the most stringent constraints on several of
the level parameters critical for the determination of the
E1 ground state cross section. However, with these un-
resolved experimental e↵ects and contradictions between
di↵erent data sets, the uncertainties are substantially in-
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TABLE X Summary of results for fits considering di↵erent 16N(�↵)12C data. The half-life of 16N was taken as t1/2 = 7.13(2) s
with a �↵ branching ratio of 1.20(5)⇥10�5 (Tilley et al., 1993).

log(ft1/2)
Ẽ

x

(MeV) J⇡ ANC
↵

(fm�1/2) or �̃
↵

(keV) Azuma et al. (1994) and Tang et al. (2010) Tilley et al. (1993)
6.13 3� 139(9) 4.59 4.48(4)
7.12 1� 2.08(17)⇥1014 5.08 5.11(4)
9.59 1� 382 6.15 6.12(5)

20 (BGP) 1� 15600 -5.70a

�2 (N) 496 (87), 793 (88)

a The minus sign indicates the sign of the interference on the reduced width amplitude.

TABLE XI Summary of fits to the 16N(�↵)12C data but for each spectrum individually.

log(ft1/2)
Ẽ

x

(MeV) J⇡ ANC
↵

(fm�1/2) or �̃
↵

(keV) Azuma et al. (1994) Tang et al. (2010) Tilley et al. (1993)
6.13 3� 139(9) 4.44 4.80 4.48(4)
7.12 1� 2.08(17)⇥1014 5.06 5.06 5.11(4)
9.59 1� 382 6.13 6.18 6.12(5)

20 (BGP) 1� 15600 -5.73 -6.53
�2 (N) 519 (87) 466 (88)

creased and are di�cult to quantify.
As a final point, the analysis of the 16N(�↵)12C spec-

trum utilizes � decay branching ratios from the literature
to constrain the values of the R-matrix � decay fit pa-
rameters. In particular, these are the branching ratios to
the E

x

= 6.13 (3�), 7.12 (1�), and 9.59 (1�) MeV levels
in 16O. While the compilation (Tilley et al., 1993) reports
these values with small uncertainties, it is unclear where
some of them actually originated. Most of the branch-
ing ratios date back to measurements at Brookhaven na-
tional laboratory from the 1950’s (Alburger et al. (1959)
and references therein). While the fact that these are
older measurements does not mean they are incorrect,
verification studies seem overdue since they play a rather
important role in the analysis of the 16N(�↵)12C spec-
trum.

E. ↵ Scattering

In Sec. V it is described how several scattering experi-
ments (Clark et al., 1968; D’Agostino-Bruno et al., 1975;
Plag et al., 2012; Tischhauser et al., 2009) have been per-
formed in order to constrain the values of the ANCs of
the subthreshold states as well as the particle widths of
the unbound states. Here only the data of Tischhauser
et al. (2009) (the higher energy analysis was worked out
subsequently in deBoer et al. (2012a)) are considered as
they represent the most precise and accurate measure-
ment, cover the broadest energy range, and are in good
agreement with previous studies. In the present analysis,
the original yield ratio data are fit directly instead of the
phase shifts extracted in Tischhauser et al. (2009).

Some previous analysis attempted to limit the com-
plexity of the fitting problem by only considering indi-
vidual phase shifts. In particular, only the s and d-waves
since they are the only partial waves directly connected
to the E1 and E2 capture cross sections. However, Buch-
mann et al. (1996) realized that this was poor practice
since it neglected the statistical correlations inherent in
the full set of phase shifts. This also extends to the prop-
agation of the uncertainties from the yield ratios to the
phase shifts.
However, fitting to the full set of the original data

comes at a price. While the phase shift data only con-
sist of 2814 (402 energies, l = 0 to 6) data points there
are 12864 yield ratio data points since the measurements
were made at 32 di↵erent angles. In addition, the R-
matrix cross section must be convoluted with the func-
tion given by Eq. (89) to correct for beam energy reso-
lution and energy loss through the target. This results
in a significant increase in computation time. In order
to avoid large convolution corrections, the data in the
vicinity of narrow resonances, which are not fit in the
analysis, have been neglected. This limits the data in
the present analysis to 304 energies or 9728 data points.
An example excitation yield ratio curve of this data is
shown in Fig. 2.
In principle the scattering data can provide significant

constraint on the value of the ANCs of the subthreshold
states (see Sec. V). At the current level of precision, the
data only constrain the ANCs of the 2+ and 1� states,
which are closest to threshold. Since the ANC of the 1�

state is already strongly constrained by the 16N(�↵)12C
data, the goal of recent scattering measurements has been
to better constrain that of the 2+ state (see Fig. 26).
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FIG. 18 (Color online) Comparison of the 16N(�↵)12C spec-
tra of Mainz a), Yale b), and Seattle c) to the best fit to the
data from Azuma et al. (1994) (TRIUMF) and Tang et al.
(2010) (Argonne), but with the unknown convolution param-
eters varied to best match the data.

However, as mentioned in Secs. V.C and VI.A, the large
background poles that are necessary to fit the data also
tend to lessen the constraint of the fit on the ANCs. This
is because both contributions to the cross section have a
similar energy dependence, hence the ANCs and the pa-
rameters of the background poles are strongly correlated.

The present fit to the scattering data does not result
in as small of a �2 (see Table VII) as that achieved in
Tischhauser et al. (2009). The main di↵erence is that in
the present global fit, there is tension between the scat-
tering data and other data sets for the values of the en-
ergies, widths and ANCs. In particular, this tension has
a very large e↵ect on the �2 of the fit in the vicinity of
the E

x

= 10.36 MeV (4+) and the E
x

= 11.49 (3�) and
11.51 MeV (2+) doublet. In these regions the scatting
cross section changes rapidly in energy and the uncer-
tainties on the yield ratio data are about 2%. Further,
there are some points that show significant deviations
from the expected cross section ratios over these regions
as shown in Fig. 19. Since this e↵ect is less pronounced in
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FIG. 19 (Color online) Sample region of the scattering data
of Tischhauser et al. (2009) in the vicinity of the reso-
nances that correspond to the levels at E

x

= 11.49 (3�) and
11.51 (2+) MeV. The cross section ratio changes rapidly with
energy, causing the e↵ect of energy uncertainties on the �2 to
be amplified.

other more slowly varying cross section regions this may
be attributed to an unaccounted for energy uncertainty
that is not reflected in the yield uncertainties.

F. Subthreshold States

In the previous sections the importance of the bound
states of 16O have been stressed. This section is de-
voted to a discussion of the current understanding of
these states. The parameters that are of interest are the
energies, � widths, and ANCs of the five bound states of
16O.
The energies of all of the bound states are known with

a precision of at least 1 keV (Tilley et al., 1993). These
uncertainties propagate into small uncertainties in the
cross sections. Additionally, the separation energies of
16O (listed in Table VI) all have uncertainties that are
less than a keV.
All of the bound states of 16O decay with nearly 100%

probability to the ground state. Except for the first ex-
cited 0+ state at E

x

= 6.05 MeV, the primary decay mode
is single � ray emission. Because both the ground state
and first excited state of 16O are 0+, the state cannot de-
cay by single � emission. Its primary decay mode is there-
fore through e+e� emission (or ⇡ decay) (Fowler and
Lauritsen, 1939). The � ray widths of the bound state
levels are necessary in order to calculate the subtheshold
state capture contribution through di↵erent transitions.
While the ground state � decays through the E

x

= 6.92
and 7.12 MeV subthreshold states have the most signifi-
cant contribution to the total capture cross section, small
branching to other excited states make contributions to
some of the cascade cross sections.
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Several measurements have been made to investigate
the ground state � widths of the E

x

= 6.92 and 7.12 MeV
subthreshold states by way of inelastic electron scatter-
ing Miska et al. (1975) and Stroetzel (1968) and nuclear
resonance florescence Evers et al. (1968); Moreh et al.

(1985); and Swann (1970). The values are in relatively
good agreement and the compilation (Tilley et al., 1993)
adopts a weighted average of all the past measurements.
This results in uncertainties of 3.1% and 5.4% for the �
widths of the E

x

= 6.92 and 7.12 MeV states respectively.
For the latest discussion see Moreh et al. (1985).

Past measurements of the di↵erent cascade � rays have
been made by Fuchs et al. (1965); Lowe et al. (1967);
Miska et al. (1975); and Wilkinson et al. (1968). A re-
cent measurement by Matei et al. (2008) investigated
the branching ratios of the decay from E

x

= 7.12 MeV
state, giving a more accurate value for the branching
to the E

x

= 6.13 MeV state and an upper limit to the
E

x

= 6.92 MeV state. The � ray decay widths that lead
to significant subthreshold contributions to the cross sec-
tion have been measured to a precision that is smaller
than or competitive with other uncertainties as summa-
rized in Table XII.

At present, what seems to be the most reliable method
of determining the ↵ ANCs of bound states is via
Sub-Coulomb transfer reactions (see Sec. V). Recent
measurements of the ↵ ANCs of the E

x

= 7.12 (1�)
and 6.92 (2+) MeV states have been made by Belhout
et al. (2007); Brune et al. (1999); and Oulebsir et al.

(2012) using the ↵ transfer reactions 12C(6Li, d)16O and
12C(7Li, t)16O and have been found to be in excellent
agreement as summarized in Table XIII.

The ANCs of the E
x

= 6.05 and 6.13 MeV states
have received less attention because the E

x

= 6.13 MeV
state is too weak to have a significant ground state sub-
threshold state contribution and the E

x

= 6.05 MeV
to ground state transition is forbidden. However, the
E

x

= 6.13 MeV (3�) state makes a weak yet impor-
tant contribution to the 16N(�↵)12C spectrum just in
the sensitive interference region between the E

x

= 7.12
and 9.59 MeV 1� states. These ANCs have been recently
measured for the first time using Sub-Coulomb transfer
in Avila et al. (2015). Their e↵ects on fits to the cap-
ture data and the � delayed ↵ spectrum are discussed in
Secs. VI.C and VI.D respectively. The past values are
summarized in Tables XIV and XV.

The ground-state ↵ ANC is outside the kinematic win-
dow for sub-Coulomb transfer but it can be deduced by
other means, such as sequential breakup reactions (Ad-
hikari and Basu, 2009). Morais and Lichtenthäler (2011)
has also investigated the use of the scattering reaction
12C(16O,12C)16O. In addition, the R-matrix analysis of
Sayre et al. (2012) contends that the ground state E2
external capture makes a significant contribution to that
cross section and have given a value based on an R-matrix
fit to ground state transition E2 data. The measurements

giving estimates of the ground state ↵ ANC are summa-
rized in Table XVI. In this work, a much smaller value
has been obtained (see Table XXI). The data that con-
strain the value are primarily the E2 ground state data
of Schürmann et al. (2011) in the o↵-resonance region
near Ec.m. ⇡ 3.5 MeV (see Fig. 9).

This section has summarized the “best fit” for the R-
matrix analysis and has described the wide range of ex-
perimental measurements that have been used to con-
strain the phenomenological model parameters. The pa-
rameters for the best fit can be found in Tables XXI and
XXII of Appendix A. For convenience, the main contri-
butions to the low energy cross section are summarized
in Table XVII to aid in a quick reproduction of the low
energy cross section. Yet for any analysis of this kind,
the best fit is only the beginning, the real challenge is
the estimation of the uncertainties. In particular, how
are the systematic di↵erences in the data and the ambi-
guities inherent in the model dealt with.

VII. UNCERTAINTY ANALYSIS

The total uncertainty of the capture cross section, and
subsequent reaction rate, resulting from the R-matrix
analysis has significant contributions from both the ex-
perimental observables and the phenomenological model.
In the following sections, investigations of these uncer-
tainties are made by way of di↵erent sensitivity studies.

The studies begin with an examination of the sensitiv-
ity of the fit to di↵erent sets of data. Then the uncertain-
ties stemming from the model are explored (i.e. back-
ground poles, channel radii, goodness of fit estimate).
A frequentist Monte Carlo analysis (see, e.g., Gialanella
et al. (2001) and deBoer et al. (2014)) is then performed
to estimate the contributions from the statistical and
overall systematic uncertainties of the data. The un-
certainties from quantities that were fixed in the fitting,
primarily the ANCs and � widths of the subthreshold
states, are now varied so that their uncertainties can be
propagated through the Monte Carlo analysis.

Throughout this section the results of di↵erent fits that
test the uncertainty of the R-matrix analysis are com-
pared to the S-factor of the best fit at Ec.m. = 300 keV
by giving the deviation �S300 keV (see the bottom of Ta-
ble IV for the best fit value of this work). This is a
shorthand comparison since di↵erent solutions produce
di↵erent deviations from the best fit as a function of en-
ergy, but it serves to give a good measure of the e↵ect
at the region of greatest interest (see Table XIX for a
summary). The full excitation curves were recorded for
each di↵erent test calculation and then used for the total
cross section and reaction rate uncertainties.
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TABLE XII Summary of the known � decay widths for the bound states of 16O. Where values are averaged, the compilation
is quoted.

E
i

(J⇡) (MeV) E
f

(MeV) ⇧L �
�

(eV) Ref.
6.05 (0+) G.S. E0 forbidden
6.13 (3�) G.S. E3 2.60(13)⇥10�5 Miska et al. (1975)

6.05 E3 unobserved
6.92 (2+) G.S. E2 0.097(3) Tilley et al. (1993)

6.05 E2 2.7(3)⇥10�5 Tilley et al. (1993)
6.13 E1 a<7.8⇥10�6 Wilkinson et al. (1968)

7.12 (1�) G.S. E1 0.055(3) Tilley et al. (1993)
6.05 E1 <3.3⇥10�7 Lowe et al. (1967)
6.13 E2 a4.6(3)⇥10�5 Matei et al. (2008)
6.92 E1 a<1.1⇥10�6 Matei et al. (2008)

a Calculated from branching ratio and �
�0.

TABLE XIII Summary of ↵ particle asymptotic normalization coe�cients of the two subthreshold states at E
x

= 6.92 and
7.12 MeV. Because the CN reaction data does not place strong constraints on the ANCs (and are sometimes inconsistent), the
values obtained from transfer studies are adopted as the best estimates for this analysis. For comparison, theoretical values,
and those deduced from R-matrix analysis are also shown.

ANC
↵

(fm�1/2)
Ref. 6.92 MeV, 2+ 7.12 MeV, 1�

Theory

Descouvemont (1987) a1.34⇥105

Sparenberg (2004) 1.445(85)⇥105

Dufour and Descouvemont (2008) 1.26(5)⇥105

R-matrix

Barker and Kajino (1991) b3.19⇥105

Azuma et al. (1994) 1.90⇥1014

Angulo and Descouvemont (2000) a4.02⇥105

Buchmann (2001) a2.28+33
�37⇥105

Matei et al. (2008) 2.3(4)⇥105

Tischhauser et al. (2009) a1.54(18)⇥105

Tang et al. (2010) 1.67⇥105 1.96⇥1014

Schürmann et al. (2012) 1.5⇥105 1.94⇥1014

Sayre et al. (2012) 1.59⇥105

Transfer

Brune et al. (1999) 1.14(10)⇥105 2.08(20)⇥1014

Belhout et al. (2007) c1.40(50)⇥105 1.87(54)⇥1014

Oulebsir et al. (2012) 1.44(28)⇥105 2.00(35)⇥1014

Avila et al. (2015) 1.22(7)⇥105 2.09(14)⇥1014

a �
↵

transformed to ANC
↵

by Sparenberg (2004).
b �

↵

transformed to ANC
↵

by Dufour and Descouvemont (2008).
c Renormalized by Oulebsir et al. (2012).

A. Sensitivity to Di↵erent Data Sets

In Sec. VI.B it was shown that the ground state E2
data are not always well reproduced by the R-matrix
fit and that they show significant discrepancies between
one another. Since the global fit includes data for the
total cross section, the ground state E1, and all cas-
cade transitions, the E2 cross section should be highly
constrained even with no E2 cross section data (i.e.
�total � �G.S.E1 � �cascades = �G.S.E2). In practice, this
is with the caveat that the E2 cross section is signif-

icant compared to the total cross section compared to
the uncertainties of the data, which it is over several re-
gions, especially at higher energies. When the E2 data
were completely neglected in the fit, a very similar result
was obtained (�S300 keV = -0.6 keV b). This is largely
because the E2 cross section is dominated by the sub-
threshold state at E

x

= 6.92 MeV. Since the parameters
that describe this contributions are highly constrained by
other types of data, it does not change significantly.

The ground state angular distribution data also show
discrepancies, both between one another and with the
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TABLE XIV Asymptotic normalization coe�cients for the
E

x

= 6.05 MeV bound state in 16O.

Ref. ANC
↵

(fm�1/2)
R-matrix

Schürmann et al. (2011) 44+270
�44

deBoer et al. (2013) 1800
Transfer

Avila et al. (2015) 1560(100)

TABLE XV Asymptotic normalization coe�cients for the E
x

= 6.13 MeV bound state in 16O.

Ref. ANC
↵

(fm�1/2)
R-matrix

Azuma et al. (1994) 121-225
Tang et al. (2010) 191-258
deBoer et al. (2013) 150
Transfer

Avila et al. (2015) 139(9)

fit at certain energies and angles (see Fig. 10). Another
test was made by completely eliminating the ground state
angular distribution data from the fit, leaving only the
derived E1 and E2 excitation curve data. This had a
somewhat more pronounced e↵ect resulting in a lower
value in the extrapolation (�S300 keV = -5.2 keV b). Fi-
nally both the E1 and E2 excitation curve data were
removed, fitting only to the angular distribution data for
the ground state transition. Again, only a small devi-
ation (�S300 keV = -0.9 keV b) was observed from the
standard fit.

B. Limiting Interference Solutions

One of the largest sources of uncertainty in an R-
matrix analysis can come from di↵erent possible inter-
ference solutions that can not be ruled out by the data.
These di↵erent solutions are a result of the di↵erent pos-
sible signs for the reduced width amplitudes. When more

TABLE XVI Summary of previous measurements of the ↵
particle asymptotic normalization coe�cient of the ground
state of 16O. The scatter in the values combined with dif-
ferent favored solutions of the data represents a systematic
uncertainty in the E2 cross section. See text for details.

Ref. ANC
↵

(fm�1/2)
R-matrix

Sayre et al. (2012) 709
Transfer

Adhikari and Basu (2009) 13.9(24)

Morais and Lichtenthäler (2011)
1200 (WS2)
4000 (WS1)
750 (FP)

TABLE XVII Summary of the critical parameters necessary
to reproduce the total 12C(↵, �)16O low energy cross section
at E

c.m.

= 300 keV with about 7% deviation (lower) from
the full parameter set. Signs on the partial widths indicate
the sign of the corresponding reduced width amplitude. See
Tables XXI and XXII of Appendix A for further details.

J⇡ E
x

(MeV) �
↵

(keV) / ANC (fm�1/2) �
�0 (meV)

0+ 0 58
0+ 6.05 1560
2+ 6.92 1.14⇥105 97
1� 7.12 2.08⇥1014 55
1� 9.586 382 -15
2+ 11.5055 83 -490

than one level is present in the sum of Eq. (17), the di↵er-
ence in the sign of each element can produce drastically
di↵erent values for the cross section. This sign can not
usually be predicted by theory, therefore experimental
capture data is critical. However, limiting the solutions is
often challenging because the cross section must usually
be measured in o↵-resonance regions where the experi-
mental yields are small. For the case of the 12C(↵, �)16O
reaction, di↵erent interference solutions have been pro-
posed for both the E1 and E2 ground state transition and
can produce large di↵erences in the extrapolated value of
S300 keV. Di↵erent interference solutions have also been
proposed for the cascade transitions and these are not
as well established as the ground state transition. At
this stage, the data have limited the possible solutions,
at least over the lower energy range, to only a few.
Starting with the ground state E2 cross section data,

Sayre et al. (2012) have made an extensive reanalysis
of this low energy data where a statistical criterion was
used to eliminate outlying data points. Further, Sayre
et al. (2012) analyzed the narrow resonance region in or-
der to determine the relative interference signs of the E2
contributions to the cross section. The main result of
Sayre et al. (2012) was to limited the E2 interferences to
two possible solutions. If the subsequent higher energy
data from Schürmann et al. (2011) are now considered,
only one interference solution remains viable as shown
in Fig. 20. This then gives a final interference pattern
for the E2 cross section, at least between the 2+ sub-
threshold state, the narrow 2+ at E

x

= 9.84 MeV, the
first broad resonance at E

x

= 11.51 MeV, and the E2
external capture.
As an aside, in the analysis of Sayre et al. (2012) the

R-matrix fit was performed to only the ground state E2
data letting the ANCs of the ground state and E

x

=
6.92 MeV subthreshold state vary freely. The fit resulted
in values of 709 and 1.59⇥105 fm�1/2 for the ANCs of
the ground state and 2+ subthreshold state respectively.
This can be compared to the values of 14 (Adhikari and
Basu, 2009) or 750-4000 (Morais and Lichtenthäler, 2011)
for the ground state and 1.14(10)⇥105 (Brune et al.,
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FIG. 20 (Color online) Comparison of the two allowed E2
interference solutions determined by Sayre et al. (2012). If
the higher energy data of Schürmann et al. (2011) are also
considered, only one solution remains viable.

1999)-1.22(7)⇥105 (Avila et al., 2015) fm�1/2 for the 2+

subthreshold state. The two components interfere with
each other destructively and can result in a range of val-
ues that produce a similar E2 cross section over the en-
ergy range of the data. The analysis of Sayre et al. (2012)
was made before the data of Schürmann et al. (2011)
was available that significantly increases the sensitivity
of the fit to the E2 data, especially the external capture
that has a maximum e↵ect in the o↵-resonance region at
E

c.m.

⇡ 3 MeV. A measurement of the ground state ANC
taken together with the capture data would then provide
a consistency check for the value of the 2+ subthreshold
state ANC. Since large systematic di↵erences occur for
the E2 cross section, another method of verification is
highly desirable. (see Secs. VI.B and VI.F).

Now turning to the E1 cross section, a large source of
uncertainty can come from the ambiguity in the interfer-
ence sign between the 1� E

x

= 7.12 MeV subthreshold
state and the unbound state at E

x

= 9.59 MeV. Most
analyses have concluded (or assumed) that the construc-
tive solution is favored, but most also do not provide
detailed quantitative support for this decision. A few
analyses, those of Ouellet et al. (1992)3, Hale (1997), Gi-
alanella et al. (2001), have either ruled in favor or deter-
mined that the destructive solution can not be dismissed.
Here the E1 destructive solution is investigated in detail
in light of the present analysis and the most current data.

The situation has been investigated in detail by Fey
(2004); Hammer et al. (2005b); and Kunz (2002). How-
ever, approximations were made in these analyses that
can now be improved upon and in fact are very signifi-
cant to the analysis. The first is the neglect of the overall

3 However this seems to have been retracted in a subsequent pub-
lication (Ouellet et al., 1996).

systematic uncertainties. This resulted in greatly inflated
�2 values for the fits of those works, regardless of the in-
terference solution. This is because the systematic uncer-
tainties are quite large compared to the statistical ones,
at least near the peak of the low energy 1� resonance.
The second issue is that the contributions from the two
1� levels at E

x

= 12.45 and 13.10 MeV are not explicitly
included but are instead treated as a single background
pole (the classic 3 level E1 fit). The single pole assump-
tion leads to fits to the low energy data that are now
found to be unphysical when the added constraints of the
higher energy data are imposed. The last improvement
is that the transfer reaction measurements have provided
much tighter constraints on the values of the ANCs, fur-
ther limiting the number of viable solutions.
These further constraints have a strong impact on the

E1 destructive/constructive solutions. In fact, they limit
the destructive solution to only one possibility, and it
will be shown that this is also ruled out, in favor of the
constructive one. Fig. 21 shows the result of an analy-
sis of the destructive solution compared to the construc-
tive one. In this fit, the ANC of the 1� subthreshold
state has been fixed to a value of 2.08(20)⇥1014 fm�1/2

(Brune et al., 1999). This has been done because if it is
allowed to vary freely, tension from other data sets cause
the destructive solution result in unphysical values for
the ANC. This on its own is one hint that this solution
may not be viable. In particular, the fit would favor a
very small ANC, many sigma removed from the value
of (Brune et al., 1999). Considering only the �2 from
the E1 data (165 data points), the constructive solution
gives �2 = 259.8 and the destructive solution gives �2 =
583.8, a di↵erence of ��2 = 324.0. The di↵erence in �2

for a 5� deviation for 78 fit parameters is ��2
5� = 169.

Hence the destructive solution is ruled out under these
conditions, and the ANC would have to be changed to
a value far outside the acceptable range of the transfer
measurements to recover a �2 of less than 5�.
At higher energies, the possible interference combina-

tions are further limited by the stronger E1/E2 inter-
ference in the angular distributions. This uniquely de-
fines the interferences at high energy between the 1�

levels at E
x

= 12.45 and 13.10 MeV and the 2+ level
at E

x

= 12.97 MeV. A similar situation exists for the
15N(p,↵0)12C data. Examples of these di↵erent interfer-
ence solutions are shown in Fig. 22 for the 12C(↵, �0)16O
reaction and Fig. 50 of deBoer et al. (2013) for the
15N(p,↵0)12C reaction.
Turning to the cascade transitions, in Avila et al.

(2015), ANCs were measured for the E
x

= 6.05, 6.13,
6.92, and 7.12 MeV bound states, with the E

x

= 6.05
and 6.13 MeV ANCs being measured for the first time
via Sub-Coulomb transfer. ANCs similar to those de-
duced in the global R-matrix fit of deBoer et al. (2013),
where the capture data of Schürmann et al. (2011) were
fit to constrain the ANCs, were found. An interference
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FIG. 21 (Color online) Comparison of destructive (red dashed lines) and constructive (red solid lines) E1 solutions. A 1�

background pole is included in the ground state � ray channel in these cases. The energy of the pole is held constant in both
cases and the fitted ↵ widths are very similar. For the constructive case �

�0 = 1.8 eV, while the destructive case gives 21.7 eV.

ambiguity in the low energy S-factor for these two tran-
sitions was still left undefined in Avila et al. (2015). If
the external capture determined by these ANCs is com-
bined with the higher energy capture data of Schürmann
et al. (2011) the interference combination can be uniquely
determined for the E

x

= 6.05 MeV transition, and is sug-
gestive of a solution for the E

x

= 6.13 MeV transition as
shown in Fig. 23.

The most important result of this section is that only
one viable interference solution is possible for both the
E1 and E2 ground state cross sections. This drastically
decreases the uncertainty, by ruling out the destructive
E1 solution. While there is a limited amount of data
for the cascade transitions, the current data do seem to
constrain the major interference solutions. However, be-
cause of the limited data it is certainly possible that some
of the solutions here are incorrect. The situation wors-
ens at higher energy were the data become even more
sparse. For the cascade transitions there is almost no

data above S
p

. While these di↵erent solutions do not
have a direct e↵ect on the low energy cross section de-
termination, they may e↵ect the extrapolation indirectly
since the over all fit is quite sensitive to the total cross
section data at higher energies. Hence further studies of
the cascade data is highly desirable.

C. Channel Radius and Background Poles

A long standing complication with R-matrix theory
is that it requires two sets of model parameters: chan-
nel radii and background poles. What complicates the
situation is that these two sets of model parameters are
correlated to one another, hence there is a range of viable
solutions.

A phenomenological R-matrix fit must then be tested
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TABLE XVIII Comparison of �2 values for di↵erent E1 in-
terference solutions. Only the data of Kremer et al. (1988)
favor a destructive solution.

�2

Ref. N constructive destructive
Dyer and Barnes (1974) 24 69.6 135.9
Redder et al. (1987) 26 67.5 146.2
Kremer et al. (1988) 12 18.2 16.9
Ouellet et al. (1992) 9 29.2 82.6
Roters et al. (1999) 13 13.6 26.5

Gialanella et al. (2001) 20 22.9 58.0
Kunz et al. (2001) 19 12.1 36.8

Fey (2004) 11 4.5 39.0
Assunção et al. (2006) 24 19.4 26.3
Makii et al. (2009) 2 0.2 5.5
Plag et al. (2012) 4 1.9 5.2

all 164 259.8 583.8
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FIG. 22 (Color online) Example angular distribution for the
12C(↵, �0)

16O reaction at E
cm

= 5.91 MeV (E
x

= 13.07 MeV)
from Kernel et al. (1971). The red solid line shows the dif-
ferential cross section with the preferred interference pattern
while the red dashed line shows the di↵erential cross section
with the relative interference sign between the E1 and E2
contributions switched.

for its sensitivity to the choice of both the channel radii4

and the background poles. The radius and the number
of levels included in the analysis are closely linked as dis-
cussed in Sec. IV.A. In the strict R-matrix theory, the
fit should be completely insensitive to the choice of chan-
nel radius, but this is in the limit of an infinite number
of levels. It is also important to note that the channel
radius does not correspond to a real nuclear radius, al-
though the value used in phenomenological analyses is

4 Even the choice of how many di↵erent channel radii will be used
is di↵erent for di↵erent R-matrix analyses. In principle a di↵er-
ent channel radius can be chosen for each s � l channel. While
this is sometimes done, many analyses restrict themselves to dif-
ferent channel radii only for di↵erent particle partitions. That is
the approach taken here.
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FIG. 23 (Color online) Comparison of the di↵erent possible
interference solutions for the E

x

= 6.05 and 6.13 MeV transi-
tion capture cross sections as purposed by Avila et al. (2015).
The di↵erent solutions are compared with the higher energy
data of Schürmann et al. (2011), the only data available for
these transitions. For the E

x

= 6.05 MeV transition, the con-
structive solution at low energy is highly favored. For the
E

x

= 6.13 MeV transition the destructive solution is favored
but their is more ambiguity, especially since the 3� state at
E

x

= 11.49 MeV can contribute to the cross section over the
energy range of the data. The calculation shows that addi-
tional measurements at just slightly higher energy than those
Schürmann et al. (2011) could provide a more definitive solu-
tion.

often rather close, which has caused much confusion over
the issue. In practice the number of levels in an R-matrix
calculations is truncated to only a few or even just one.
Even if the tails of higher energy resonances do have an
e↵ect, their contributions can often be reproduce, up to
some level of precision, with only a single background
pole (for each J⇡). However, as the data become more
precisely measured, especially in the interference regions
between resonances, it may be possible that more than
one background pole is required.
While the sensitivity of the fit to the channel radius

and background poles are closely linked, each is discussed
separately in order to try to separately gauge their con-
tributions. Further, while it is not often stated explic-
itly below, the many sensitivity tests that were made
involved several di↵erent combinations of both radii and
number/value of background poles.
A strong sensitivity in �2 to the channel radius exists

for the present fit. This is primarily the result of the fit to
the scattering data as and has been detailed previously
in Tischhauser et al. (2002). This was interpreted as
a positive result in Tischhauser et al. (2002), giving a
constraint on the radius that should be used. However,
this is in direct conflict with the discussion above, where
it has been argued that the value of the channel radius
should be insensitive to the fit. This represents one of the
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remaining puzzles to be solved, not only for this case, but
for the phenomenological R-matrix technique in general.

It should be possible to decrease the sensitivity of the
fit on the channel radius by adding more background
poles. This procedure was performed, yet the sensitiv-
ity remained almost unchanged. Therefore, to gauge the
sensitivity of the fit to the extrapolated value of the cap-
ture cross section, di↵erent fits were made at di↵erent
channel radii varying between 4.5 and 6.5 fm and using
various numbers and combinations of background poles.
A radius of 5.43 fm was found to be the best fit value,
in excellent agreement with the value of 5.42+0.16

�0.27 of Tis-
chhauser et al. (2002). Despite a rather large change in
the overall �2 of the fit, the extrapolated value of the
S-factor only changed by ±8 keV b. This is because the
sensitivity in �2 comes mainly from the scattering data,
while that of the capture data is much less so.

Turning now to the background poles, one of the as-
sertions of this analysis is that a reasonable fit can be
obtained for the 12C(↵, �)16O data with no background
pole contributions in the capture partition (they remain
very necessary for the scattering partition). The rea-
son for this assertion is that no strong higher energy
resonances have been observed in the capture data up
to E

c.m.

⇡ 20 MeV (Snover et al., 1974). This is the
main reason for explicitly including the two 1� levels at
E

x

= 12.45 and 13.09 MeV, which correspond to the final
two strong E1 resonances observed in 12C(↵, �0)16O, at
least up to E

x

⇡ 20 MeV. It is therefore expected that
higher energy background contributions will be weak for
the ground state.

However, adding additional background poles is al-
lowed by the data and does improve the quality of the fit.
The question becomes whether the improvement is phys-
ically reasonable or is it simply the result of adding more
free parameters to the fit. Additionally the improvement
results largely from achieving a better fit to the very low
energy data, but there are strong hints that much of this
data may over estimate the cross section (see Sec. VI.A).

Ground-state background contributions were consid-
ered for both the E1 and E2 cross sections using J⇡ = 1�

and J⇡ = 2+ poles respectively. The J⇡ = 1� background
pole contribution resulted in a significant improvement in
the fit of the low energy 12C(↵, �)16O data. For example,
it decreased the �2 from 436 to 203 for the 164 data points
considered in the low energy E1 capture data. This am-
biguity in the strength of the 1� background pole is one
of the most significant uncertainties in the fitting, pro-
ducing a value of S(300 keV) 15.2 keV b larger than the
fit without. Inclusion of a J⇡ = 2+ background pole had
only a small e↵ect.

One way to obtain further constraint on the back-
ground pole contributions is to continue to fit to higher
energies. This becomes increasingly di�cult in practice
as the number of levels and channels increase quickly at
higher energies. Even so, a test can be made to see if
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FIG. 24 (Color online) Di↵erential S factor of the data
(✓lab = 52�) of Snover et al. (1974). The R-matrix fit was
made with the data fixed at the reported cross sections in or-
der to test whether the amplitude of the free background poles
were reasonable. The extrapolated values of the S-factor us-
ing the two di↵erent methods proved to be very similar. In
the legend, E2 hard-sphere (EC) refers to the hard-sphere
contribution to the external capture.

the magnitude of the background contributions is reason-
able. There is one measurement by Snover et al. (1974),
which extends the ground state transitions cross section
to much higher energies. The data show that the ground
state cross section decreases substantially above the two
strong 1� resonances at E

x

= 12.45 and 13.09 MeV. In
Fig. 24 the data of Snover et al. (1974) are shown together
with a fit that has all of the background poles placed now
at higher energies (E

x

= 40 MeV). The fit gives a back-
ground contribution that is roughly consistent with this
data in that it follows the o↵-resonance trend of the data.
This produced a value for S(300 keV) = 155.3 keV b, very
similar to the value of 153.7 keV b found with out this
higher energy data (with the lower energy background
poles), demonstrating that this additional background
contribution is at least physically reasonable.

It is somewhat surprising that such good fits can also
be obtained for the cascade transitions without back-
ground poles. There is no higher energy data for these
transitions so their higher energy behavior is unknown.
In fact the higher energy (above S

p

) constraint of this
fit comes indirectly from 15N(p, �)16O cascade transition
data (Imbriani et al., 2012), and these have large un-
certainties. One likely reason for such good fits is that
external capture is the dominant contribution to the cas-
cade transitions at low energy, lessening the e↵ects of
resonance interference.
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D. Di↵erent Fitting Methods

In principle, if the data were expressed as true cross
sections, were consistent with each another, and the un-
certainties were completely characterized, performing a
standard �2 fit would be all that was required to achieve
the best fit and accurate extrapolation of the low energy
cross section. Unfortunately these conditions are hardly
ever met in practice and therefore a blind �2 fitting is
likely to lead to an erroneous result. This is the reason
why many di↵erent experimental approaches are critical;
by examining the reaction mechanism through di↵erent
methods, hidden systematic errors can be more readily
revealed.

While a standard �2 fit analysis has been used as the
standard fit procedure for this analysis, other methods
have been investigated to check the robustness of the
fitting and the uncertainty estimates. In particular, the
tension between di↵erent data sets and the background
pole contributions has the e↵ect that the subthreshold
parameters need to be fixed during the normal fitting.

An alternative fitting method investigated here is to
base the goodness of fit on the reduced �2 of each data
set. The idea is based on that presented in Dodder et al.
(1977), where a similar analysis involving many data sets
was made. Eq. 87 is modified to

�2 =
X

i

 P
j

R2
ij

N
i

� ⌫

!
+

(n
i

� 1)2

�2
syst,i

(93)

where N
i

is the total number of data points in the ith

data set and ⌫ is the number of fit parameters. Fitting
to the reduced �2 puts each data set on a more equal
footing regardless of the number of data points in that
set. This is statistically incorrect, but has the result of
putting each data set on a more equal footing, even if that
data set has many experimental points. From a purely
statistical view this doesn’t make much sense, but from
a practical standpoint this can be reasonable since it will
lessen any systematic bias of a single data set over the
rest, especially if that single data set has many points
with small uncertainties.

In the current analysis the scattering data of Tis-
chhauser et al. (2009) dominate the normal �2 func-
tion because they contain, by far, the largest number of
data points and have small statistical uncertainties (see
Sec. VI.E). If the data were a perfect representation of
the true cross section, this would be ideal because this
would reflect the experimenter’s ability to easily access
this cross section. However, it is known that the data of
Tischhauser et al. (2009) require experimental resolution
corrections, which are quite significant at the statisti-
cal uncertainty level of the data points, particularly in
regions where the cross section changes rapidly. If the
method used for this correction is not precise enough or
if there are any unaccounted for uncertainties in the data

this will result in a bias in the fit from this data set. This
issue undoubtedly exist in the data considered, and is not
limited to the scattering data. The other main data sets
where this e↵ect is most likely are in the 16N(�,↵)12C
spectrum measurements of Azuma et al. (1994) and Tang
et al. (2010).
Another di↵erent approach would be to also include

the uncertainties on the subthreshold parameters in the
�2 fitting. This can be done by adding additional terms
to the �2 function
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where Pfit,k is the parameter value varied in the fit, Pexp,k

is the experimentally determined value, and �exp,k is the
experimental uncertainty.
This method, combined with using the reduced �2

method, results in much more reasonable fits than the
standard �2 fitting when the subthreshold state param-
eters are allowed to vary freely. Using this approach
the fit favors a larger ANC for the 1� subthreshold
state (ANC = 2.6⇥1014 fm�1/2, �

�0 = 48 meV) and a
smaller one for the 2+ ANC (ANC = 0.84⇥105 fm�1/2,
�
�0 = 98.0 meV). This is a reflection of the tension be-

tween the 16N(�,↵)12C, transfer, and elastic scattering
measurements. The increasing 1� ANC and decreasing
2+ ANC have canceling e↵ects in the ground state cross
section and in the cascade cross sections, resulting in a
somewhat larger value for the total capture cross section
of S(300 keV) = 152.1 keV b.
In any analysis that contains a large amount of data

there tend to be outlier data points. It has been shown
that certain data sets are plagued by this problem in
the current analysis. There are various methods of test-
ing the sensitivity of fits to these points. For example,
in Sayre et al. (2012) Chauvenet’s criterion was used to
reject outliers in the E2 ground state data. Instead of
outright rejection of data points, there are di↵erent meth-
ods of modifying the �2 function to give less weight to
outlier data. These methods are similar to increasing
the uncertainties on the data points. One example is the
method given by Sivia and Skilling (2006) where instead
of minimizing �2, the function

L =
X

j

log

"
1� e�R

2
ij/2

R2
ij

#
(95)

is maximized. This alternative function has a broader
probability density function leading to more conserva-
tive uncertainty estimates than the standard �2 func-
tion. Fitting with this alternative approach produced
a very similar fit as the standard �2 method (S(300
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keV) = 146.2 keV b) demonstrating that outlier data
points have a minimal e↵ect on the central value obtained
for fit. However, as shown in the next section, the e↵ect
on the uncertainty estimation is quite significant.

E. Monte Carlo Uncertainty Analysis

The best fit resulting from the R-matrix analysis has
been subjected to a Monte Carlo (MC) uncertainty anal-
ysis. From the MC analysis, uncertainty contributions
from the statistical and the overall systematic uncertain-
ties of the experimental data were obtained for the fit
parameters and the 12C(↵, �)16O cross section and cor-
responding reaction rate. However, in order for the fit
to yield accurate uncertainties, the reduced �2 of the fit
should be approximately one. Given that this is not the
case, as detailed in Table VII, the alternative goodness of
fit method given by Eq. (95) was employed. In this way,
the uncertainty from outlyer data points and discrepant
data sets can be better estimated. At Ec.m. = 300 keV,
the di↵erence in the uncertainty calculated with the stan-
dard �2 function of Eq. (87) versus the L estimator of
Eq. (95) was quite significant, inflating the uncertainty
from about 10% to about 15%. Indeed, over other energy
regions, especially near the low cross section area in the
vicinity of Ec.m. ⇡ 3 MeV, the increase in the uncertainty
was even more dramatic.

The MC technique was adapted from those of deBoer
et al. (2014); Gialanella et al. (2001); and Schürmann
et al. (2012). The following assumptions and steps were
taken for this analysis:

1. The best fit from the R-matrix analysis is taken as
the most probable description of the data. The L
method of Eq. (95) is used to define the goodness
of the fit.

2. The data are then subjected to a random variation
based on their uncertainties. The data are varied,
assuming a Gaussian probability density function,
around the best fit cross section value. The uncer-
tainty on the data point is scaled by the square root
of the ratio of the cross section of the fit divided by
the cross section of the Gaussian randomized cross
section.

3. The systematic overall uncertainty for each experi-
mental data set is also varied assuming a Gaussian
probability density function.

4. The ANCs and � widths of the subthreshold states
are also allowed to vary. Their uncertainty contri-
butions are included using Eq. (94).

5. Background poles for E1 and E2 multipolarity are
introduced to the capture channels to give further
freedom in the fit.

6. The R-matrix fit (the L maximization) is then per-
formed again. The initial values of the parameters
are those from the original best fit.

7. Steps 3-6 are then repeated many times (referred
to as the “MC iterations”). For each of the MC
iterations, an extrapolation of the cross section can
be made using the best fit parameters from that
iteration. This cross section is then numerically in-
tegrated to calculate the reaction rate as a function
of temperature.

Histograms were then created from the MC procedure
for the cross sections and reaction rates at specific ener-
gies or temperatures respectively. The lower and upper
uncertainties were then defined by the 16 and 84% quan-
tiles. The central value is defined as the 50% quantile.
The uncertainty in the cross section derived from the

MC analysis is shown in Fig. 25. At low energies, the
uncertainty budget is dominated by the uncertainties in
the ANCs of the subthreshold states and is about 15%
at Ec.m. = 300 keV. In the region above E

cm

= 5.0 MeV,
the cross section is determined mainly indirectly through
a combination of the 15N(p, �)16O, 12C(↵,↵0)12C, and
15N(p,↵0)12C data. In this region the uncertainty be-
comes much smaller, and was found to be in good agree-
ment with that obtained from a standard �2 analysis. At
the highest energies, where the experimental data taper
o↵, the uncertainty begins to increase again.
Therefore, using Eq. (95), it is believed that a conser-

vative estimate of the uncertainty stemming from the ex-
perimental uncertainties has been obtained. Taking the
approach considered here, where a large portion of the
experimental data is considered, it is useful to compare
with the other extreme where only a small subset of well
defined data is considered as in Schürmann et al. (2012).
Each approach has its advantages and drawbacks. Fore-
most among them, the method considered here likely errs
on the side of including a significant amount of data that
is incompatible, yet it is not subject to the bias of choos-
ing the best data. On the other had, choosing a small
subset of data can yield a smaller uncertainty that may
be accurate, however the entire analysis hinges on choos-
ing the “correct” data.
Both the uncertainties from the experimental data and

the uncertainties from the model have been estimated.
These results are now combined to give a best estimate
of the total uncertainty on the 12C(↵, �)16O reaction rate.

F. Summary and Total Uncertainty Estimate

The previous sections have investigated di↵erent
sources of uncertainty in the extrapolation of the
12C(↵, �)16O cross section to the stellar energy range.
The uncertainty analysis is complicated by data sets that
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FIG. 25 (Color online) The uncertainty in the S factor as
derived by combining the MC analysis (which includes the
subthreshold state uncertainties) and the model uncertain-
ties is shown in Fig. 25 a). The data from Schürmann et al.
(2005) are shown for comparison. Fig. 25 b) shows the uncer-
tainties relative to the best fit value for the Monte Carlo anal-
ysis (olive colored dashed line) and the uncertainties derived
from the model (dot-dashed orange line). The total uncer-
tainty, taken as the MC and model uncertainties summed in
quadrature, is shown by the solid red line. The black vertical
dashed line marks the region of typical astrophysical interest
at Ec.m. = 300 keV.

lack good statistical agreement and by ambiguities inher-
ent in the phenomenological model. For added clarifica-
tion, the key results of the above sections are summarized
here.

• The reaction data now provide definitive solutions
for the ground state interference patterns of both
the E1 and E2 cross sections, eliminating a large
source of uncertainty. However, many of the E2
measurements show large scatter with respect to
one another as well as the R-matrix prediction for
the cross section, that far exceeds their quoted un-
certainties. The E1 data are in better agreement
but still produce a reduced �2 significantly greater
than one.

• The reduced �2 values for the �-delayed ↵ emis-
sion spectra and the scattering data are also sig-
nificantly greater than one, likely a result of only
approximate modeling of the remaining experimen-
tal e↵ects reported in the data. This may even
suggest that there are additional unaccounted for
uncertainties in the data or, very likely, that the
models used to correct for remaining experimental
e↵ects in the data are insu�ciently accurate.

• If experimental measurements and uncertainties
are taken at face value and model uncertainties are
ignored, and the uncertainty in the extrapolation

of the R-matrix to low energy is calculated, an un-
certainty of only a few percent is obtained. How-
ever, the large reduced �2 values found for such a
fit indicates that this method would significantly
underestimate the uncertainty. For this reason an
more conservative uncertainty estimator, that of
Eq. (95), was used for the MC analysis. Addition-
ally, several sources of known model uncertainty
were explored and found to make a significant con-
tribution to the overall uncertainty budget.

• The properties of the subthreshold states seem
to be well known at present, both � widths and
ANCs. Since the development of sub-Coulomb
transfer measurements, di↵erent experimental mea-
surements have yielded consistent results for the
ANCs. In view of the previous points, the uncer-
tainties in the ANCs and � widths of the subthresh-
old states have been included in the fitting and un-
certainty analysis using Eq 94.

The total uncertainty has thus been estimated by com-
bining the uncertainties from the experimental data via
the MC analysis and the model uncertainties summarized
in Table XIX. This produces a total uncertainty of 15 to
20% when both contributions are summed in quadrature
over most of the energy region. The results of this anal-
ysis are compared to previous results of S(300 keV) in
Table IV and Fig. 26. With the fitting and uncertainties
discussed in detail, the discussion can turn back to several
important recent works that were neglected in Sec. V.C.

VIII. DISCUSSION OF RECENT WORKS

Fig. 26 gives an idea of the di�culty encountered in
analyzing and then extrapolating the cross section of the
12C(↵, �)16O reaction to low energy by the wide range of
values for S(300 keV) that have been estimated over the
course of many works. As discussed in Sec. V.A, from the
outset, Fred Barker realized the importance of a compre-
hensive analysis (Barker, 1971) and it is an impressive
feat that even his first work on the subject contains the
key elements of the most sophisticated analyses published
today: fit to capture, scattering, � delayed ↵ spectrum,
and consideration of the reduced ↵ widths from transfer
reactions. However, the complexity involved in having to
include data from many di↵erent reaction types is also
why many analyses have only considered a subset of the
data (or reactions). Even today, making a general analy-
sis code that can simultaneously fit all of the data is quite
challenging and simply compiling all of the experimental
data is no small task.
It is important to note that even the implementation

of the R-matrix methods used over the years has under-
gone significant development. This is for the most part
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TABLE XIX Summary of the systematic uncertainties that were considered and their a↵ects on S(300 keV).

Source Syst. Unc. Contribution (keV b)
Inclusion of Q-coe�cients +1.2
Relativistic �-ray angular distribution correction -0.3
Fixed energy of E

x

= 9.5779 MeV -1.2
Di↵erent fitting functions +7.7
Fixed Kunz (2002) Cascade data normalizations -0.5
Fixed Schürmann et al. (2011, 2005) data normalizations +1.1
No ground state 12C(↵, �)16O E2 excitation curve data -0.6
No ground state 12C(↵, �)16O E1 or E2 excitation curve data -0.9
No ground state 12C(↵, �)16O angular distribution data -5.2
1� ground state 12C(↵, �)16O E1 BGP +15.2
2+ ground state 12C(↵, �)16O E2 BGP -3.0
↵0 channel radius variation ±8
Alternative fitting approaches +13.1
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FIG. 26 (Color online) Plot of S(300 keV) values for all past
estimates in the literature back to 1970. For the E1 extrap-
olation, the uncertainty is quite large before the early ’90s.
The dramatic decrease is due to the greatly improved con-
straint on the 1� subthreshold contribution provided by beta
delayed ↵ emission data and later from sub-Coulomb trans-
fer experiments. The extrapolation of the E2 data still has a
somewhat larger spread but it too has seen significant reduc-
tion in its uncertainty thanks to high precision scattering and
sub-Coulomb transfer experiments.

limited to the � ray channels, but it is important to real-
ize that extrapolations using “R-matrix” have not always
been the same. In Sec. III.C it was described how the hy-
brid R-matrix model was used for sometime but fell out
of favor because it was unable to fit the scattering data
as well as the standard theory. A significant improve-
ment to the modeling of the external component of the
capture cross section was provided by Barker and Kajino
(1991), as discussed in detail in Sec. IV.D. Yet even af-
ter this work, several analyses continued to neglected the
external contributions.

Fig. 27 demonstrates the e↵ect of including ex-
ternal capture in the ground state transition of the

12C(↵, �0)16O reaction in the R-matrix analysis. Since
the ↵ particle ANC of the ground state of 16O remains
quite uncertain, a moderate value of 100 fm�1/2 has been
chosen for an example calculation. Fig. 27 a) demon-
strates that the E1 external capture can be neglected to
a good approximation given the the data presently avail-
able. At E

c.m.

= 300 keV the e↵ect is only about 2% for
the ANC used. The e↵ect is maximum, ⇡35% di↵erence,
in the o↵-resonance region at E

c.m.

⇡ 4 MeV. There-
fore if experimental measurements do access this region
E1 external capture does become a necessary part of the
calculation.

In Fig. 27 b) it is shown the the E2 external capture
is much more significant. Here the e↵ect is maximum,
⇡30%, in the region from 2 . E

c.m.

. 3.5 MeV. Here
certainly the E2 external capture can not be neglected
since data have been measured throughout this region
with uncertainties much less than 30% in many cases.
The e↵ect lessens at E

c.m.

= 300 keV, but is still ⇡10%.
Therefore, if E2 external capture is neglected, a fit may
try to compensate by increasing the 2+ subthreshold ↵
particle ANC, which produces a similar energy depen-
dence in the cross section from the tail of the subthresh-
old state. This would result in what would seem to be a
tension between the ANC measured via transfer reaction
and that deduced from the fit to the E2 capture data.

Further, as the main subject of Barker and Kajino
(1991), the cascade transition cross sections can not be
analyzed without external capture since it dominates the
cross section over a wide energy range (see Fig. 8). There-
fore any analysis that is making a global analysis of the
12C(↵, �)16O reaction must include a model for the direct
capture process.

This section now returns to the aforementioned recent
works that were not discussed in Sec. V.C above, those of
Schürmann et al. (2012), Oulebsir et al. (2012), Xu et al.

(2013) (NACRE2), and An et al. (2015). Each of these
di↵erent works has been made by a di↵erent research
group and has performed an independent comprehensive
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FIG. 27 (Color online) Comparison of calculations of the
ground state transition capture S-factor made with (solid
black line) and without (dashed red line) an external cap-
ture contribution to the R-matrix. Here no external capture
signifies that only the internal part of Eq. (56) is considered.
A moderate value of 100 fm�1 has been used as the value of
the ground state ANC (see Table XVI). As expected, the E1
external capture is negligible over much of the energy range.
Only in the very low S-factor region around Ec.m. ⇡ 3.75 MeV
is there a significant e↵ect. However, this energy range has
proved largely experimentally inaccessible. For the E2 ex-
ternal capture, the lack of low energy resonances makes its
contribution more important. Its interference with the sub-
threshold 2+ resonance can produce a change in S-factor sig-
nificant compared to the uncertainties of the data. As shown
in Fig. 8, all of the cascade transitions have very significant
hard-sphere contributions, making the inclusion of external
capture critical for their modeling. The significance of the ex-
ternal capture for the di↵erent transitions is also reflected in
the relative contributions of the internal and channel portions
of the total reduced width amplitude as given in Table XXIV.

analysis of the 12C(↵, �)16O reaction.

A. Schürmann et al. (2011)

The global analysis of Schürmann et al. (2012) is based
on a long history of measurements and analyses per-
formed by Claus Rolf’s research group in Münster (Gi-
alanella et al., 2001; Kettner et al., 1982; Redder et al.,
1987; Roters et al., 1999; Schürmann et al., 2011, 2005)
and Wolfgang Hammer’s group at Stuttgart (Assunção
et al., 2006; Hammer et al., 2005a,b; Kunz et al., 2001).
Much of the basis for the global R-matrix analysis was
developed by Ralf Kunz and was published in Kunz et al.
(2002) with many further details of the analysis in Kunz
(2002). It should be noted that this work was done with
a completely independent R-matrix code to the one used
here. This extremely comprehensive work was the first to
push the R-matrix calculations up above the proton sep-
aration energy. There were several approximations that

were made at that time that were subsequently improved
upon in Schürmann et al. (2012). Important improve-
ments have been an external capture calculation of the
E2 ground state transition and a systematic uncertainty
term in the �2 function. However, even in Schürmann
et al. (2012), the analysis does not include the proton
and ↵1 partitions at higher energies.
The main di↵erence from the present analysis is that

a very stringent rejection criterion for the data was
adopted. This highlights a common philosophical dif-
ference in data analysis. One the one hand, the experi-
menter knows the details of his own data on a first hand
basis, but must often rely on only the details of a publica-
tion for the re-analysis of other work. In Schürmann et al.

(2012) the criteria for their data analysis was so stringent
that in e↵ect only data measured by that group could be
retained. On the other hand, despite the experimenter’s
confidence in their own data, it is often hard to justify
why one measurement is correct over another.
Another major di↵erence is that Schürmann et al.

(2012) did not directly consider the transfer reaction re-
sults for the ANCs in their analysis. They were instead
treated as fit parameters. However, unlike in the current
analysis, because only a very limited amount of data was
considered, the tension between di↵erent data sets was
greatly reduced and their fitted values did not vary as
widely as observed here. This may also be because only
the phase shifts from Tischhauser et al. (2009) were used,
the fewer number of data points then lessened the tension
between the scattering data and other data sets. Also,
only the � delayed ↵ data of Azuma et al. (1994) were
considered eliminating the tension between those di↵er-
ent data sets.
For the ground state transition, a larger value for the

ANC of the 1� level than those of the higher preci-
sion transfer reactions of Avila et al. (2015) and Brune
et al. (1999) was found. This is in general agreement
with what has been found here as well when the the
ANCs are allowed to vary freely (see Sec. VII.D). For
the 2+ ANC, excellent agreement was achieved (see Ta-
ble XIII). The agreement with transfer is quite poor for
the E

x

= 6.05 MeV ↵ ANC, as has been discussed in
Sec. VI.C.
For the final uncertainty analysis a Monte Carlo anal-

ysis similar to the one performed here (and originally
applied to the case of 12C(↵, �)16O by Gialanella et al.

(2001)) was performed. Systematic uncertainties were
also explored but few details were given regarding the de-
tails. In the end, a value of S(300 keV) = 161±19stat

+8
�2sys

was found.
This central value is very close to the upper 68% confi-

dence level of the current analysis. However, it is di�cult
to understand the values of S(300 keV) for the E1 and
E2 contributions compared to the present results. The
E1 values are very close (Schürmann et al. (2012) 83.4,
current work 86.3 keV b). While naively these values
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are in good agreement, they should not be, since the
1� ANC used by Schürmann et al. (2012) is significantly
larger than that used here. Further, and equally perplex-
ing, the E2 value is much larger than that deduced here
(Schürmann et al. (2012) 73.4, current work 45.3 keV b),
yet the 2+ ANCs are nearly identical for the two anal-
yses! Unfortunately Schürmann et al. (2012) give few
details as to the resonance parameters that were used so
it is impossible to make an exact comparison. One ex-
planation could be that very di↵erent background pole
contributions were used. Since Schürmann et al. (2012)
did not include data at higher energies, more freedom
should have been possible for their background contribu-
tions.

The overall uncertainty quoted by Schürmann et al.

(2012) for S(300 keV) is ⇠13%. Given the comparison
with this work, this value seems reasonable, if one accepts
that all of the data used are correct. It also may be that
that some of the systematic uncertainties discussed here
were overlooked since there are not many details given
regarding this in Schürmann et al. (2012).

B. Oulebsir et al. (2012)

A global R-matrix analysis was preformed as part of
the transfer reaction study of Oulebsir et al. (2012). Be-
sides the analysis being performed from a transfer reac-
tion experiment point of view, this analysis has been cho-
sen for comparison because it represents the most recent
calculations with Pierre Descouvemont’s R-matrix code
DREAM (see, for example, Mountford et al. (2014)). An-
other R-matrix code developed completely independently
from the AZURE2 code used here. While this analysis is
limited to the more typical lower energy range, it con-
siders all of the ground state transition E1 and E2 data.
None of the cascade data are considered however. The
fits do include some higher energy resonances explicitly
in the R-matrix calculation with their parameters fixed
to values in the compilation. This analysis follows a sim-
ilar analysis technique as the “best fit” of the present
work in that the ANCs were treated as fixed parameters.
However, in addition, all the resonance parameters of the
unbound states were fixed to previously determined val-
ues. Only the background pole contributions widths were
allowed to vary. Given that one of the largest uncertain-
ties in the R-matrix analysis stems from the background
poles, this seems to be a reasonable approximation.

The fitting technique was done iteratively, first fitting
to the scattering data to constrain the energy and ↵
widths, then fitting to the capture data to constrain the
ground state � widths of the background poles. Only
l = 1 and 2 phase shifts were fit instead of the actual
scattering yields, which may cause di�culties in the un-
certainty propagation as described in Buchmann et al.

(1996). The 16N(�↵)12C spectrum was not fit but a com-

parison of the l = 1 contributions was performed showing
reasonable agreement.
The extrapolated S factors are in good agreement with

the current analysis. This should be expected because
one of the primary methodologies of the analysis is the
same, fixing of the subthreshold state ANCs to the value
measured through transfer reactions. The values for the
E1 and E2 S factors (100(28) and 50(19) keV b respec-
tively) are systematically larger than the “best fit” values
of this work (86.3 and 45.3 keV b respectively), although
in good agreement considering the uncertainties.
This di↵erence is likely because there are no back-

ground poles included in the current “best fit” and inclu-
sion of the poles has only been found to increase the low
energy cross section. For tests with background poles in
this work, the extrapolated value S(300 keV)

E1 is nearly
identical with the one found here (101.5 keV b). For
S(300 keV)

E2 the value found here remains nearly the
same, actually slightly decreasing to 42 keV b. This may
be a result of the greater constraint imposed on the back-
ground poles by the inclusion of the higher energy data.
The uncertainty in the S-factor quoted by Oulebsir

et al. (2012) is significantly larger than that of the cur-
rent analysis. This results from the larger uncertainties
obtained in the ANCs from their transfer experiment
(⇠20%) over those of either Brune et al. (1999) and Avila
et al. (2015) that have been adopted in this work (⇠10%)
(see Table XIII). Further, the lack of higher energy data,
in particular the total cross section data of Schürmann
et al. (2005), results in significantly more freedom in the
background contributions.

C. Xu et al. (2013) (NACRE2)

The analysis presented as part of Xu et al. (2013)
(NACRE2) provides an interesting comparison because
it uses a potential model (PM) calculation instead of a
phenomenological R-matrix method to predict the low
energy S-factor. While still a phenomenological proce-
dure, the PM method tries to take a step in a more fun-
damental direction by defining real Woods-Saxon poten-
tials for each J⇡. The parameters that define the poten-
tial, its magnitude, radius, and di↵useness, are treated
as free parameters in the fit to match the resonances and
binding energies of the experimental data. This has the
advantage that it may lead to less fit parameters than
the standard phenomenological R-matrix approach but it
comes at the cost of less flexibility. Further, some states
can not be produced by the potential model, as discussed
in Sec. III.B, and have been parameterized separately us-
ing approximate Breit-Wigner formulas. Interference be-
tween resonances must also be introduced ad hoc. The
direct capture contribution to the cross section is mod-
eled in a similar manner as that proposed by Rolfs (1973).
Additionally, each transition is fit independently, this in-
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cludes the di↵erent ground state E1 and E2 fits. The
phase shifts and the 16N(�↵)12C data are not considered
in the model.

It is clear from Fig. 64 of NACRE2 that the PM model
used is not able to reproduce the experimental data to
the same degree as the phenomenological R-matrix fits.
However, considering the added constraints and approx-
imations that are imposed, the reproduction of the data
is impressive. While a �2 fit to the data was likely made,
the value is not given so an exact comparison is not possi-
ble. The final value of the extrapolated S-factor (Stotal =
148(27), S

E1 = 80(18), S
E2 = 61(19) keV b) is similar to

that deduced here, although with all the considerations
pointed out above, this maybe somewhat coincidental.
The total uncertainty is quoted as about ⇠18%, but the
details of how this is calculated are not given.

D. An et al. (2015)

Baring the current work, An et al. (2015) considers the
largest amount of data over the broadest energy range.
While a phenomenological R-matrix analysis was per-
formed, it seems that the capture formalism was limited
to that of internal contributions. The analysis is per-
formed using the R-matrix code RAC, which has been
used previously for evaluations of neutron capture data
(Carlson et al., 2009). The neglect of external contri-
butions for the ground state E1 cross section has been
justified (see, for example, Barker and Kajino (1991)).
However, for the ground state E2 cross section, which has
an appreciable external capture component, this approxi-
mation is not valid for a high precision analysis as shown
earlier in this section. Further, the cascade transition
cross sections all have significant external contributions.
Additionally, no mention was made of the corrections for
experimental e↵ects, which are quite important for the
16N(�↵)12C and scattering data sets.

An et al. (2015) make the bold claim that the low en-
ergy S factor has been constrained to 4.5%. However,
the lack of an investigation of systematic e↵ects and ap-
proximations that seem to have been made in the theory
make this di�cult to defend. The uncertainty determina-
tion that was used is an iterative fitting procedure that
involves inflating the experimental error bars in order
to achieve a fit with a reduced �2 that approaches one.
However, this has the underlying assumption that the av-
erage value of all of the data gives the best estimate of the
cross section and it is far from clear that is the case. In
this work it has been found that capture data likely over
estimate the low energy cross section and that there is
tension between the 16N(�↵)12C, scattering, and transfer
reaction data that translates into di↵erent preferred val-
ues for the subthreshold ANCs and by extension the low
energy cross section. The results of the transfer reaction
measurements of the ANCs were also not considered.

It is also unclear how or if the experimental systematic
uncertainties are included in the fit, since no �2 function
is given. A related issue is that the normalizations of
some data sets were fixed and it is unclear how or if these
uncertainties were propagated through into the final un-
certainty budget. It is also unclear if systematic e↵ects of
the R-matrix model were investigated. It is stated that a
channel radius of 6.5 fm was used for the fitting but there
is no discussion of how di↵erent channel radii e↵ect the
fit and there is no discussion of how the background poles
e↵ect the fitting and extrapolation. The quality of the
fits to the scattering data are also rather poor compared
to the quality of a similar R-matrix analysis made by de-
Boer et al. (2013). The reason for this is not discussed.
Further, the definition of the � ray fit parameters given
in Table IV are unclear making a recalculation of the fit
impossible.
In the end, not enough details are given by An et al.

(2015) to understand the fitting or uncertainty estimate
procedure. It appears as though the many systematic un-
certainties identified in the current work were neglected.
In fact, if the model uncertainties and the tension be-
tween di↵erent data sets are ignored in the Monte Carlo
uncertainty analysis described here, a result similar to
the 4.5% uncertainty of An et al. (2015) is obtained.

IX. STELLAR REACTION RATE AND IMPLICATIONS

The stellar reaction rate for 12C(↵, �)16O was calcu-
lated as a sum of non-resonant, or broad resonant, S-
factor contributions that were determined through the
R-matrix analysis by numerical integration of Eq. (2),
and narrow resonance contributions that were calculated
through a Breit-Wigner approximation using Eq. (6).
This separation was made to avoid numerical integration
problems for the narrow resonances and because their un-
certainties were better quantified experimentally as un-
certainties on their strengths !� (see Sec. II.E). The un-
certainties in the rate were calculated from the MC anal-
ysis (see Sec. VII.E) and from the model uncertainties
(see Sec. VII) discussed above. The experimental uncer-
tainties in the energies and the strengths were likewise
used to propagate the uncertainties stemming from the
narrow resonances.
Fig. 28 shows the Gamow window (see Eqs. (4) and

(5)) and the integrand of the S-factor with the Maxwell-
Boltzmann energy distribution (the integrand of Eq. (2))
for a range of temperatures. This depicts how di↵erent
energy ranges of the cross section contribute to the reac-
tion rate at di↵erent stellar temperatures.
The narrow resonance contributions (�total . 1 keV)

are from the 2+ resonance corresponding to the
state at Ex = 9.8445(5) MeV (�

↵

= 0.62(10) keV,
�
�

= 9.8(8) meV) and the 4+ at Ex = 11.0967(16) MeV
(�

↵

= 0.28(5) keV, �
�

= 5.6(14) meV) (Tilley et al.,
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FIG. 28 (Color online) The reaction rate integrand as a func-
tion of CM energy for T = 1, 2, 4, and 10 GK. At larger tem-
peratures above T = 1 GK several resonance contributions be-
gin to dominate the rate. Above T ⇡ 4 GK it is estimated that
higher lying resonance contributions (at Ec.m. > 6.5 MeV)
not included in the present analysis could have a significant
contribution compared to the quoted uncertainty. While the
ground state transition has been shown to be fairly weak at
these higher energies, limited information is available for the
cascade transitions, and they may make significant contribu-
tions. For comparison, the Gaussian Gamow energy windows
described by Eqs. 4 and (5) are indicated by the horizontal
error bars.

1993). There is an additional narrow 0+ state at
Ex = 12.049(2) MeV (�total = 1.5(5) keV). Its strength
has been reported for the first time by Schürmann et al.

(2005) (!� = 11.2(15) meV).
The narrow resonance contributions and their uncer-

tainties have been calculated using STARLIB (Sallaska
et al., 2013). As these resonances are narrow, their inter-
ferences with the broad states can be neglected to within
the uncertainty of this analysis. The uncertainties are
combined by summing (incoherently) the rate PDFs from
the R-matrix Monte Carlo procedure with those from the
Monte Carlo Breit-Wigner narrow resonance approxima-
tion calculations from STARLIB.

Of the narrow resonances, only the 2+ has a significant
a↵ect on the rate. It makes a contribution of >2% at
T > 1.75 GK with a maximum contribution of 15% at
T = 3.5 GK. It is estimated that this resonance can have
a >2% contribution up to T ⇡ 9 GK. It is estimated that
the 4+ resonance has a maximum contribution of ⇡1%
at T ⇡ 6 GK. The 0+ resonance is too weak to make a
significant contribution even at T = 10 GK.

The total reaction rate is compared to the NACRE
rate (Angulo et al., 1999) in Fig. 29. The present rate is
within the uncertainties of (Angulo et al., 1999) except
at T ⇡ 2 GK where the present rate is larger because
of the inclusion of the narrow 2+ resonance and the cas-
cade transitions. The uncertainty band is significantly
smaller at low temperatures but is similar at higher tem-
peratures reflecting the significantly increased constraint
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FIG. 29 (Color online) Comparison of the reaction rate and
uncertainty calculated in this work (orange band, dash central
line) and that from Kunz et al. (2002) (blue band, dash-dotted
central line) normalized to the adopted value from Angulo
et al. (1999) (NACRE compilation) (gray band, solid central
line). The deviations at higher temperature are the result of
the di↵erent narrow resonance and cascade transitions that
were considered in the di↵erent works. Arrows at the bottom
indicate temperature ranges for di↵erent Carbon burning sce-
narios.

on the subthreshold parameters imposed by transfer re-
actions since the NACRE publication. The rate from
Kunz et al. (2002) is also shown in Fig. 29 for additional
comparison. The reaction rate of this work is given in
Table XXV of Appendix B.
With the revised reaction rate now in hand, investi-

gations can now be made to ascertain the e↵ect of the
smaller central value and smaller uncertainty band on
stellar model calculations.

X. ASTROPHYSICS IMPLICATIONS

Returning at last to the discussions of Sec. II, the
12C(↵,�)16O reaction is responsible for the origin of oxy-
gen in the universe and for setting the profile of the car-
bon to oxygen ratio in stars. This, in turn, a↵ects subse-
quent stellar evolution and determines the nucleosynthe-
sis phases of quiescent and explosive burning events.
Attention is focused on models of a single star, with

solar metallicity, and zero-age main-sequence masses of
3, 15, and 25 M

�

. These three masses are represen-
tative of di↵erent stellar evolution and nucleosynthesis
paths. The 3 M

�

models are of interest because they
produce CO white dwarf masses near the M ' 0.6 M

�

peak of the observed DA (hydrogen-dominated atmo-
sphere) and DB (helium dominated atmosphere) white
dwarf mass distributions (Eisenstein et al., 2006; Kepler
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TABLE XX Overview of the MESA stellar models. Mini is the
initial mass in solar masses, �12↵�

is the lower (L), adopted
(A), and upper (U) 12C(↵, �)16O reaction rate from this work.
MCO is the carbon-oxygen core mass at the end of core helium
burning. X

c

(12C) and X
c

(16O) are the central mass fractions
of 12C and 16O, respectively.

id Mini �12↵,�

MCO X
c

(12C) X
c

(16O) X
c

(12C)/X
c

(16O)
m3l 3 L 0.189 0.35 0.62 0.56
m3a 3 A 0.180 0.34 0.64 0.53
m3u 3 U 0.190 0.27 0.71 0.38
m15l 15 L 3.07 0.30 0.67 0.45
m15a 15 A 3.03 0.25 0.72 0.35
m15u 15 U 3.08 0.22 0.75 0.29
m25l 25 L 6.40 0.25 0.72 0.34
m25a 25 A 6.45 0.20 0.76 0.27
m25u 25 U 6.45 0.16 0.80 0.21

et al., 2007, 2015, 2016). The 15 M
�

models are cho-
sen because, for a classical Salpeter initial mass function
with slope � = -1.35 (e.g., Maschberger, 2013; Salpeter,
1955; Scalo, 1986), the average supernova mass by num-
ber is hM

SN

i = (1/2)1/� M
L

(here M
L

is the lower mass
limit for stars that become core-collapse supernovae). For
M

L

= 9 M
�

, this yields hM
SN

i = 15 M
�

. Finally, the
25 M

�

models are motivated by their representation of
the average nucleosynthesis supernova for a Salpeter ini-
tial mass function; that is, the average supernova mass by
number weighted by the mass fraction ejected in heavy
elements.

The stellar models are evolved using the Modules for
Experiments in Stellar Astrophysics software instrument
(henceforth MESA, version 3372 for 3 M

�

models and ver-
sion 7624 for 15 and 25 M

�

models, Paxton et al., 2011,
2013, 2015). The 3 M

�

models were computed from the
pre-main sequence to the AGB phase and through sev-
eral thermal pulses (He-shell flashes). The 15 and 25 M

�

models were calculated from the pre-main sequence to
extinction of core He burning, defined as the time when
the central mass fraction of He has fallen below 1⇥10�5.
Other than the specified 12C(↵,�)16O reaction rate, mod-
els with the same initial mass assume identical input
physics assumptions (e.g., Farmer et al., 2016; Fields
et al., 2016; Jones et al., 2015). An overview of the
model results using the 12C(↵, �)16O reaction rate from
this work is given in Table XX.

Throughout this section a comparison to the rate from
this work is made to that of Kunz et al. (2002), as they
are propagated through di↵erent stellar models. The
Kunz et al. (2002) rate has been chosen because it has
been widely excepted as one of the most accurate deter-
minations of the 12C(↵,�)16O reaction rate and has been
used for several years in many rate libraries such as JINA
Reaclib (Cyburt et al., 2010). As illustrated in Fig. 29,
the rates of Angulo et al. (1999) (NACRE), Kunz et al.

(2002), and the present work are all in agreement, but

their central values trend lower as do their uncertainties
respectively.

A. Aspects of 12C(↵,�)16O on 3 M
�

Stellar Models

Fig. 30 summarizes some of the key di↵erences be-
tween using the 12C(↵,�)16O reaction rate of this work
and that of Kunz et al. (2002). The x-axis is the lower,
adopted, and upper reaction rate for each source of
the 12C(↵,�)16O rate. The left y-axis is the percent-
age di↵erence in the central 12C/16O mass fraction ra-
tio at the end of helium burning. The right y-axis is
the percentage di↵erence in the surface 12C/16O mo-
lar abundance ratio for two thermal pulses. A molar
abundance is related to the mass fraction by the atomic
weight (see Fig. 1 caption). For both y-axes the per-
centage di↵erence is relative to Kunz et al. (2002) (i.e.,
�A = 100 · (Athis work �AKunz)/AKunz).
One of the key features shown in Fig. 30 is that the cen-

tral 12C/16O mass fraction ratio is ' 30% larger when
using the adopted or upper rates from this work com-
pared to those of Kunz et al. (2002). This is because the
latter reaction rates are larger than those from this work
at the relevant temperatures (see Fig. 29). The trend is
opposite, a ' -10% decrease, for the lower limits because
the rate from this work is larger than that of Kunz et al.

(2002). The red arrow along the left y-axis in Fig. 30
gives the range of XC(12C/16O), ' 35%, resulting from
the use of the lower and upper 12C(↵,�)16O rates of this
work.
Also highlighted in Fig. 30 is the impact of thermal

pulses on the surface abundances, which can be measured
with stellar spectroscopy (e.g., Abia et al., 2002; Smith
and Lambert, 1990). After a thermal pulse the products
of shell He-burning are brought to the surface regions by
convection. A larger 12C(↵,�)16O rate results in more
16O and less 12C during helium burning. Every time
the convective envelope dredges freshly burned helium
up to the surface, it mixes more 16O and less 12C with
the existing surface composition, decreasing the 12C/16O
ratio.
At the 10th thermal pulse (grey circles), the di↵er-

ences between the 12C(↵,�)16O rate of this work and
that of Kunz et al. (2002) ranges between '5-9%. At
the 15th thermal pulse (blue circles), the di↵erences be-
comes '-5% and +13%. Both thermal pulses show a lin-
ear trend toward larger di↵erences as the two rates are
varied across their respective low, adopted, and high val-
ues. Finally, the blue arrow along the right y-axis shows
the range, ' 5% spread, of YSurf(12C/16O), which repre-
sents the uncertainty in the MESA stellar models for the
surface abundance ratio, given the uncertainty range of
the rate from this work.
The treatment of convective boundary mixing in stel-

lar models for the thermal pulses has a major role on the
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FIG. 30 (Color online) Ratio of 12C and 16O mass fractions at
the stellar center at the end of core He burning (left axis; red
circles) and number ratios at the surface (right axis; grey and
blue circles) during the 10th and 15th thermal pulses (He shell-
flashes) in the 3 M

�

models. The points connected by lines are
di↵erences arising in the models when using the 12C(↵, �)16O
rate of this work and that of Kunz et al. (2002). The red
arrow along the left y-axis spans the range of XC(

12C/16O)
resulting from the uncertainty in the rate of this work. The
blue arrow along the right y-axis is the equivalent range of
Ysurf(

12C/16O) during the 15th thermal pulse.

surface abundances of 12C, 16O and s-process elements,
but remains uncertain (e.g., Cristallo et al., 2015; Gallino
et al., 1998; Herwig, 2005b; Herwig et al., 2007; Karakas
and Lattanzio, 2014; Pignatari et al., 2016; Straniero
et al., 1995). Several physics mechanisms have been
proposed that could dominate convective-boundary mix-
ing including overshooting (Herwig et al., 1997), expo-
nential decay of convective velocities (Cristallo et al.,
2001), internal gravity waves (Battino et al., 2016; Denis-
senkov and Tout, 2003), and magnetic buoyancy (Trip-
pella et al., 2016). A consensus on the solution to this
puzzle has not yet been reached.

B. Aspects of 12C(↵,�)16O on 15 M
�

and 25 M
�

Models

Fig. 31 shows the percent di↵erences between using the
12C(↵,�)16O rate from this work and that of Kunz et al.

(2002) on the CO core mass, �MCO, and the central car-
bon/oxygen ratio, �XC(12C/16O), for the 15 and 25 M

�

MESA models. The core masses are measured as the mass
coordinate where X(4He) < 0.01 and X(12C) > 0.1 when
Xc(4He) reaches 1⇥10�5. For the 15 M

�

models, �MCO

(red circles) ranges between '1.2% for the respective low
rates to'-0.5% for the respective adopted and high rates.
For the 25 M

�

models, �MCO ranges between '1.7%
for the respective low rates to '1.0% for the respective
adopted rates and '0.5% for the respective high rates.
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FIG. 31 (Color online) Percent di↵erence in the carbon-
oxygen core mass, �MCO (left axis; red circles), and the
central carbon/oxygen ratio, �Xc(

12C/16O) ratio (right axis;
blue circles), between using the 12C(↵,�)16O rate of this work
and that of Kunz et al. (2002) for 15 M

�

(top panel) and
25 M

�

(bottom panel) MESA models at core He depletion (de-
fined as when the central He mass fraction falls below 10�5).
The x-axis gives the low, adopted, and high 12C(↵,�)16O rate
for the respective rate selection. The red arrow along the left
axis is the range of MCO resulting from the uncertainty in the
rate of this work. The blue arrow along the right y-axis is the
equivalent range for the central carbon mass fraction.

See Table XX for the absolute values of the CO core
masses resulting from the 12C(↵,�)16O rate from this
work. The red arrow along the left y-axes in Fig. 31 is
the range of MCO resulting from the uncertainty in the
rate from this work. The central CO core masses have
a spread of '1.5% for the 15 M

�

models and '0.7% for
the 25 M

�

models.

The 15 M
�

and 25 M
�

models show CO mass fraction
profiles that are nearly flat, due to convective mixing,
from the center to the inner edge of the shell He-burning
region. For the 15 M

�

models, �XC(12C/16O) ranges
from '-30% for the respective low rates through ' 0%
for the respective adopted rates to ' 30% for the respec-
tive high rates. For the 25 M

�

models, �XC(12C/16O)
ranges between ' 20% for the respective low and adopted
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rates to ' 100% for the respective high rates. The dif-
ference in the trends between these 15 M

�

and 25 M
�

MESA models is driven by the 15 M
�

models having a
larger electron degeneracy in the core than the 25 M

�

models, and nonlinear couplings between the shell burn-
ing regions and the core as the helium fuel depletes. The
blue arrow along the right y-axes is the spread of cen-
tral carbon mass fraction achieved when using the lower,
adopted and upper rates from this work, and shows larger
spreads, ' 50% for the 15 M

�

models and ' 45% for the
25 M

�

models.
The mass fractions of 12C and 16O in the core at the

end of the He-burning phase for the models using the
rate from this work are listed in Table XX. The models
using the highest rate have the lowest 12C abundance at
the end of core He burning. This will result in a smaller
convective C-burning core in the subsequent evolution
which will in turn change slightly where the various shell-
burning episodes will ignite. Both the 15 and 25 M

�

models exhibit higher central C/O ratios using the upper
limit for the rate of this work compared with the upper
limit of Kunz et al. (2002), because the latter rate is
faster (see Fig. 29). The converse statement is true for
the lower limits.

The nucleosynthesis from the 15 M
�

stellar models was
computed by post-processing the thermodynamic evolu-
tion of the models with a 1107-isotope nuclear reaction
network and mixing the species after every network time
step by solving the di↵usion equation using the di↵usion
coe�cient from the MESA model. For this, the NuGrid
software instruments were used (Jones et al., 2015; Pig-
natari and Herwig, 2012). In Fig. 32 the abundances of
elements with 26 < Z < 42 (Fe–Mo) that are a↵ected by
the weak s-process are shown at the end of the core He-
burning phase. The top panel shows the mass-weighted
average of the elemental mass fractions in the inner-most
2 M

�

of the star as so-called overabundances (i.e. the
abundance of each element is normalized to the solar
abundance, which in this case was the initial composi-
tion of the models). Both models exhibit the familiar
weak s-process pattern that is made when 56Fe, the seed
isotope, is depleted as it captures neutrons being released
by the 22Ne(↵,n)25Mg reaction, producing the elements
up to the neutron shell closure at N = 50 (Sr, Y, Zr).

The bottom panel in Fig. 32 shows the di↵erences, as
percentages, in the abundances of the elements in the
CO core at the end of core He-burning when using the
12C(↵,�)16O reaction rate of this work compared with
that of Kunz et al. (2002). The di↵erences are shown for
both the total masses of the elements in the CO core (M ,
blue circles) and the average mass fractions across the CO
core (X̄, red circles). The two lines are similar, indicating
that the di↵erence in the actual CO core masses result-
ing from the di↵erent 12C(↵,�)16O rates has no strong
influence on the weak s-process element production, as
for instance the ↵ capture rates on the neutron source
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FIG. 32 (Color online) Top panel: mass-averaged mass frac-
tions of the weak s-process elements in the central 2 M

�

of
the 15 M

�

models at the end of core He-burning using the
12C(↵,�)16O rate of this work and that of Kunz et al. (2002).
Bottom panel: percentage di↵erence in weak s-process pro-
duction at the end of core He-burning as both total elemental
masses and mass-averaged mass fractions for the 15 M

�

mod-
els using the rates of this work and Kunz et al. (2002).

22Ne (e.g. see for a recent impact study Talwar et al.

(2015)). The weak s-process production is more e�cient
in the model that uses the adopted 12C(↵,�)16O rate from
this work because the rate is slower and therefore 12C is
less of a competitor for ↵ particles than 22Ne, the neu-
tron source. This can also be seen by simply noting that
�M(Fe) < 0 or �X̄(Fe)core < 0 in the bottom panel of
Fig. 32, i.e. the element Fe – comprised mostly by the
s-process seed isotope 56Fe – is further depleted in the
model with the adopted rate of the present work than in
the model with the Kunz et al. (2002) rate.

The di↵erence in the weak s-process production arising
from the di↵erent 12C(↵,�)16O rates (this work vs. Kunz
et al., 2002) is significant and is as much as ' 30% in
the total masses of Ga and Ge that are produced. The
variation in the weak s-process production that is due to
the uncertainty of the 12C(↵,�)16O rate from this work
(not shown in Fig. 32) is on the order of 20-30%.
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XI. SUMMARY AND OUTLOOK

The 12C(↵, �)16O reaction has remained one of the
most challenging problems in nuclear astrophysics. This
is because it is extreme di�cultly to access experimen-
tally, it can not be accurately predict with theory, and
even its impact on stellar environments is so convoluted
with other uncertainties that its exact e↵ect is di�cult
to quantify. Yet there is no doubt that it remains one of
the most critical reactions for our understanding of nucle-
osynthesis and stellar evolution, and attempts to address
these issues have remained at the forefront across the
field. The major experimental improvements have been
made through indirect techniques such as improved mea-
surements of the � delayed ↵ emission spectra of 16N and
sub-Coulomb transfer. This is apparent in Fig. 26 where
16N(�↵)12C measurements drastically decreased the E1
uncertainties in the early 90’s and the transfer measure-
ments resulted in a large decrease in the E2 uncertainty
around the early 2000’s. The combination of these mea-
surements together with a large amount of low energy
data and the inclusion of higher energy data in the R-
matrix analysis have thus reduced the uncertainty in the
extrapolation for S(300 keV) to ⇡20% uncertainty level.
However, improvements in the uncertainty are now hin-
dered by the tension produced by inconsistencies between
di↵erent measurements. This issue now bars the way to
the smaller uncertainty level reflected by the statistical
uncertainties of the individual measurements. To move
forward, these inconsistencies must be resolved.

With the uncertainty in the rate suggested by this work
and other recent global analyses, is there still a real need
for improvement? Some stellar modelers have indicated
that if the uncertainty in the 12C(↵, �)16O rate reaches
the 10% level, it will be on par with other non-nuclear
physics uncertainties as well as that of the 3↵ reaction
rate. However, it has been pointed out that for AGB
stars the impact of the present level of the uncertainty
in the 12C(↵, �)16O reaction rate is smaller than other
sources of uncertainties, e.g., the convective-boundary
mechanisms active at the He intershell, during the AGB
phase. Yet for massive stars the required level of preci-
sion must be at this level of about 10% since post-helium
burning evolution is strongly a↵ected by the 12C(↵, �)16O
rate. For example, in this work it has been suggested
that relevant structure di↵erences are at the '2% uncer-
tainty level in the carbon-oxygen core mass, at the '15%
level in the carbon and oxygen mass fractions, and at the
'30% level in the weak s-process yields. These estimates
are only for a limited number of stellar models, and we
encourage the community to more thoroughly investigate
the impacts of this work’s 12C(↵, �)16O reaction rate.

So how should we proceed? Of course any new method
that allows for the more precise and accurate determina-
tion of the various di↵erent experimental data will im-
prove the situation. For now we end finally with some

suggestions for specific experimental measurements that
could improve our knowledge of the 12C(↵, �)16O reac-
tion that can likely be done with existing experimental
techniques.

• Measurement of ground state angular distributions
to higher energies (E

c.m.

> 3 MeV), specifically in
o↵-resonance regions, to place more stringent upper
limits on E1 background terms and verify both E1
and E2 interference patterns.

• Further verification of ↵ ANCs from transfer reac-
tions, perhaps by systematic studies of additional
kinds of transfer reactions.

• Re-investigation of 16N(�↵)12C spectrum mea-
surements until constant measurements can be
achieved.

• Consistent measurements of ANC↵

G.S..

• Recoil separator measurements to lower energy
(Ecm < 2 MeV) and to higher energies, continu-
ing above S

p

(Ecm > 5 MeV).

• Cascade transition measurements over wide energy
ranges.

• Reporting of di↵erential cross sections, not just E1
and E2 cross sections if the experiment permits.

• Scattering measurements using thinner targets and
covering a wide energy and angular range.
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Appendix A: R-MATRIX FIT PARAMETERS

The R-matrix parameters in this section represent the
best fit of this work. It should be noted that this fit
does not include any background poles for the capture
channels, although it does for the particle channels. The
value of Stotal(300 keV) for the 12C(↵, �)16O reaction re-
sulting from these parameters is 140 keV b. The fit used
channel radii a

↵0 = a
↵1 = 5.43 fm and a

p0 = 5.03 fm. No
boundary conditions must be defined since the alternate
parameterization of Brune (2002) is utilized.

The comprehensive fit used in this work is also quite
complicated and includes many parameters. In order to
aid in the reproduction of the results of this work, an
AZURE2 input file is provided in the Supplemental Mate-
rial. The AZURE2 code is open source and can be obtained
at azure.nd.edu.

Appendix B: TABULATED REACTION RATE

The tabulated reaction rate is calculated at the same
temperatures as in Angulo et al. (1999) (NACRE) for
ease of comparison. In addition, the rate has been param-
eterized using the format recommended by JINA Rea-
clib (Cyburt et al., 2010). In order to fit the rate from
0.06 < T9 < 10 GK to a precision of better than 5%, two
instances of the rate parameterization formula,

N
A

h�vi = exp

"
a0 +

5X

i=1

a
i

T
2i�5

3
9 + a6 lnT9

#
, (B1)

were necessary: a non-resonant and resonance term (i.e.
N

A

h�vitotal = N
A

h�vinon-resonant + N
A

h�viresonance).
The first follows the suggested format for a charged parti-
cle induced non-resonance contribution, while the second

represents a single isolated narrow resonance term. The
parameters are given in Table XXVI. Note that the pa-
rameter values do not necessarily correspond to physical
quantities.
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TABLE XXI Observable energies and particle widths (or ANCs) used for the R-matrix fit (see Eqs. (43) and (44)). Pa-
rameters marked in bold were treated as fit parameters. All others were held constant at their central or nominal values.
For the uncertainty analysis, fixed parameters with uncertainties were varied assuming a Gaussian PDF. Minus signs on the
partial widths correspond to the sign of the corresponding reduced width amplitude. Uncertainties are given in the form
(central value)+(stat, syst)

-(stat, syst) .

(keV or fm�1/2)
J⇡ Ẽ

x

(MeV) �̃
↵0 or ANC

↵

�̃
p0 or ANC

p

�̃
↵1

this work lit. this work lit. this work lit. this work lit.

0� 12.7954

(4,0)

(3,0) 12.7937 40.9

(15,1)

(15,2) 40

0+ 0.0 58 13.9(19)
0+ 6.0494(10) 1560(100)
0+ 12.049(2) 1.5(5)

0+ 15 (BGP) �11.900(220,50)

(165,110)⇥10

3
420

(37,70)

(47,20)

1� 7.1165(14) 2.08(20)⇥ 1014 0.98(12)

1� 9.586

(1,0)

(1,8) 9.585(11) 382

(3,0)

(3,4) 420(20)

1� 12.4493

(8,2)

(8,0) 12.440(2) 99.2

(11,2)

(8,2) 91(6) 1.73

(4,2)

(4,20) 1.1 �0.031(2,4)

(2,2) 0.025

1� 13.094

(1,2)

(1,0) 13.090(8) �29.9(1,0)

(1,6) 45 110.4

(2,5)

(2,0) 100 0.636

(27,5)

(43,0) 1

1� 17.09 (BGP) 500

1� 20 (BGP) 15.6(7,1)

(4,2)⇥10

3
270

(61,15)

(30,170)

1+ 13.6646

(7,0)

(7,2) 13.664(3) �10.3(2,1)

(4,3) 8(3) 61.1

(23,4)

(17,2) 55(3)

2+ 6.9171(6) 1.14(20)⇥ 105 0.45(13)
2+ 9.8445(5) 0.62(10)

2+ 11.5055

(3,0)

(5,1) 11.520(4) 83.0

(6,1)

(3,0) 71(3)

2+ 12.9656

(14,5)

(28,2) 13.02(1) �349

(8,2)

(3,3) 150(10) 1.82

(8,4)

(8,18) �4.0(7,0)

(9,0)

2+ 15 5.5(5,2)

(5,2)⇥10

3 �8.1(20,0)

(15,5)

3� 6.12989(4) 139(9) 1.88(23)

3� 11.5058

(28,0)

(19,7) 11.60(2) 902

(5,1)

(6,1) 800(100)

3� 13.1412

(10,3)

(13,0) 13.129(10) 72.9

(42,9)

(24,8) 90(14) �1.11(2,1)

(3,2) 1 20.5

(13,0)

(16,1) 20

3� 13.2650 13.259(2) 12.8

(6,2)

(4,2) 9(4) 3.66

(10,1)

(8,2) 4.1 11.74

(33,1)

(54,1) 8.2(11)

3� 20 (BGP) �22

(1,2)

(2,0)⇥10

3

4+ 10.3581

(1,0)

(1,1) 10.356(3) 26.13

(25,3)

(15,3) 26(3)

4+ 11.0967(16) 0.28(5)

4+ 15 (BGP) 2.57⇥ 10

3(22,2)

(14,4)

5� 14.66 (BGP) 1.22⇥ 10

3(10,12)

(6,9) 8
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(60,190) 700
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3� 11.51 0.20

(20,64)

(18,20)
a

8

(3)

(3) 8

(7,10)

(5,8)
a

21

(4,7)

(4,7)

3� 13.14 10 8000

3� 13.26 �5.2(6,3)

(6,0)⇥10

3

4+ 10.36 5.6(20)⇥10�5 <1.0 42.7

(2,7)

(6,2) 62(6)

4+ 11.10 3.1(13) 2.5(6)

a Consistent with zero, should be treated as an upper limit.

TABLE XXIII �-delayed ↵-decay parameters resulting from the R-matrix fit. The half-life of 16N was taken as t1/2 = 7.13(2) s

with a �↵ branching ratio of 1.20(5)⇥10�5 (Tilley et al., 1993). �-decay feeding factors B̃
�

are those defined by Brune (2002)
and can be compared directly with those found in Table I of that work. log ft1/2 values were calculated using Eq. (83).
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Ẽ
x

E
f

=
0

E
f

=
6.
05

E
f

=
6.
13

E
f

=
6.
92

E
f

=
7.
12

�̃ p
�̃ p

(c
h
)

�̃ p
�̃ p

(c
h
)

�̃ p
�̃ p

(c
h
)

�̃ p
�̃ p

(c
h
)

�̃ p
�̃ p

(c
h
)

0�
12

.8
0

0
.
2
9
5

1�
7.
12

0.
01

88
0.
00

56
7+

i0
.0

1�
9.
59

�
0
.
0
0
9
8
6

�
(3
.8
+
i0
.6
)⇥

10
�
5

0
.
0
0
9
3
9

�
(2
.1
4+

i1
.0
3)
⇥
10

�
4

1
.
0
2
2

1.
12

5+
i0
.4
72

1�
12

.4
5

0
.
0
5
8
8

(6
39

+
i0
.6
9)
⇥
10

�
4

�
0
.
0
3
2
1

�
(0
.8
2+

i1
.3
5)
⇥
10

�
4

0
.
3
6
8

0.
39

9+
i0
.1
09

2
.
2
3

0.
10

9+
i0
.1
58

1�
13

.0
9

0.
23

3
0.
06

10
+
i0
.0
04

7
0
.
0
5
6
3

(4
.0
+
i7
.6
)⇥

10
�
5

�
2
.
3
1
6

0.
23

4�
i0
.0
12

4
5
.
5
4

�
(0
.0
44

9+
i0
.0
74

2)
1�

17
.0
9

0.
58

7
0.
03

38
+
i0
.0
19

4
2+

6.
92

0.
97

4
0.
01

57
+
i0
.0

�
3.
31

0.
40

1+
i0
.0

2.
27

⇥
10

�
3

(5
.8
1+

i0
.0
)⇥

10
�
3

2+
9.
84

�
0.
09

87
(9
.5
4+

i1
.0
6)
⇥
10

�
4

�
0.
65

0
0.
04

97
+
i0
.0
13

2
1.
18

1
0.
05

60
+
i0
.0
16

3
7.
54

⇥
10

�
3

�
(4
+
i2
)⇥

10
�
6

2+
11

.5
1

�
0
.6
1
0

(5
.4
2+

i2
.0
5)
⇥
10

�
3

0
.
9
9
1

0.
23

0+
i0
.1
71

�
0
.0
2
8
7

�
(5
.0
+
i3
.8
)⇥

10
�
5

1
.
0
5
7

0.
25

2+
i0
.1
95

0
.
0
2
5
4

�
(3
.4
+
i4
.2
)⇥

10
�
5

2+
12

.9
7

�
0
.5
1
2

0.
02

43
�
i0
.0
03

8
3�

6.
13

0.
69

1
3�

11
.5
1

0
.2
4
2

0.
0+

i0
.0

(E
3)

�
0
.1
3
8

0.
54

3+
i0
.2
21

0
.0
1
1
3

�
(4
.2
2+

i2
.9
5)
⇥
10

�
4

0
.7
8
7

0.
77

9+
i0
.4
81

3�
13

.1
4

1
.
0
7

0.
0+

i0
.0

(E
3)

9.
70

0.
01

44
+
i0
.0
60

0
3�

13
.2
6

�
7
.0
9

0.
13

0+
i0
.0
25

2
4+

10
.3
6

3
.
1
8

0.
72

9+
i0
.0
81

9
4+

11
.1
0

9.
87

⇥
10

�
3

�
(6
+
1)
⇥
10

�
6

0.
50

0
0.
04

16
+
i0
.0
09

4



77

TABLE XXV The rate of the 12C(↵, �)16O reaction. Uncertainties are calculated using a combination of Monte Carlo analysis
and investigation of systematic contributions from both data and model sources and are listed separately.

T (GK) Adopted Rate Lower Rate Upper Rate
0.06 6.78 ⇥10�26 5.69 ⇥10�26 7.90 ⇥10�26

0.07 3.28 ⇥10�24 2.76 ⇥10�24 3.83 ⇥10�24

0.08 8.00 ⇥10�23 6.71 ⇥10�23 9.35 ⇥10�23

0.09 1.18 ⇥10�21 9.91 ⇥10�22 1.38 ⇥10�21

0.1 1.20 ⇥10�20 1.00 ⇥10�20 1.40 ⇥10�20

0.11 9.03 ⇥10�20 7.55 ⇥10�20 1.06 ⇥10�19

0.12 5.38 ⇥10�19 4.50 ⇥10�19 6.31 ⇥10�19

0.13 2.65 ⇥10�18 2.21 ⇥10�18 3.11 ⇥10�18

0.14 1.11 ⇥10�17 9.28 ⇥10�18 1.30 ⇥10�17

0.15 4.08 ⇥10�17 3.41 ⇥10�17 4.80 ⇥10�17

0.16 1.34 ⇥10�16 1.12 ⇥10�16 1.58 ⇥10�16

0.18 1.09 ⇥10�15 9.11 ⇥10�16 1.29 ⇥10�15

0.2 6.64 ⇥10�15 5.53 ⇥10�15 7.83 ⇥10�15

0.25 2.43 ⇥10�13 2.02 ⇥10�13 2.87 ⇥10�13

0.3 3.73 ⇥10�12 3.10 ⇥10�12 4.43 ⇥10�12

0.35 3.28 ⇥10�11 2.72 ⇥10�11 3.90 ⇥10�11

0.4 1.96 ⇥10�10 1.62 ⇥10�10 2.33 ⇥10�10

0.45 8.82 ⇥10�10 7.30 ⇥10�10 1.05 ⇥10�9

0.5 3.22 ⇥10�9 2.66 ⇥10�9 3.85 ⇥10�9

0.6 2.70 ⇥10�8 2.23 ⇥10�8 3.23 ⇥10�8

0.7 1.47 ⇥10�7 1.21 ⇥10�7 1.76 ⇥10�7

0.8 5.92 ⇥10�7 4.90 ⇥10�7 7.11 ⇥10�7

0.9 1.92 ⇥10�6 1.59 ⇥10�6 2.31 ⇥10�6

1 5.30 ⇥10�6 4.40 ⇥10�6 6.38 ⇥10�6

1.25 4.10 ⇥10�5 3.42 ⇥10�5 4.93 ⇥10�5

1.5 2.03 ⇥10�4 1.70 ⇥10�4 2.43 ⇥10�4

1.75 7.65 ⇥10�4 6.46 ⇥10�4 9.14 ⇥10�4

2 2.40 ⇥10�3 2.04 ⇥10�3 2.86 ⇥10�3

2.5 1.57 ⇥10�2 1.32 ⇥10�2 1.88 ⇥10�2

3 6.66 ⇥10�2 5.51 ⇥10�2 8.10 ⇥10�2

3.5 2.09 ⇥10�1 1.71 ⇥10�1 2.55 ⇥10�1

4 5.31 ⇥10�1 4.37 ⇥10�1 6.48 ⇥10�1

5 2.38 ⇥100 2.02 ⇥100 2.84 ⇥100

6 7.93 ⇥100 6.96 ⇥100 9.22 ⇥100

7 2.11 ⇥101 1.89 ⇥101 2.41 ⇥101

8 4.64 ⇥101 4.20 ⇥101 5.26 ⇥101

9 8.75 ⇥101 7.96 ⇥101 9.86 ⇥101

10 1.46 ⇥102 1.33 ⇥102 1.64 ⇥102

TABLE XXVI The sum of two instances of Eq. B1 are necessary to fit the reaction rate to better than 5% accuracy over the
range 0.06 < T < 10 GK and the parameters given here reproduce the recommend rate to better than 3.5%. Not all parameters
are necessary for the fitting and these have been set to zero. Parameters that were adjusted for the fit are marked in bold.

term a0 a1 a2 a3 a4 a5 a6

non-resonant 24.1 0 -32 -5.9 1.8 -0.17 -2/3
resonance 7.4 -30 0 0 0 0 -3/2
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D. Schürmann, U. Tabassam, M. Busso, N. De Cesare,
A. D’Onofrio, M. Romoli, and F. Terrasi (2014), Eur. Phys.
J. A 50 (11), 171.

Hagedorn, F. B. (1957), Phys. Rev. 108 (3), 735.
Hagedorn, F. B., and J. B. Marion (1957), Phys. Rev.

108 (4), 1015.
Hale, G. (1997), Nucl. Phys. A 621 (1-2), 177, nuclei in the

Cosmos.
Hale, G. (2004), “Some Thoughts on �2 Expressions. Los

Alamos national laboratory, unpublished memorandum,”.
Hale, G., and D. Dodder (1980), in Nuclear cross sections

for technology: proceedings of the International Conference
on Nuclear Cross Sections for Technology, held at the Uni-
versity of Tennessee, Knoxville, TN, October 22-26, 1979 ,

NBS Special Publication 594, edited by J. Fowler, C. John-
son, and C. Bowman (U.S. Dept. of Commerce, National
Bureau of Standards) pp. 650–658.

Hale, G. M., R. E. Brown, and N. Jarmie (1987), Phys. Rev.
Lett. 59, 763.

Hammer, J. W., M. Fey, R. Kunz, J. Kiener, V. Tatische↵,
F. Haas, J. Weil, M. Assunção, C. Beck, C. Boukari-
Pelissie, A. Coc, J. Correia, S. Courtin, F. Fleurot,
E. Galanopoulos, C. Grama, F. Hammache, S. Haris-
sopulos, A. Korichi, E. Krmpotić, D. L. Du, A. Lopez-
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J. E. Norris, and M. Asplund (2015), Astrophys. J. 807,
173, arXiv:1506.00579 [astro-ph.SR].

Hansen, T. T., J. Andersen, B. Nordström, T. C. Beers, V. M.
Placco, J. Yoon, and L. A. Buchhave (2016), Astron. As-
trophys. 586, A160, arXiv:1511.08197 [astro-ph.SR].

Harss, B., R. C. Pardo, K. E. Rehm, F. Borasi, J. P. Greene,
R. V. F. Janssens, C. L. Jiang, J. Nolen, M. Paul, J. P.
Schi↵er, R. E. Segel, J. Specht, T. F. Wang, P. Wilt,
and B. Zabransky (2000), Review of Scientific Instruments
71 (2), 380.

Hättig, H., K. Hünchen, P. Roth, and H. Wä✏er (1969),
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